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Abstract

We introduce a lightweight network to improve descrip-
tors of keypoints within the same image. The network takes
the original descriptors and the geometric properties of key-
points as the input, and uses an MLP-based self-boosting
stage and a Transformer-based cross-boosting stage to en-
hance the descriptors. The boosted descriptors can be ei-
ther real-valued or binary ones. We use the proposed net-
work to boost both hand-crafted (ORB [34], SIFT [24]) and
the state-of-the-art learning-based descriptors (SuperPoint
[10], ALIKE [53]) and evaluate them on image matching,
visual localization, and structure-from-motion tasks. The
results show that our method significantly improves the per-
formance of each task, particularly in challenging cases
such as large illumination changes or repetitive patterns.
Our method requires only 3.2ms on desktop GPU and 27ms
on embedded GPU to process 2000 features, which is fast
enough to be applied to a practical system. The code and
trained weights are publicly available at github.com/SJTU-
ViSYS/FeatureBooster.

1. Introduction

Extracting sparse keypoints or local features from an im-

age is a fundamental building block in various computer vi-

sion tasks, such as structure from motion (SfM), simultane-

ous localization and mapping (SLAM), and visual localiza-

tion. The feature descriptor, represented by a real-valued or

binary descriptor, plays a key role in matching those key-

points across different images.

The descriptors are commonly hand-crafted in the early

days. Recently, learning-based descriptors [10, 53] have
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Figure 1. ORB descriptors perform remarkably better in challeng-

ing cases after being boosted by the proposed lightweight network.

Left column: Matching results of using raw ORB descriptors.

Right column: Results of using boosted ORB descriptors. Near-

est neighbor search and RANSAC [14] were used for matching.

shown to be more powerful than hand-crafted ones, espe-

cially in challenging cases such as significant viewpoint

and illumination changes. Both hand-crafted and learning-

based descriptors have shown to work well in practice.

Some of them have become default descriptors for some ap-

plications. For example, the simple binary descriptor ORB

[34] is widely used for SLAM systems [20, 29]. SIFT [24]

is typically used in structure-from-motion systems.

Considering that the descriptors have already been inte-

grated into practical systems, replacing them with totally

new ones can be problematic, as it may require more com-

puting power that may not be supported by the existing

hardware, or sometimes require extensive modifications to

the software because of changed descriptor type (e.g. from

binary to real).

In this work, we attempt to reuse existing descriptors

and enhance their discrimination ability with as little com-

putational overhead as possible. To this end, we propose

a lightweight network to improve the original descriptors.

The input of this network is the descriptors and the geomet-
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ric properties such as the 2D locations of all the keypoints

within the entire image. Each descriptor is firstly processed

by an MLP (Multi-layer perceptron) and summed with ge-

ometric properties encoded by another MLP. The new ge-

ometrically encoded descriptors are then aggregated by an

efficient Transformer to produce powerful descriptors that

are aware of the high-level visual context and spatial lay-

out of those keypoints. The enhanced descriptors can be

either real-valued or binary ones and matched by using Eu-

clidean/Hamming distance respectively.

The core idea of our approach, motivated by recent work

[25, 36, 41], is integrating the visual and geometric infor-

mation of all the keypoints into individual descriptors by a

Transformer. This can be better understood intuitively by

considering when people are asked to find correspondences

between images, they would check all the keypoints and

the spatial layout of those keypoints in each image. With

the help of the global receptive field in Transformer, the

boosted descriptors contain global contextual information

that makes them more robust and discriminative as shown

in Fig. 1.

We apply our FeatureBooster to both hand-crafted de-

scriptors (SIFT [24], ORB [34]) and the state-of-the-art

learning-based descriptors (SuperPoint [10], ALIKE [53]).

We evaluated the boosted descriptors on tasks including

image matching, visual localization, and structure-from-

motion. The results show that our method can significantly

improve the performance of each task by using our boosted

descriptors.

Because FeatureBooster does not need to process the im-

age and adopts a lightweight Transformer, it is highly effi-

cient. It takes only 3.2ms on NVIDIA RTX 3090 and 27ms

on NVIDIA Jetson Xavier NX (for embedded devices) to

boost 2000 features, which makes our method applicable to

practical systems.

2. Related work
Feature descriptors: For a long time, the descriptors are

commonly hand-crafted. SIFT [24] and ORB [34] are the

most well-known hand-crafted descriptors, which are still

widely used in many 3D computer vision tasks for their

good performance and high efficiency. Hand-crafted de-

scriptors are usually extracted from a local patch. It hence

limits their representation capability on higher levels. With

the development of deep learning and the emergence of

patch dataset with annotation [7], learning-based descrip-

tors have been widely studied. Most learning-based de-

scriptors from patches adopt the network architecture in-

troduced in L2-Net [44] and are trained with different loss

functions, e.g. triplet loss [28, 43, 45], N-Pair loss [44] and

list-wise ranking loss [17]. Learning-based dense descrip-

tors [10, 12, 16, 30, 33, 50] can leverage information beyond

local patches in that they are typically extracted from the

entire image using convolutional neural networks, thus ex-

hibiting superior performances on large viewpoint and illu-

mination changes. Though a lot of descriptors have been in-

vented, how to boost existing descriptors has received little

attention, particularly through a learning-based approach.

Improve existing feature descriptors: It has been found

that projecting existing descriptors into another space by a

non-linear transformation leads to better matching results

[32]. RootSIFT [2] shows that simply taking the square

root of each element of the normalized SIFT descriptors

can improve the matching results. Apart from improving

the discrimination, some works also seek to compress the

descriptors by reducing the descriptor’s dimension, such as

PCA-SIFT [19] and LDAHash [40]. A recent work [11]

trained a network to map different types of descriptors into

a common space such that different types of descriptors can

be matched. Our work shares the core idea with this line

of research but aims to enhance the discrimination ability to

exist descriptors using a lightweight neural network.

Feature matching: Once feature descriptors are acquired,

the correspondences between images are usually found by

nearest neighbor (NN) search. The incorrect matches can be

filtered by adopting some tricks (e.g. mutual check, Lowe’s

ratio test [24], and RANSAC [14]). However, NN search

ignores the spatial and visual relationship between features

and usually produces noisy matching results. To address

this problem, SuperGlue [36] trained an attentional graph

neural network by correlating two sets of local features from

different images to predict the correspondences. Our ap-

proach is largely inspired by SuperGlue, but does not at-

tempt to improve the matching process. It instead enhances

the feature descriptors from a single image, such that a sim-

ple NN search can be used to produce competitive results.

Therefore our approach can be seamlessly integrated into

many existing pipelines such as a BoW(bag-of-word) [15]

implementation.

Feature context: The distribution of feature locations and

descriptors within an entire image forms a global context

that can be helpful for feature matching as demonstrated in

SuperGlue [36]. In this paper, we aim to integrate the global

context information into original descriptors to boost their

discrimination ability rather than learning to describe the

image from scratch. The closest work to our approach is

SConE [47] and ContextDesc [25]. SConE [47] develops a

constellation embedding module to convert a set of adjacent

features (including original descriptors and their spatial lay-

out) into new descriptors. This module is designed for a par-

ticular type of descriptor (FREAK [1]). ContextDesc [25]

uses two MLPs to encode the visual context and geometric

context into global features to improve the local descriptors.

It however requires to use of extra CNN to extract high-level

features from the original image to construct the visual con-

text.
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By contrast, our method takes only the descriptors and

geometric information (such as 2D locations) as the input

and uses a lightweight Transformer to aggregate them to

produce new descriptors. The new descriptors can be both

binary or real-valued ones and can be seamlessly integrated

into existing visual localization, SLAM, and structure-

from-motion systems. No need to process the raw images

makes our method very efficient and can run in real-time on

embedded GPU devices.

3. Overview
We propose a lightweight network to boost the feature

vectors (or descriptors) of a set of keypoints extracted from

an image by some existing keypoint detectors as shown in

Fig. 2. It takes only the feature descriptors as well as the

geometric information such as feature position, orientation,

and scale as the input, and outputs new descriptors that are

much more powerful than the original ones. The new de-

scriptors can be either real-valued or binary vectors which

may be different from the original ones. Our feature booster

does not need to process the image from which those key-

points are extracted, which makes our model lightweight

and efficient, and can be more easily integrated into exist-

ing Structure-from-motion or SLAM systems. No need to

access the original images also makes our approach pos-

sible to reuse 3D maps already built with certain types of

features.

The proposed pipeline consists of two steps: Self-
boosting and Cross-boosting. Self-boosting refers to us-

ing a lightweight MLP network to project the original fea-

ture vector into a new space. It also encodes geometric

information such as 2D location, detection score, and ori-

entation/scale to a high-dimensional vector to improve the

descriptor. After that, cross-boosting explores the global

context including the descriptors of other features and the

spatial layout of all the features to further enhance the in-

dividual descriptors using a lightweight Transformer. The

proposed network is trained end-to-end by using a loss func-

tion that consists of a ranking-based retrieval loss and an

enhancement loss.

3.1. Self-boosting

For each keypoint i detected in the image, we can ob-

tain its visual descriptor di, a D dimensional real-valued or

binary vector. The feature descriptors are then used to es-

tablish the correspondences between images by measuring

their similarity. A powerful descriptor should be robust to

the viewpoint and illumination changes to produce correct

matching results. A lot of descriptors have been developed,

including hand-crafted methods such as ORB [34], SURF

[4], and SIFT [24], as well as more advanced learning-based

methods such as SuperPoint [10]. However, there are still

some problems with those descriptors.

For the hand-crafted ones, the first problem is that the

similarity metric in the descriptor space is not optimal for

feature matching. This has been noticed in [2], where a

Hellinger distance is used to measure the SIFT’s similarity

instead using a Euclidean distance, which leads to a better

matching performance. It can be seen from [32], changing

the similarity metric is equivalent to projecting the original

descriptors into another space. This motivates us to use an

MLP (Multi-layer perceptron) to map the original descrip-

tor into a new one.

MLP is a universal function approximator as shown

by Cybenko’s theorem [9]. Hence we can use an MLP

to approximate the project function which we refer to as

MLPdesc. The transformed descriptor dtr
i for keypoint i is

the non-linear projection of the extracted descriptor di:

dtr
i ←MLPdesc(di) (1)

Given that the network’s training phase is guided by a

loss function with Euclidean or Hamming distance con-

straints, this MLP-based model enables the transformed

descriptors to be well fit for measuring similarity in Eu-

clidean or Hamming space respectively, especially for the

hand-crafted descriptors. However, this projection hasn’t

exploited the geometric information of the key point which

is valuable for matching [36]. Therefore, we also embed

the geometric information into a high dimensional vector

using another MLP (MLPgeo) to further improve the de-

scriptor. We encode not only the 2D location of keypoints

(xi, yi), but also other information such as the scale si, ori-

entation θi, and detection score ci when they are available.

The high-dimensional embedded geometric information is

added to the transformed descriptor:

dtr
i ← dtr

i +MLPgeo(pi). (2)

Here, pi = (xi, yi, ci, θi, si) represents all available geo-

metric information as aforementioned.

3.2. Cross-boosting

Self-boosting enhances the descriptor of each keypoint

independently without considering the possible correlation

between different keypoints. For example, it does not

exploit the spatial relationships between those keypoints,

while the spatial contextual cues could greatly enhance the

matching capability as demonstrated in [36]. Therefore, the

boosted descriptors from the self-boosting stage are limited

to the local context and still perform poorly under some

challenging environments (e.g. repetitive patterns or weakly

textured scenes). To address this issue, we further process

those descriptors by a cross-boosting stage.

Motivated by SuperGlue [36], we use a Transformer to

capture spatial contextual cues of the sparse local features

extracted from the same image. We denote the Transformer
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Figure 2. The proposed FeatureBooster pipeline consists of self-boosting and cross-boosting stages. Self-boosting applies an MLP to

encode the geometric properties of a keypoint and combines it with a new descriptor projected by another MLP. In the cross-boosting

stage, the geometrically encoded descriptors of all the keypoints within the entire image are then sent to a lightweight Transformer to

generate boosted descriptors. Finally, the boosted descriptors are used for feature matching.

by Trans and the projection is described as:

(dtr
1 ,dtr

2 , . . .dtr
N )← Trans(dtr

1 ,dtr
2 , . . .dtr

N ), (3)

where the input of the Transformer is N local features

within the same image, and the output is the enhanced fea-

ture descriptors. Compared with the MLP-based projec-

tion (see Eq. (1)), Transformer-based projection processes

all the local features within the same image simultaneously.

With the help of the attention mechanism in Transformer,

all local features’ information can be aggregated to form

a global context. By integrating this global contextual in-

formation, the local feature descriptors may have larger

receptive fields and adjust themselves according to their

neighbors (or competitors in the case of feature matching).

Therefore their distinguishability can be improved, espe-

cially for local features extracted from repetitive patterns

as shown in Fig. 1.

The biggest issue of using a Transformer is that its at-

tention mechanism requires high memory and computation

costs. The transformer encoder layer consists of two sub-

layers: an attention layer and a position-wise fully con-

nected feed-forward network. The vanilla Transformer [49]

uses a Multi-Head Attention (MHA) layer. Given an input

X ∈ R
N×D, where the i-th row is the D dimensional fea-

ture vector of keypoint i, the h-th head attention of X is

defined as:

fh(X) = softmax (
QhK

�
h

Dk
)Vh,

s.t. Qh = XWQ
h ,Kh = XWK

h ,Vh = XWV
h

(4)

where WQ
h ∈ R

D×Dk ,WK
h ∈ R

D×Dk ,WV
h ∈ R

D×Dv

are the linear projections of for head h. Fig. 3(a) illustrates

the computation graph of dot-product attention. The out-

put of Multi-Head Attention is the concatenation of all the

attention heads’ outputs along the channel dimension.

MHA uses the attention matrix to enable the global in-

teraction between query and value. The computation of the

attention matrix relies on the matrix dot product between

query and key, which results in a time and space complex-

ity quadratic with the context size (O(N2D)). It is easy to

see that the complexity introduced by MHA makes Vanilla

Transformer difficult to scale to inputs with a large context

size (N ). In our case, the context size (N ) is the num-

ber of local features within an image. Unfortunately, it is

very common that thousands of local features have been ex-

tracted within one image.

Attention-Free Transformer: To address the scalabil-

ity problem in our case, we propose to use an efficient

Attention-Free Transformer (specifically AFT-Simple) [51]

to replace the MHA operation in a Vanilla Transformer. Un-

like MHA or recent linearized attention [18], Attention-Free

Transformer (AFT) does not use or approximate the dot

product attention. Specifically, AFT rearranges the com-

putation order of Q, K, and V, just like linear attention, but

multiplies K and V element-wise instead of using matrix

multiplication. The Attention-Free Transformer for key-

point i can be formulated as:

fi(X) = σ(Qi)�
∑N

j=1 exp(Kj)�Vj
∑N

j=1 exp(Kj)

= σ(Qi)�
N∑

j=1

(softmax (K)�V)j

(5)

where σ(·) is a Sigmoid function; Qi represents i-th row of

Q; Kj ,Vj represent the j-th rows of K,V. AFT-simple

performs a revised version of the MHA operation where the

number of attention heads is equal to the model’s feature

dimension D and the similarity used in MHA is replaced

by a kernel function sim(Q,K) = σ(Q) · softmax (K). In
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Figure 3. Different architectures of the attention layer. (a) Atten-

tion layer in a vanilla Transformer. (b) Attention-Free Transformer

(AFT-simple), where only element-wise multiplication is required.

this way, attention can be computed by element-wise mul-

tiplication instead of matrix multiplication, which results in

a time and space complexity that is linear with context and

feature size (O(ND)). Fig. 3(b) illustrates the computation

graph of AFT-Simple.

3.3. Loss Functions

As in previous work [17, 33], we treat the descrip-

tor matching problem as nearest neighbor retrieval and

use the Average Precision (AP) to train the descriptors.

Considering transformed local feature descriptors dtr =
(dtr

1 , . . . ,dtr
N ), we want to maximize the AP [6] for all de-

scriptors and our goal for training is to minimize the follow-

ing cost function:

LAP = 1− 1

N
(

N∑
i

AP(dtr
i )) (6)

To ensure that the original descriptors will be boosted, we

propose to use another loss to force the performance of

transformed descriptors to be better than the original ones:

LBOOST =
1

N

N∑
i

max (0,
AP (di)

AP (dtr
i )
− 1) (7)

The final loss is the sum of the above two losses:

L = LAP + λLBOOST (8)

where λ is a weight to regulate the second term. We use a

differentiable approach (FastAP [8]) to compute the Aver-

age Precision (AP) for each descriptor.

Given a transformed descriptor dtr
i ∈ R

1×D in the first

image and the set of descriptors d′tr ∈ R
N×D in the second

image. FastAP can be computed by using the ground truth

labels about matched pairs M = {M+,M−} and pairwise

distance vector Z ∈ R
N with value domain Ω. By using

distance quantization, Ω can be quantized as a finite set with

b elements Ω = {z1, z2, . . . , zb}, then the precision and re-

call can be reformulated as functions of the distance z:

Prec(z) = P (M+|Z < z) (9)

Rec(z) = P (Z < z|M+) (10)

where P (M+|Z < z) represents the prior distribu-

tion for positive matches M+ conditioned on Z < z
and P (Z < z|M+) is the cumulative distribution func-

tion (CDF) for Z. Finally, the AP can be approxi-

mated by the area of precision-recall curve PRz(d
tr
i ) =

{(Prec(z),Rec(z)), z ∈ Ω}, which can be denoted as:

FastAP =

∫
z∈Ω

Prec(z)dRec(z) (11)

More details about FastAP are described in [8]. The ground

truth labels about matches M can be acquired using the

ground truth poses and depth maps. Note that the way to

calculate distance vector Z is different for real-valued and

binary descriptors.

3.4. Different types of descriptors

We are able to train our model to boost the descriptors

into both binary and real-valued forms by using different

ways to compute the distance vector Z.

Real-Valued Descriptors: We apply L2 normalization to

the output vector of the last layer of FeatureBooster, and

the pairwise distance vector Z can be calculated as:

Z = 2− 2dtr
i (d′tr)� (12)

In this case, the bound range of Z is [0, 4] and we quantize

the Ω as a finite set with 10 elements.

Binary Descriptors: We first use tanh to threshold the out-

put vector of the last layer of FeatureBooster to [−1, 1]. The

output vector is then binarized to {−1, 1}. However, there

is no real gradient defined for binarization. Our solution is

to copy gradients from binarized vector to unbinarized vec-

tor following the straight-through estimator [5]. Finally, the

pairwise distance vector Z can be obtained as:

Z =
1

2
(D − dtr

i (d′tr)�) (13)

For the Hamming distance, the values of Z are the integer

in {0, 1, . . . , D}, and AP can be computed in a closed form

by setting b = D in FastAP. However, we use b = 10 to

get a larger margin between matching descriptors and non-

matching descriptors as the discussion in [8].

4. Implementation details
In this section, we provide some implementation details

for training FeatureBooster. FeatureBooster is plug-and-

play and can be combined with any feature extraction pro-

cess. In this paper, we trained FeatureBoosters for ORB

[34], SIFT [24], SuperPoint [10], and ALIKE [53] respec-

tively. We use ORB-SLAM2’s [29] extractor for ORB ex-

traction and COLMAP’s [37, 39] extractor for SIFT extrac-

tion. For SuperPoint [10], we use its open-source repository
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Method Features Matches MMA @3 / @5

ORB [34] 2956 997 0.403 / 0.448
ORB+Boost-B (ours) 2956 1107 0.436 / 0.495

SIFT [24] 1675 772 0.534 / 0.586
SOSNet [45] 1675 797 0.571 / 0.638
RootSIFT [2] 1675 799 0.542 / 0.596
SIFT+Boost-F (ours) 1675 853 0.573 / 0.640
SIFT+Boost-B (ours) 1675 860 0.539 / 0.600

SuperPoint [10] 1562 884 0.654 / 0.738
SuperPoint+Boost-F (ours) 1562 920 0.669 / 0.758
SuperPoint+Boost-B (ours) 1562 911 0.654 / 0.741

ALIKE [53] 2578 1229 0.705 / 0.766
ALIKE+Boost-F (ours) 2578 1325 0.705 / 0.772
ALIKE+Boost-B (ours) 2578 1271 0.670 / 0.735

Figure 4. MMA curves in HPatches (the higher the better) and the number of matched points on average (the larger the better). The results

show that our feature booster can improve the performance for all the features. Boost-F and Boost-B indicate real-valued boosted and

binary boosted descriptors, respectively.

and the Non-Maximum Suppression (NMS) radius is 4 pix-

els. For ALIKE [53], we use its default open-source model.

Architecture details: All the models were implemented in

PyTorch [31]. The Transformer in FeatureBooster uses L =
9 encoder layers for ALIKE and SuperPoint, and L = 4
for ORB and SIFT. The query, key, and value in the Trans-

former encoder have the same dimension D as that of the

input descriptor. The feed-forward network in Transformer

is an MLP with 2 layers where the output dimensions are

(2D,D). The geometric encoder is an MLP with five lay-

ers where the output dimensions are (32, 64, 128, D,D) re-

spectively. Note the 2D locations of keypoints are normal-

ized by the largest image dimension and the feature orienta-

tion is represented in radians. For ORB (or binary) descrip-

tors, we first convert them to a float vector and normalized

them from [0, 1] to [−1, 1] and then send them to the 2-layer

MLP with shortcut connection where the output dimensions

are (2D,D) like all other descriptors.

Training data: We trained all the FeatureBoosters on

MegaDepth [21] and adopt the training scenes used in DISK

[48]. We computed the overlap score between two images

following D2-Net [12] and sampled 300 training pairs with

an overlap score in [0.1, 1] for each scene at every epoch.

A random 512× 512 patch centered around one correspon-

dence is selected for each pair. During the training, all the

local features were extracted on-the-fly, yielding up to 2048

local features from a single image. The labels for matched

descriptors and unmatched descriptors were generated by

checking the distance between the re-projected points and

the keypoints. For matched descriptors, the distance is be-

low 3 pixels. For unmatched descriptors, the distance is

greater than 15 pixels, considering the possible annotation

errors.

Training details: We set λ = 10 in the training loss and

trained our FeatureBoosters using AdamW [23] optimizer.

We increased the learning rate to 1 × 10−3 linearly in the

first 500 steps and then decreased the learning rate in the

form of cosine at each epoch in the following steps. The

batch size is 16 during the training.

5. Experiments
After training our model on MegaDepth [21], we eval-

uate the trained model on image matching, visual local-

ization, and structure-from-motion tasks using the public

benchmark datasets. Note we do not fine-tune the model

using the images from those datasets. We also show some

matching results for real-world images from the Internet in

Fig. 5. Finally, we also conduct an ablation study about the

key components of our method.

5.1. Image Matching

We first evaluate our method on the image matching task

using the HPatches [3] test sequences. HPatches dataset

contains 116 different sequences of which 58 sequences

have illumination changes and 58 sequences have view-

point changes. Following D2Net [12], we excluded eight

sequences for this experiment.

Experiment setup: We follow the evaluation protocol in

D2Net [12] and record the mean matching accuracy (MMA)

[27] under thresholds varying from 1 to 10 pixels, together

with the numbers of features and matches. The MMA is

defined as the average percentage of correct matches un-

der different reprojection error thresholds. Like D2-Net,

we use mutual nearest neighbor search as the matching

method. For comparison, we report the results of raw de-

scriptors, boosted descriptors by our approach, a variant for

SIFT (RootSIFT [2]), and a learning-based patch descriptor

(SOSNet [45]). All the DoG-based descriptors were com-

puted from the same DoG keypoints for a fair comparison.

Result: Fig. 4 shows MMA results on HPatches under illu-

mination and viewpoint change. Our method can enhance

the performance of all descriptors for either the transformed

real-valued descriptors or the binary ones. For SIFT, the

transformed real-valued descriptors by our method outper-

forms SOSNet, while can find more correct matches as

shown in the Table as shown in Fig. 4. In addition, we
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Aachen Day-Night V1.1 [52] InLoc [42]
(0.25m,2◦) / (0.50m,5◦) / (5.0m,10◦) ↑ (0.25m,10◦) / (0.50m,10◦) / (5.0m,10◦) ↑Method

Day Night DUC1 DUC2

ORB [34] 80.6 / 87.9 / 93.6 31.9 / 37.2 / 49.2 24.7 / 33.3 / 42.4 26.7 / 37.4 / 44.3
ORB-Boost-B (Ours) 83.1 / 89.8 / 94.7 49.2 / 61.8 / 73.3 35.4 / 50.5 / 59.1 38.9 / 51.9 / 61.8

SIFT [24] 87.1 / 93.8 / 98.1 50.8 / 70.2 / 81.2 29.3 / 43.4 / 51.5 19.1 / 33.6 / 40.5
SOSNet [45] 88.7 / 94.7 / 98.7 58.1 / 78.5 / 92.7 35.9 / 50.0 / 64.6 26.7 / 43.5 / 56.5
RootSIFT [2] 86.8 / 94.1 / 98.4 57.1 / 76.4 / 88.5 30.3 / 46.5 / 57.1 22.1 / 42.7 / 50.4
SIFT+Boost-F (Ours) 87.1 / 94.5 / 98.1 62.3 / 78.0 / 92.1 31.8 / 43.9 / 57.1 24.4 / 36.6 / 49.6
SIFT+Boost-B (Ours) 87.5 / 94.5 / 98.1 63.9 / 77.5 / 91.1 32.8 / 47.5 / 57.6 30.5 / 43.5 / 51.1

SuperPoint [10] 87.9 / 94.3 / 98.2 67.0 / 84.8 / 95.8 36.9 / 57.6 / 64.6 38.2 / 55.0 / 65.6
SuperPoint+Boost-F (Ours) 88.3 / 94.4 / 98.7 70.2 / 85.9 / 97.9 41.4 / 58.6 / 69.2 40.5 / 58.0 / 67.9
SuperPoint+Boost-B (Ours) 87.4 / 94.1 / 97.9 68.6 / 84.8 / 96.3 36.9 / 54.5 / 65.7 35.9 / 58.0 / 67.9

ALIKE [53] 87.3 / 93.2 / 98.7 67.5 / 85.3 / 97.9 29.3 / 46.5 / 59.6 25.2 / 38.9 / 47.3
ALIKE+Boost-F (Ours) 86.7 / 94.2 / 99.0 72.8 / 86.9 / 98.4 35.4 / 51.0 / 65.7 29.8 / 44.3 / 55.7
ALIKE+Boost-B (Ours) 86.9 / 93.8 / 98.3 71.7 / 86.4 / 96.9 35.9 / 54.0 / 66.2 30.5 / 49.6 / 63.4

SuperPoint+SuperGlue [10, 36] 89.6 / 96.4 / 99.3 73.3 / 90.6 / 100.0 44.9 / 64.6 / 78.3 49.6 / 73.3 / 77.1

ORB ORB+Boost-B

Table 1. Visual localization results in both outdoor (Aachen Day-Neight [52]) and indoor scenes (InLoc [42]). The positional and angular

performances are present (the larger the better). Note that the boosted ORB (ORB-Boost-B) even outperforms ALIKE [53] and can

compete with SuperPoint [10] in indoor scenes. Images on the right show some matching results before and after boosting using ORB [34]

descriptors (red lines indicate wrong correspondences).

can see the potential of FeatureBooster for descriptor com-

pression (real-valued descriptor to binary descriptor). The

transformed binary descriptor from SuperPoint has a similar

performance to the original SuperPoint under both illumi-

nation and viewpoint change while producing more correct

matches. It is also interesting to see that the binary descrip-

tor boosted from SIFT performs better than both SIFT and

RootSIFT.

5.2. Visual Localization

In the second experiment, we evaluate our method in vi-

sual localization, a more complete pipeline in computer vi-

sion. Two challenging scenarios are selected for evaluation:

an outdoor dataset with severe illumination changes and a

large-scale indoor dataset with plenty of texture-less areas

and repetitive patterns.

Experiment setup: For the outdoor scenes, we use the

Aachen Day-Night dataset v1.1 [52], which contains 6697

day-time database images and 1015 query images (824 for

the day and 191 for the night). For the indoor scenes,

we use the InLoc dataset [42], which contains about 10k

database images collected in two buildings. We use the hi-

erarchical localization toolbox (HLoc) [35] for visual lo-

calization on Aachen Day-Night and InLoc dataset by re-

placing the feature extraction module with different feature

detectors and descriptors. We use the evaluation protocol

on the Long-Term Visual Localization Benchmark [46] and

report the percentage of correct localized query images un-

der given error thresholds. For comparison, we also report

the result of the learning-based matching method (Super-

Point+SuperGlue). Not that all other methods use mutual

nearest neighbor search for matching. We adopt ratio test

or distance test for mutual nearest neighbor matching. For

a fair comparison, the ratio or distance thresholds of all the

transformed descriptors are selected according to the thresh-

old criteria of their corresponding baselines1.

Result: The results are shown in Tab. 1. Our method sig-

nificantly improves the performance for all the features in

both outdoor and indoor environments, especially for SIFT.

After boosting, even the binary ORB descriptors can com-

pete with the SuperPoint and outperform ALIKE in indoor

environments (InLoc). We can see that the real-valued

and binary boosted SIFT both show considerable compet-

itiveness compared to SOSNet on the Day-Night outdoor

dataset. The result also can show that SuperGlue still has

the best performance in this experiment. However, our

method boosts descriptors before the matching stage, mak-

ing it more versatile and easy to insert into existing systems.

5.3. Structure-from-motion

Experiment setup: We use three medium-scale datasets

in the ETH SfM benchmark [38] following D2-Net [12]

for evaluation. We use exhaustive image matching for all

these datasets and adopt ratio test or distance test for mu-

tual nearest neighbor matching. Then, we run the SfM us-

ing COLMAP [37, 39]. Following the evaluation protocol

defined by [38], we report the number of registered im-

ages, sparse points, total observations in image, mean fea-

ture track length, and mean re-projection error.

Result: Tab. 2 shows the results. Our approach again en-

hances the performance of all the features on the task of

structure-from-motion. Our method can help the original

features to produce a more complete reconstruction, as our

approach can register more images and reconstruct more 3D

points as shown in Tab. 2. Besides, our FeatureBooster can

achieve higher feature track length, which means that we

can find more correspondences between images to recon-

struct 3D points while tracking the same features across

more images. We also observe the situation that has been

1Please see the supplementary material for additional details.
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Figure 5. Matching results of using the original ORB [34] descriptors (Top row) and the boosted ORB descriptors (Bottom row) for

Internet images. Nearest neighbor search and RANSAC [14] were applied for matching.

Dataset Descriptor #Reg.
Images ↑

#Sparse.
Point ↑ #Obs. ↑ #Track

Length ↑
#Reproj.
Error ↓

Madrid
Metropolis
1344 images

SIFT [24] 417 29653 210460 7.10 0.78px
SOSNet [45] 464 35288 260737 7.39 0.87px

RootSIFT [2] 443 32613 230487 7.07 0.79px

SIFT+Boost-B (ours) 415 34497 242053 7.02 0.86px

SIFT+Boost-F (ours) 409 30020 221320 7.37 0.88px

SuperPoint [10] 512 29131 230966 7.93 1.14px
SuperPoint+Boost-B (ours) 433 25872 218370 8.44 1.18px

SuperPoint+Boost-F (ours) 534 34033 276204 8.12 1.19px

Gendarmen-
markt
1463 images

SIFT [24] 944 75369 476495 6.32 0.91px
SOSNet [45] 972 85507 591623 6.92 1.00px

RootSIFT [2] 955 77888 511209 6.56 0.93px

SIFT+Boost-B (ours) 944 95537 581878 6.09 0.99px

SIFT+Boost-F (ours) 937 84496 552081 6.53 1.01px

SuperPoint [10] 997 70971 535761 7.55 1.18px
SuperPoint+Boost-B (ours) 951 62426 513442 8.22 1.23px

SuperPoint+Boost-F (ours) 1044 84052 635591 7.56 1.20px

Tower of
London
1576 images

SIFT [24] 667 61906 457193 7.39 0.78px
SOSNet [45] 738 71734 558944 7.79 0.84px

RootSIFT [2] 674 62348 472817 7.58 0.79px

SIFT+Boost-B (ours) 690 73954 515206 6.97 0.82px

SIFT+Boost-F (ours) 681 66309 491273 7.41 0.83px

SuperPoint [10] 712 38921 313825 8.06 1.12px
SuperPoint+Boost-B (ours) 653 34641 290505 8.39 1.14px

SuperPoint+Boost-F (ours) 773 45687 360642 7.89 1.14px

Table 2. Results on structure-from-motion. Our method improves

the performance of the existing descriptors (SIFT [24], and Super-

Point [10]) in three datasets of ETH SfM benchmark [38].

Descriptor Self Boosting Cross Boosting HPatches
Matches

HPatches MMA
@3 / @5MLPdesc MLPgeo

SuperPoint [10]

883 0.654 / 0.738

� 883 0.654 / 0.738

� � 884 0.655 / 0.739

� � 893 0.657 / 0.742

� � � 919 0.669 / 0.758

Table 3. Ablation study on SuperPoint [10] in HPatches [3] (the

higher the better). The results show that cross-boosting can signif-

icantly improve the performance.

discussed in [26, 45] that more matches tend to lend higher

re-projection error, and we think this issue can be addressed

by recent work on keypoint position refinement [13, 22].

5.4. Ablation Study

Tab. 3 shows an ablation study of different components

in our network. The study shows that geometric encoding

is necessary for self-boosting, and the cross-boosting has a

better performance for descriptor boosting. With the help of

both modules, our transformed descriptors perform signifi-

cantly better.

6. Discussion

Computational cost: Our network is lightweight and ef-

ficient. We measure the runtime of our method on both

a desktop GPU and an embedded GPU. A forward pass

with 2000 features in NVIDIA RTX 3090 takes on aver-

age 3.2/4.7ms for our 4/9 layers network, while in NVIDIA

Jetson Xavier NX it needs 27/46ms.

Generalization: Though for each feature we need to train

their corresponding FeatureBooster, experiments show that

our approach works well for various classes of descriptors

(hand-crafted or learned, binary or real-valued). Our mod-

els are trained with the MegaDepth [21] dataset and do not

need to be fine-tuned for different tasks or datasets.

Limitations: The performance of the boosted descriptor

is limited by the representation ability of the raw descrip-

tor, though the performance gain tends to be larger for

weaker descriptors like ORB. Our approach cannot be ap-

plied to enhance dense features because the computational

cost grows with the number of feature points.

7. Conclusion

We introduce a descriptor enhancement stage into the

traditional feature matching pipeline and propose a versa-

tile and lightweight framework for descriptor enhancement

called FeatureBooster. FeatureBooster jointly processes the

geometric properties and visual descriptors of all the key-

points within a single image to extract the global contex-

tual information. With the help of the global context, the

transformed descriptors become powerful even though the

original descriptor is very weak. Our experiments show

that FeatureBooster can help various classes of descrip-

tors (SIFT, ORB, SuperPoint, and ALIKE) to perform bet-

ter under different vision tasks. Furthermore, our Feature-

Booster demonstrates its potential for descriptor compres-

sion and can run in real time. We believe that our Feature-

Booster can be useful for many practical applications.
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