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Improved 2D-3D Human Pose Estimation
System with Proposed Attention Mechanism

Abstract— Neural networks have achieved significant
success in lifting 2D to 3D pose estimation. However, effec-
tively minimizing the redundant 2D pose sequences from
a weak pose detector continues to be a challenging issue.
To tackle this, the proposed method incorporates the atten-
tion mechanisms inside the proposed system. This system
comprises two main components: a 2D pose detector and a
3D pose estimator. The 2D pose detector is enhanced with
a new attention module called channel attention, which is
implemented after the last two blocks to improve accuracy.
Additionally, the 3D pose network utilizes a Transformer-
based architecture with advanced attention mechanisms. It
introduces a new Transformer Encoder that applies spatial
and temporal attention to capture important information
in 2D pose sequences. This proposed architecture shows
promising comparative performance on two benchmark
datasets for 3D human pose estimation Human3.6M and
MPI-INF-3DHP. Moreover, the 3D Network improves per-
formance by 0.9% and 0.3%, respectively over its closest
counterpart, PoseFormer. Furthermore, in terms of 2D pose
estimation, the system outperforms existing methods on
the COCO 2017 Microsoft Dataset. Link demo: demo vision

Index Terms— 3D modeling, Deep learning, Pose estima-
tion, Video surveillance.

I. INTRODUCTION

A. Research Background

THREE dimensional (3D) Human Pose Estimation (HPE)
is a critical area of study in computer vision. This

technique aims to determine the three-dimensional coordinates
of human body joints from a two-dimensional image or a
series of images. Human pose estimation has a variety of
applications, including object recognition [1], [2], human-
computer interaction [3], activity recognition [4], [5], and
robotic systems [6], [7].

1) 2D Human Pose Network: In the field of 2D Human
Pose Estimation, as outlined in the introduction, most tech-
niques fall into two main categories: top-down and bottom-up.
Recently, bottom-up methods [8] have become popular due
to their efficiency. These methods predict keypoints directly
from the input image without requiring person detection.
However, because they do not focus specifically on human
regions, their accuracy may be compromised. Conversely, top-
down methods start with a human detector that identifies all
individuals in an image and then performs single-person pose
estimation for each detected subject, resulting in more accurate
predictions. Notable techniques in this category include HRNet
[9] and HRFormer [10]. This paper introduces a novel top-
down approach that significantly enhances heatmap prediction
by applying an attention mechanism between the characteristic
functions of the predicted and ground truth (GT) heatmaps.

2) 3D Human Pose Network: Existing single-view 3D pose
estimation methods can be divided into two mainstream types:
one-stage approaches and two-stage methods. One-stage ap-
proaches directly infer 3D poses from input images without
intermediate 2D pose representations [11], [12], while two-
stage network first obtain 2D keypoints from pretrained 2D
pose detections and then feed them into a 2D-to 3D lifting
network to estimate 3D poses. Benefiting from the excellent
performance of 2D HPE, this 2D-to-3D pose lifting method
can efficiently and accurately regress 3D poses using detected
2D key points. Despite the promising results achieved by using
temporal correlations from fully convolutional [4], [13] or
graph-based [2] architectures, these methods are less efficient
in capturing global-context information across frames.

Recently, vision transformers advanced all the visual recog-
nition tasks [14]. Following PoseFormer [15], the transformer
has been used to lift 2D poses to the corresponding 3D poses.
To eliminate the redundancy in the sequence with temporal
information, Li et al. [16] proposed a strided transformer net-
work. spatial-temporal transformer is used for 3D HPE tasks.
Using transformers in HPE showed significant improvement
overall. However, pre-training on a large dataset is required
to learn more representative and effective representations for
the sequence HPE data. The proposed method is different
from the previous methods in leveraging the cross-interaction
between the joints of the body parts in the spatial and temporal
domains.

B. Problem Statement and Technical Challenges

For the 2D Pose Estimator, deep convolutional neural net-
works have demonstrated exceptional performance. Typically,
most existing approaches process the input through a network
to enhance the resolution and subsequently apply 3D Human
Pose Estimation (HPE) on the 2D results, as depicted in
Fig. 1. The 3D network, which uses a series of 2D points
as input, generally consists of high-to-low resolution sub-
networks arranged in sequence. For instance, the Hoursglass
model [17] deploys a symmetric low-to-high resolution tech-
nique to regain high resolution, while Simple Baseline [8]
utilizes a few transposed convolution layers to create high-
resolution representations. Nevertheless, accurately lifting the
2D keypoints to a 3D model remains a significant challenge.

Recent advancements in 3D human posture encoding have
been facilitated by deep neural networks [18], [19]. However,
these networks encounter several challenges. First, improving
the accuracy of various network types, such as real-time net-
works or networks that measure accuracy, is crucial. Second,
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Fig. 1. The proposed system comprises two main components: the 2D Pose Detector and the 3D Pose Estimator. The 2D Pose Detector processes
the input image to identify 2D human keypoints. Subsequently, the 3D Pose Estimator takes a sequence of these predicted 2D joints from the
Detector and accurately estimates the final 3D pose of the human figure.

it is common practice to verify the accuracy of a network by
using different 2D pose results. Finally, the current challenge
for networks is to enhance accuracy while either maintaining
or increasing processing speed. The proposed study introduces
a novel network structure and evaluates it in terms of speed
and accuracy. This experiment diverges from PoseFormer [15]
by implementing a new attention mechanism known as spatial-
temporal attention.

C. Attention in Human Pose Estimation Review
The attention mechanism has been widely adopted in natural

language processing (NLP) tasks, achieving state-of-the-art
performance in machine translation [5] and language under-
standing [15]. Recently, attention-aware features have also
proved highly effective in computer vision tasks. For instance,
Newel et al. [17] proposed a robust attention module that in-
tegrates an attention branch with an hourglass block, which is
stacked multiple times to construct a deep convolutional neural
network for image classification. Leveraging the self-attention
mechanism, the network described in [20] captures rich con-
textual dependencies for scene segmentation. Similarly, Zhang
et al. [18] and Yang et al. [15] have incorporated attention
mechanisms into various convolutional neural networks to
enhance human pose estimation. A prominent mechanism in
this area is self-attention, also known as transformer-based
attention, which enables the model to focus on different
parts of the input and recognize long-range dependencies.
This capability allows pose estimation models to dynamically
prioritize the significance of different joints or body parts
based on their interrelations.

Furthermore, spatial attention can be utilized to empha-
size relevant spatial regions within an image, enhancing the
model’s focus on crucial areas for accurate pose estimation
through technologies like spatial transformer networks or
spatial attention modules.

D. Contribution of The Paper
Over the past few years, there has been a significant increase

in research focused on 2D and 3D human pose estimation.

However, less work has been deeply studied on attention mech-
anisms for both 2D and 3D networks. This article proposes
a new attention mechanism for the whole network, which
significantly improves the accuracy of the final 2D and 3D
prediction results. In summary, the main contribution of the
paper is described in three-fold:

1) This paper introduces and applies a new attention mech-
anism to both the 2D pose detector and the 3D estimator,
enhancing the network’s ability to improve occlusion
issues. Inside the 2D Pose Network, a new channel
attention module deploying 1 × 1 depth-wise convo-
lutions across different channels effectively captures
the important keypoint information. Additionally, a new
spatial-temporal attention mechanism was implemented
in the 3D Network, significantly increasing the accuracy
of 3D predictions.

2) The study presents a comprehensive system for Lifting
2D-3D Pose Estimation. The proposed architecture ac-
curately predicts the final 3D human posture from the
input image, incorporating several minor techniques to
enhance both 2D and 3D results.

3) The proposed method, which is straightforward and has
not increased much in computational cost, surpasses
the compared methods in performance on benchmark
datasets. For 2D, it is extensively compared with other
methods on the Microsoft COCO 2017 benchmark.
Additionally, this method achieves competitive results
on the Human3.6M and MPI-INF-3DHP datasets for the
3D Network.

II. METHODOLOGY

A. 2D Pose Estimator

[ht]
1) Backbone network: The proposed system utilizes

a benchmark composed of HighResolutionNet-W32 and
HighResolutionNet-W48 [9], as depicted in Fig. 2. Each
HighResolutionNet can be organized in two ways: three
subnetworks or three stages that include residual blocks, a
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Fig. 2. The proposed 2D Pose Detector architecture incorporates
a multi-resolution framework adapted from the original HRNet, which
includes both downsampling and upsampling processes. The key mod-
ification in the proposed design is the integration of the attention
mechanism inside the third sub-network, enhancing the model’s focus
and performance in key areas.

convolution unit, and 3 × 3 convolution for downsampling,
along with bi-linear interpolation for upsampling. The default
input image is resized to dimensions of 256 × 192 for both
HighResolutionNet-W32 and HighResolutionNet-W48 mod-
els. For each stage inside the network, the feature map with
the initial dimensions of H × W is halved, and the channel
count C doubles after every stage. Consequently, by the
end of the backbone, the feature map size is reduced to
W
4 × H

4 × 4C. The architecture is called HR-Net because it
maintains the dimension of W ×H from the beginning until
the regression process. Additionally, the numbers 32 or 48 in
the backbone network’s name refer to the number of channels,
which increase to 128 and 192 at the final stage, respectively.
The network utilizes mean square error loss, as introduced in
Section II.A.3, to generate the predicted keypoint from ground
truth.
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Fig. 3. Architecture of Attention module. The Attention was imple-
mented on the last layer of the residual block

2) Attention Module: In the proposed 2D Pose Estimator,
the Attention Mechanism was applied only to the last two
blocks of the final sub-network. As shown in Fig. 2, only
six attention modules were deployed to balance computational
cost and accuracy. According to Fig. 3, the attention module
deployed is based on channel attention, no spatial attention
was used because of inefficient for keypoints. The reason is
Spatial tries to apply Global-pooling or Max-pooling to get
the global context but it also makes the keypoint information
collapse. Hence, the proposed architecture believes that only
channel attention is better than used both channel and spatial.
After one residual block in the backbone network, the feature
information is directed to the channel attention module where
convolutions Conv1×1 are applied. The output of the Channel
Attention module is:

X ′ = σ(Conv1×1(Conv1×1(Conv1×1(GAP (X))) (1)

where X ∈ RW×H×C is the input of the feature map from
the previous residual block of the Channel Attention Block
and X ′ ∈ R1×1×C is the output of attention map. Conv1×1

include 1 × 1 convolution layer, batch normalization, and
RELU (Rectified Linear Unit) for activation function. GAP is
the global average pooling to capture the channel information.
σ is the sigmoid function to generate the probability of the
attention area. The tensor information in the Channel Attention
Module (CAM) uses this convolution to reduce the channel
dimension from C to C

s . s is the shrinking ratio, which is
typically set to 4. After that, a multi-element-wise

⊗
function

is applied to generate attention feature Y :

Y = X
⊗

X ′, (2)

Finally, combining the Channel Attention Block output with
the Residual Block by addition-element-wise

⊕
Z = Conv3×3(Conv3×3(X))

⊕
X

⊕
Y (3)

where architecture of Conv3×3 is the same with Conv1×1

but utilizes the convolution layers 3 × 3. First
⊕

refers to
the skip connection inside the residual block, and second

⊕
combines the residual block and channel attention module.
Additionally, the size of the feature map kept the same size
for X,Y, Z ∈ RH×W×C

3) 2D Pose Estimator Loss: Heat maps are utilized in the
proposed work to demonstrate body keypoint locations in the
loss function. The principles of Ground-truth heat map Hn

is then built up by utilizing the Gaussian distribution and the
mean an with variance τ as illustrated in the next equation.

Hn(p) ∼ N (an, τ), (4)

where p ∈ R2 illustrate the coordinate, and τ is an identity
matrix I. The final layer of the proposed architecture generated
A heat maps, i.e., Ŝ = Ŝa

b and b = 1B for B body joints. The
mean square error for the loss function is defined, which is
summarized as follows:

L =
1

AB

A∑
A=1

B∑
B=1

∥∥∥Sa
b − Ŝa

b

∥∥∥2 , (5)
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where A also denotes the number of selected in the training
process, B denotes the number of joints. Sa

b and Ŝa
b is the

predict and ground truth for 2D Keypoint.

B. 3D Pose Estimation Network

1) Baseline network: In this work, it adopt a Transformer-
based architecture which is in Fig. 4 since it performs well
in long-range dependency modeling. Then first give a brief
description of the basic components in the Transformer [20],
including a multi-head self-attention (MSA) and a multi-layer
perceptron (MLP). In the MSA, the inputs x ∈ Rn×d are
linearly mapped to queries Q ∈ Rn×d , keys K ∈ Rn×d ,
and values V ∈ Rn×d , where n is the sequence length, and
d is the dimension. The scaled dot-product attention can be
computed by:

MSA(Q ,K ,V ) = Softmax (
QKT

√
dm

)V, (6)

MSA splits the queries, keys, and values for h times as well
as performs the attention in parallel. Then, the outputs of
the attention heads are concatenated. The MLP consists of
two linear layers, which are used for non-linearity and feature
transformation:

MLP(x ) = α(xW1 + a1)W2 + a2, (7)

where α denotes the Gaussian Error Linear Unit (GELU)
activation function, W1 ∈ Rd×dm and W2 ∈ Rdm×d are the
weights of the two linear layers respectively, and a1 ∈ Rdm

and a2 ∈ Rd are the bias terms. Layer Norm (LN) is used
before for all MSA and MLP to make the network balance
between accurate and computational cost.

2) Spatial Transformer: The Spatial Transformer tries to
catch the information inside the individual pose. Hence this
paper proposed a new Spatial Attention (SA) module to
focus on each key point by group of 5. This module is
inserted between the LN layer and MLP for N1× transformer
block. The Spatial attention module consists of two depth-
wise convolutions with kernel size 5, group normalization,
and non-linearity GELU. Also, the skip connection is added
to the output of the module to avoid overfitting. The following
operations on output of the patch embedding step P0 can be
described:

P0 = Conv(Norm(GELU(Conv(P)))) + P , (8)

where GELU refers to the non-linear layer, Conv is the
standard convolution layer with kernel 1 × 5 and Norm
indicates the normalization used in [15]. Since the focus of
the SA module is on the interaction between the joints, the
output of the MSA part in Eq. 6 has been transposed. That is,
it becomes P0 ∈ RD. The spatial encoders for a transformer
layer can be represented by the following list of operations:

MLP(x0 ) = β(xW1 + a1)W2 + a2, (9)

where β denotes the P function in Eq. 8
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Fig. 4. Detailed Architecture of 3D Pose Estimator. The proposed
network is based on the transformer. The new thing here is the 1 × 1
conv with different channels for Spatial and Temporal attention. In
the case of Temporal attention, the attention-getting interaction among
multi-feature

3) Temporal Transformer: Same with the Spatial Trans-
former, The Temporal attention (TA) is applied for the N2×
transformer blocks. Inside the temporal transformer, it learns
pairwise feature correlations using the outer product. Each
element of the correlation matrix Cij =

∑
F PiPj is a dot

product of the corresponding embedded features of frames i
and j and then it is sum-pooled, where Pi ∈ RJ×D is the input
feature of frame i. More precisely, the input is transformed by
combining the positional information with the frames where
P1 ∈ RF×J×D and then using convolutions this paper extract
K, Q, and V such that:

K = PWk ,Q = PWq ,V = PWv (10)

The TA module is same as SA, but the difference is the Conv
kernel size is 1×3. The output embedding P1 and MLP (x1)
can defined:

P1 = Conv(Norm(GELU(Conv(P)))) + P , (11)

MLP(x1 ) = β(xW1 + a1)W2 + a2, (12)

4) Regression Head: To understand clearly, suppose the 3D
network input is the 2D Pose Sequence X2D ∈ RN×J×2

which N is the number of frame, J is the number of keypoint
and 2 is mean the 2D coordinate of Keypoint (x, y). Then
X2D go to Spatial Transformer and it outputs the (X ′)3D ∈
RN×J×3 for each X2D respectively. After that, X ′

3D is also the
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input of Temporal Transformer to generate ZL3 ∈ RN×J×3

and put it to the regression.
In the regression head, a linear transformation layer is

applied on the output ZL3 to perform regression to produce
pose sequence X̃ ∈ RN×J×3. Finally, the 3D pose of center
frames X̂ ∈ RJ×3 is selected from X̃ as Ours final prediction,
3 here is the 3D coordinate (x, y, z)

5) 3D Loss: The entire 3D Estimator is trained in an end-
to-end manner with a Mean Square Error loss for the Spatial
module function defined by the mean of MPJPE, which is
calculated as follows:

Ls =

M∑
m=1

J∑
j=1

∥∥∥Sm
j − Ŝm

j

∥∥∥
2
, (13)

Where M denotes the number of selected 2D Pose in the
training process, J is the number of Joint. Sm

j is the predict 3D
human pose joint and Ŝm

j is the ground truth 3D Pose. Same
with the Spatial L2 Loss, The Temporal L2 Loss is calculated
as follows:

Lt =

N∑
N=1

J∑
j=1

∥∥∥Sn
j − Ŝn

j

∥∥∥
2
, (14)

Where N denotes the number of selected predicted 3D Pose in
the training process. The total loss for 3D network composed
in:

L = λsLs + λtLt, (15)

While λs and λt is the weighted parameter for each loss

III. EXPERIMENT

A. Datasets and Evaluation Protocols
For the 2D human pose estimator, Microsoft COCO 2017

[3] was used for training and testing in the whole process.
1) Microsoft COCO 2017: was utilized through the training

and testing process. This dataset is a challenging dataset
for joint detection which comprises around 250K human
labeled in 200K images, each human pose has 17 key-
point labels. The proposed research applies Object Keypoint
Similarity (OKS) for Microsoft COCO2017 dataset with
OKS =

∑
i exp(−di

2/2s2k2
i )δ(vi>0)∑

i δ(vi>0) In the above function,
The Euclidean distance between the groundtruth joint and the
predicted joint is di, The target’s visibility flag is vi, The object
scale is s, and ki is one of seventeen joints in Microsoft COCO
2017 benchmark. Hence, The standard average accuracy and
recall value are then computed.

About the 3D human pose, this approach evaluates proposed
model on two general datasets: Human3.6M [24] and MPI-
INF-3DHP [25].

2) Human3.6M: is the most commonly used indoor dataset
for the 3D human pose estimation tasks. Following the same
policy of the base method [14], the 3D human pose in
Human3.6M is adopted as a 17-joint skeleton, and the subjects
S1, S5, S6, S7, S8 from the dataset are applied during
training, the subjects S9 and S11 are used for testing. The two
commonly used evaluation metrics (MPJPE and P-MPJPE) are
involved in this dataset. In addition, mean per-joint velocity
error (MPJVE) is applied to measure the smoothness of the
prediction sequence.

3) MPI-INF-3DHP: is a recently proposed large-scale
dataset, which consists of three scenes, i.e., green screen, non-
green screen, and outdoor. By using 14 cameras, the dataset
records 8 actors performing 8 activities for the training set
and 7 activities for evaluation. Following the works [15],
the proposed network adopts the MPJPE (P1), percentage of
correct keypoints (PCK) with 150 mm, and area under the
curve (AUC) results as the evaluation metrics.

B. Implementation Details

The proposed model, implemented using PyTorch, utilizes
2D keypoints from HRNet [9], CPN Detector, or 2D ground
truth to analyze performance. The 2D pose detector in this
study is based on the AlphaPose [22] codebase, while the
3D pose estimator adopts the PoseFormer codebase [15].
Although the proposed model is capable of adapting to any
length of the input sequence, for fairness in comparison,
specific sequence lengths (T) were chosen for three datasets:
Human3.6M (T = 81, 243), and MPI-INF-3DHP (T = 1, 27).
Details regarding the selection of frame lengths are discussed
in the ablation study (Section III.E.3). The batch size, dropout
rate, and activation function are set at 1024, 0.1, and GELU,
respectively. All experiments were conducted on the PyTorch
framework using two NVIDIA GeForce GTX 2080 Ti GPUs.
The network training deploys the Adam optimizer [26], with
a learning rate of 0.001 and a decay factor of 0.95 applied
every two epochs.

C. Comparison with the SOTA 2D Pose Methods

1) Result for COCO2017 dataset: The proposed result in
Table I was estimated on the COCO validation dataset. In
all instances, the accuracy in the proposed technique is larger
than the benchmark High-Resolution Network of 1.3 and
1.0 AP in backbone HRNet-32 and HRNet-W48 respectively.
In addition, the average recall (AR) for HRNet-W32 is 0.5
points higher and 0.4 points higher for HRNet-W48. Overall,
the experiment outcomes improved modestly in both AP and
AR, showing that attention mechanisms affect the result. To
ensure a fair comparison, we evaluated the results against
networks without pretraining. Despite being only trained on
COCO, the proposed network still surpasses the ImageNet-
pretrained HRNet-W32 and HRNet-W48 by 1.3% and 1.6%
in Average Precision (AP), respectively. This demonstrates
that the integration of the attention mechanism can outperform
models that rely on pretraining.

D. Comparison with the SOTA 3D Pose Methods

1) Result for Human3.6M dataset: For the 2D-to-3D pose
lifting task, the accuracy of the 2D detections directly. To
guarantee fair comparisons, the input is taken from CPN in
the form of 2D keypoints for training and testing. Table II
shows the comparison of the SOTA methods with the proposed
method (81 frames). In Table II, the proposed method achieves
the state-of-the-art on Human3.6 on all the metrics and it out-
performs the state-of-the-art (Chen at al) with a considerable
margin of 0.9%, 1.3% for Protocols 1 and 2, respectively. It is
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TABLE I
COMPARISON RESULT ON COCO 2017 VALIDATION SET. PT = PRETRAIN THE BACKBONE ON THE IMAGENET CLASSIFICATION TASK

Methodology Backbone PT #Parameters (M) Image size AP (%) AR (%) AP 50 AP 75 APL APM

Fine-tune Attention [27] ResNet-50 N 31.2M 256×192 71.4 76.3 91.6 78.6 75.7 68.2
Fine-tune Attention [27] ResNet-101 N 50.2M 256×192 72.3 77.1 92.0 79.4 77.1 68.3
High-Resolution Net [9] HRNet-W32 N 28.5M 256×192 73.4 78.9 89.5 80.7 80.1 70.2
High-Resolution Net [9] HRNet-W32 Y 28.5M 256×192 74.4 79.8 90.5 81.9 81.0 70.8
High-Resolution Net [9] HRNet-W48 Y 63.6M 256×192 75.1 80.4 90.6 82.2 81.8 71.5
Zhang at al. [18] HRNet-W32 N 29.2M 256×192 74.8 77.6 92.5 81.6 79.3 72.0
Zhang at al. [18] Hourglass-8 N 25.8M 256×192 75.1 80.4 90.6 82.6 81.9 71.6
MogaNet-T [16] MogaNet N 8.1M 256×192 73.2 81.0 90.1 78.8 - -
MogaNet-S [16] MogaNet N 29M 256×192 74.9 82.8 90.7 80.1 - -
PPE-Net [28] ResNeXt-101 Y - 256×192 75.7 - 90.3 76.3 79.5 80.7
Ours HRNet-W32 N 29.3M 256×192 75.5 80.5 90.4 82.0 82.2 71.3
Ours HRNet-W48 N 65.9M 256×192 76.0 80.7 90.6 82.6 82.9 71.8

TABLE II
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ON HUMAN3.6M DATASET USING CPN DETECTOR UNDER PROTOCOL #1 AND PROTOCOL

#2 FOR FULLY-SUPERVISED METHODS.

Protocol # 1 - CPN Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [23] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Fang et al. [19] ∗ 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Li et al. [13] 47.0 47.1 49.3 50.5 53.9 58.5 48.8 45.5 55.2 68.6 50.8 47.5 53.6 42.3 45.6 50.9
Zhen [24] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Xu et al. [11] 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Yang et al. [15] † 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Ours 45.0 48.3 46.6 49.8 46.6 59.0 48.7 41.9 57.7 60.2 45.1 48.2 45.8 41.0 45.1 43.1
Protocol # 2 - CPN Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Fang et al. [19] ∗ 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Pavllo et al. [12] ⋆ 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Wu et al. [29] 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Yang et al. [15] † 30.0 33.6 29.9 31.0 30.2 35.4 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Li et al. [13] 34.5 34.9 37.6 39.6 38.8 45.9 34.8 33.0 40.8 51.6 38.0 35.7 40.2 30.2 34.8 38.0
Ours 34.1 36.0 36.4 39.9 39.4 45.0 35.9 32.8 43.1 52.1 37.3 36.6 39.7 30.2 35.8 38.3
⋆ denotes that the 2D Keypoint detection is the cascaded pyramid network(CPN).
† refers to 3D network apply transformer-based model.
∗ refers to used 2D Groundtruth for training
Bold: is the best performance

TABLE III
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ON HUMAN3.6M DATASET USING GROUNDTRUTH AS 2D KEYPOINT UNDER PROTOCOL #1

WITH 2D GROUND-TRUTH INPUT. BOLD NUMBER IS THE BEST PERFORMANCE IN EACH CASE.

Protocol # 1 - GroundTruth Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [23] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Fang et al. [19] 32.1 36.6 34.3 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 30.3 37.6 35.6 38.4
Li et al. [13] 32.9 38.7 32.9 37.0 37.3 44.8 38.8 36.1 41.2 45.6 36.8 37.7 37.7 29.5 31.6 37.2
Zhen [24] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 31.7 38.5 45.5 35.4 36.6 36.2 28.9 30.8 35.8
Xu et al. [11] 35.8 38.1 47.5 31.4 39.6 35.8 45.5 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Xue et al. [3] 35.0 37.2 46.6 30.8 38.7 35.1 44.3 34.9 40.1 41.0 32.1 33.6 32.5 26.0 26.1 33.3
Chen et al. [30] - - - - - - - - - - - - - - - 32.3
Yang et al. [15] † 34.8 32.1 29.8 31.5 36.9 35.6 30.5 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.6 32.0
Ours 27.9 29.9 26.6 27.8 28.6 32.8 31.1 26.7 36.5 35.5 30.0 29.8 27.5 19.6 19.7 31.0
† refers to 3D network apply transformer-based model.

worth noting that the across-joint modules in the spatial and
temporal cases are crucial to infer the body-joint dependencies.
Comparing the proposed method with PoseFormer (with no
pre-training used) shows the significance of the across-joint
correlation modules. Our method outperforms with a large
margin of 2% the SOTA. In terms of accuracy, it achieves
1% better than the second-best accuracy. Additionally, the
proposed method achieves the best performance amongst all
the compared methods in protocol 2 in Table II (bottom).
In some selected difficult poses such as walk together, walk,
smoke, where the poses change very quickly, the proposed
method showed a significant improvement ranging from 1.1%
to 2.5% over the baseline. This highlights the ability of

the proposed method to encode the long-range interactions
between the body joints. Considering the pre-trained baseline,
the proposed method achieves better performance for all the
actions. These results show the importance of plugging the
Spatial-temporal attention modules in the transformers.

Further experiments on Human3.6 using ground-truth 2D
poses as input have also been performed. This shows the
power of the proposed method where there is no noise
in the input as in the previous case. Table III shows the
comparisons of our method and the baselines. Overall, the
proposed method achieved the best performance amongst the
baselines. It achieved 28.3% MPJPE, whereas the second-best
approach achieved 31.0 with a gain of 3%. The proposed
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method outperforms the baselines in all the actions with a
considerable improvement range from 2.4% as the minimum
difference and 4.8% for the largest.

2) Result for MPII-INF-3DHP dataset: The approach further
compares the proposed methods to the baseline PoseFormer
on MPP-INF-3DHP using 9 frames. This is important because
it illustrates the ability of the proposed method to train with
fewer training samples in outdoor settings. As Table IV shows,
this paper obtains the best performance among the compared
approaches.

TABLE IV
PERFORMANCE COMPARISION IN TERMS OF PCK, AUC AND P1 WITH

THE STATE-OF-THE-ART METHODS ON MPI-INF-3DHP

Method PCK (%) ↑ AUC (%) ↑ MPJPE (mm) ↓
Pavllo et al. [12] (f = 81) 86.0 51.9 84.0
Lin et al. [20] (f = 25) 83.6 51.4 79.8
Li et al. [13] 81.2 46.1 99.7
Chen et al. [30] 87.9 54.0 78.8
Yang et al [15] (f = 9) 88.6 56.4 75.5
Ours (f = 9) 89.1 57.5 76.3
↑ Highest result is the best.
↓ Lowest result is the best.

E. Ablation Study
1) Effect of attention in 2D Detector and 3D Estimator: In

Table V, To evaluate the impact and performance of the 2D
for the whole 3D model, The proposed network evaluates
and investigates the result in the Human3.6M dataset. The
result shows that applying the attention module in the 2D
pose estimator makes the 2D input accurate and then helps
the final 3D result. Fig. 5 shows the impact of the attention
mechanism when the arm in the picture is straight compared
to the baseline HRNet looks folding the arms while in the
testing image, the person is straight his arm.

TABLE V
COMPARISION RESULT FOR APPLYING THE ATTENTION MODULE IN

HRNET WITH OTHER DETECTORS

Detector Protocol #1 Protocol #2 MPJVE (mm) ↓
CPN 47.6 37.4 3.20
Detectron2 [29] 45.7 37.0 3.02
Hoursglass [17] 52.3 41.2 4.11
HRNet-W32 [9] 45.1 36.3 2.91
HRNet-W32+AM (Ours) 43.6 35.1 2.77
GroundTruth 28.6 24.5 0.98

Table VI is a comparison of different module in a proposed
system, focusing on the presence or absence of specific
modules and their impact on the Mean Per Joint Position
Error (MPJPE). The modules include 2D Attention, 3D SAM
(Spatial Attention Module), and 3D TAM (Temporal Attention
Module). Each row in the table corresponds to a specific
configuration, indicating the presence or absence of these
modules. The MPJPE values for each configuration serve
as a quantitative measure of the accuracy of joint position
predictions. Notably, the proposed method exhibits improved
performance when incorporating all three modules simultane-
ously, achieving the lowest MPJPE at 42.2, which decreases
by 3.2% in accuracy compared to the baseline.

TABLE VI
COMPARISION RESULT OF EACH MODULE IN THE PROPOSED SYSTEM

Method 2D Attention 3D SAM 3D TAM MPJPE (mm) ↓
PoseFormer 44.3
Ours ✓ 43.6
Ours ✓ 43.7
Ours ✓ 43.8
Ours ✓ ✓ 43.3
Ours ✓ ✓ ✓ 42.2

2) Position of Attention Module in 2D Detector and 3D Es-
timator: Table VII investigates the result when applying dif-
ferent AM in each subnetwork and each stage in HRNet. In
conclusion, the result when applied in the attention module
in all stages (16 Attention modules got added) got the best
result however it also got the highest number of parameters
in the computational cost. Besides, Table VII also shows that
AM had the most effect in the first sub and stage than in the
remaining. Hence, this paper only applies the module for the
first sub-network and stage (only 6 were added) to not only
balance the computational cost but also keep the high accuracy.

TABLE VII
THE RESULT WHEN UTILIZING THE ATTENTION MECHANISM FOR EACH

SUB-NETWORK AND EACH STAGE OF HRNET-W32

Backbone Sub-Net AP (%) #Param (M)
HRnet-W32 - 73.4 28.5M
HRnet-W32 1 74.2 28.7M
HRnet-W32 2+1 74.6 28.9M
HRnet-W32 3+2+1 75.5 29.3M
Backbone Stage AP #Param
HRnet-W32 1 74.3 28.9M
HRnet-W32 2+1 74.8 29.1M
HRnet-W32 3+2+1 75.5 29.3M

Table VIII showcases the influence of different positions
of the SAM and TAM on MPJPE. For SAM, positioning
it after Multi-Head Self-Attention (MSA) or after Multi-
Layer Perceptron (MLP) yields lower MPJPE (44.1 and 44.9)
compared to before MSA (45.2). Similarly, for TAM, placing
it after MSA results in the lowest MPJPE (44.9), while before
MSA and after MLP have slightly higher errors (45.0 and 46.2,
respectively). This highlights the importance of the relative
positioning of attention modules in achieving optimal accuracy
in joint position predictions. Hence, this paper decided to put
SAM and TAM between the MSA and MLP.

TABLE VIII
THE RESULT WHEN APPLYING DIFFERENT POSITIONS OF 1 × 1

CONVOLUTION IN SAM AND TAM

Module Before MSA After MSA After MLP MPJPE (mm) ↓
SAM ✓ 45.2
SAM ✓ 44.1
SAM ✓ 44.9
TAM ✓ 45.0
TAM ✓ 44.9
TAM ✓ 46.2

3) Effect of modifying the setting in 3D network: Table IX
presents a comparative evaluation of different backbone archi-
tectures for human pose estimation under varying stride frame
configurations. Three methods, Pavllo et al.’s approach [12],
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PoseFormer by PoseFormer et al. [15], and a proposed method
are analyzed. For Pavllo et al.’s method, adjusting the stride
frame from the default 243 to 81 leads to a slight reduction
in the number of parameters from 12.75M to 12.70M, with
a marginal increase in the Mean Per Joint Position Error
(MPJPE) from 47.5 mm to 47.9 mm. PoseFormer demon-
strates improved accuracy with reduced MPJPE values when
the stride frame is decreased from 81 to 27, resulting in
MPJPE values of 44.3 mm and 44.6 mm, respectively. The
proposed method (”Ours”) consistently outperforms the other
methods, achieving lower MPJPE values as the stride frame
decreases from 81 to 27 to 9, while maintaining a relatively
stable parameter count of around 9.86M. This suggests that
the proposed method is effective in producing accurate pose
estimations with different stride frame configurations.

TABLE IX
THE RESULT FOR APPLYING DIFFERENT LEVELS OF FRAME. THE

DEFAULT SETTING FOR LEARNING RATE IS 0.25

Method Stride Frame #Param (M) MPJPE (mm) ↓
Pavllo et al. [12] 243 (default) 12.75M 47.5
Pavllo et al. [12] 81 12.70M 47.9
Yang et al. [15] 81 (default) 9.59M 44.3
Yang et al. [15] 27 9.60M 44.6
Ours 9 9.85M 44.3
Ours 27 9.86M 43.6
Ours 81 9.86M 43.3

TABLE X
THE COMPARISON RESULT FOR APPLYING DIFFERENT LEARNING RATES

FOR 3D MODEL. THE DEFAULT FRAME WAS SET AT 81 FOR ALL OF THE

EXPERIMENT

Method Learning rate #Param (M) MPJPE (mm) ↓
Pavllo et al. [12] 0.25 (default) 12.70M 47.9
Pavllo et al. [12] 0.1 12.70M 47.5
Yang et al. [15] 0.25 (default) 9.60M 44.3
Yang et al. [15] 0.1 9.60M 44.6
Ours 0.25 9.86M 43.3
Ours 0.2 9.86M 43.3
Ours 0.1 9.86M 43.1
Ours 0.05 9.86M 43.4

Table X shows the result when changing the learning rate
setting. While other papers set the learning rate as 0.25 and
do not consider this. This paper found based on the gradient
descent, 0.1 in learning rate is truly a perfect match for 3D
model. Only simple changing with Ours increase the com-
putational cost but significantly improve the accuracy which
decreases almost 1% of the error. The side effect of changing
the learning rate is only making training time increase from
20 hours to 22 hours.

IV. CONCLUSION

This research explores the impact of attention mechanisms
not only on the 2D Pose Detector but also on the 3D Pose
Estimator, particularly in the context of constructing a full
system from input to 3D result for the Industrial Environment.
Additionally, this work illustrates that the attention module
can yield significant benefits without substantially increasing
computational costs. Extensive experiments demonstrate that

Fig. 5. 3D human pose estimation result come from 2D skeleton based
on detector and detector with attention mechanism

the proposed network holds a fundamental advantage over
baseline Transformers, achieving state-of-the-art performance
on two benchmark datasets. The proposed method anticipate
that Ours approach will stimulate further research in 2D to
3D pose lifting, considering various ambiguities. In future
research, this paper aims to mitigate this computational cost
and develop a lightweight system.
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