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Abstract

Pansharpening is an essential preprocessing step for re-
mote sensing image processing. Although deep learning
(DL) approaches performed well on this task, current up-
sampling methods used in these approaches only utilize the
local information of each pixel in the low-resolution multi-
spectral (LRMS) image while neglecting to exploit its global
information as well as the cross-modal information of the
guiding panchromatic (PAN) image, which limits their per-
formance improvement. To address this issue, this paper
develops a novel probability-based global cross-modal up-
sampling (PGCU) method for pan-sharpening. Precisely,
we first formulate the PGCU method from a probabilis-
tic perspective and then design an efficient network mod-
ule to implement it by fully utilizing the information men-
tioned above while simultaneously considering the chan-
nel specificity. The PGCU module consists of three blocks,
i.e., information extraction (IE), distribution and expecta-
tion estimation (DEE), and fine adjustment (FA). Exten-
sive experiments verify the superiority of the PGCU method
compared with other popular upsampling methods. Addi-
tionally, experiments also show that the PGCU module can
help improve the performance of existing SOTA deep learn-
ing pansharpening methods. The codes are available at
https://github.com/Zeyu-Zhu/PGCU .

1. Introduction
Pansharpening aims to reconstruct a high-resolution

multispectral image (HRMS) from a low-resolution multi-
spectral image (LRMS) under the guidance of a panchro-
matic image (PAN). It’s an indispensable pre-processing
step for many subsequent remote sensing tasks, such as
object detection [11, 26], change detection [1, 19], unmix-
ing [3] and classification [7, 8].

*Corresponding author

Figure 1. Comparison between local upsampling methods and our
proposed PGCU method. The local method has limited receptive
field and thus only utilizes the local information of LRMS for up-
sampling, while our proposed PGCU method can fully exploit the
rich global information of LRMS and the cross-modal global in-
formation of PAN.

The last decades have witnessed the great development
of pansharpening methods. The typical approaches include
component substitution (CS) approaches [10, 18, 23, 24],
multi-resolution analysis (MRA) methods [21, 25, 31], and
variational optimization (VO) methods [12, 13, 15, 16, 38].
Recently, with the rapid development of deep learning,
plenty of deep learning-based methods [4,5,14,43,45] have
been proposed to tackle this task due to its powerful non-
linear fitting and feature extraction ability. Among these
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methods, almost all the approaches have a pipeline that up-
samples the LRMS image first and then carries out other
super-resolution operations. These approaches treat upsam-
pling as an essential and indispensable component for this
task. For instance, as for residual networks (e.g., PanNet),
the upsampled image is directly added to the network’s out-
put, which makes the quality of the upsampled image an
essential factor for model performance.

However, hardly any approaches explored to design a
reasonable upsampling method for pansharpening but just
simply utilized bicubic interpolation [9] and transposed
convolution [17] as their upsampling module. At the same
time, upsampling methods proposed for other tasks aren’t
suitable for pansharpening either, such as attention-based
image upsampling (ABIU) [22] and ESPCNN [32]. Almost
all the aforementioned upsampling methods are in the form
of local interpolation and thus suffer from a limited recep-
tive field issue. Therefore, these local interpolation-based
upsampling methods fail to exploit similar patterns globally,
while there are usually many non-local similar patches in
remote sensing images, as shown in Figure 1(b). Addition-
ally, almost all these upsampling methods are not capable of
utilizing useful structure information from the PAN image.
Also, some existing upsampling methods, e.g., ABIU [22]
ignore channel specificity, which utilizes the same weight
for the same position of all channels, which is unsuitable
for pansharpening due to the significant difference among
spectral image channels. In summary, these existing up-
sampling methods suffer from either insufficient utilization
of information (i.e., global information of LRMS, structure
information of PAN) or incomplete modeling of the prob-
lem (i.e., channel specificity issue).

To address the aforementioned problems, we propose
a novel probability-based global cross-modal upsampling
method (PGCU) to exploit cross-modal and global infor-
mation while considering channel specificity. The reason
why we utilize probabilistic modeling is that pansharpening
is essentially an ill-posed image inverse problem. Proba-
bilistic modeling can be used to better adapt to the char-
acteristics of the problem itself. Specifically, an approxi-
mate global discrete distribution value is sampled from the
pixel value space for each channel which can thus charac-
terize the common property of each channel and the dis-
tinctive property of different channels. Then, we establish a
cross-modal feature vector for each pixel in the upsampled
HRMS image and discrete distribution value, using not only
the LRMS image but also the PAN image. Inspired by the
main idea of Transformer [36], we utilize vector similarity
to calculate the probability value for each pixel on its chan-
nel distribution. Finally, PGCU calculates the pixel values
of the upsampled image by taking the expectation.

To implement the PGCU method, we design a network
module containing three blocks, i.e., information extraction

(IE) module block, distribution and expectation estimation
(DEE) block, and fine adjustment (FA) block. Firstly, IE ex-
tracts spectral and spatial information from LRMS and PAN
images to generate channel distribution value and cross-
modal information. Next, DEE utilizes this information to
construct cross-modal feature vectors for each pixel in the
upsampled image and generate the distribution value, re-
spectively. Then, they are used to estimate the distribution
probability for each pixel in the upsampled image. Finally,
FA further compensates for using the local information and
channel correlation of the upsampled image.

To further explore the results obtained by PGCU, we uti-
lize information theory to analyze pixel distribution. Specif-
ically, by clustering pixels of the obtained upsampled image
using JS divergence as the distance measurement, the spa-
tial non-local correlation property of the image can be eas-
ily observed. Besides, by visualizing the information en-
tropy image of each channel in the upsampled image, chan-
nel specificity can be easily observed as well, which also
verifies that the PGCU method indeed learns the difference
among channels.

To sum up, the contributions of this work are as follows:

• We propose a novel probability-based upsampling
model for pan-sharpening. This model assumes each
pixel of the upsampled image to obey a probability dis-
tribution given the LRMS image and PAN image.

• We design a new upsampling network module to im-
plement the probability-based upsampling model. The
module can fully exploit the global information of
LRMS and the cross-modal information of PAN. As
far as we know, PGCU is the first upsampling module
specifically designed for pan-sharpening.

• Extensive experiments verify that the PGCU module
can be embedded into the existing SOTA pansharpen-
ing networks to improve their performance in a plug-
and-play manner. Also, the PGCU method is a univer-
sal upsampling method and has potential application in
other guided image super-resolution tasks.

2. Related Work
2.1. Pansharpening Method

Model-based Approaches. The model-based pansharpen-
ing methods can be roughly divided into three categories,
i.e., component substitution (CS) approaches, multiresolu-
tion analysis (MRA) methods, and variational optimization
(VO) techniques. The main idea of the CS approach is
to decompose the PAN image and LRMS image first and
then fuse the spatial information of the PAN image with
the special information of the LRMS image to generate
the HRMS image. Representative methods include princi-
pal component analysis (PCA) [23], Brovey method [18],



intensity–hue-saturation (IHA) [10], and Gram-Schmidt
(GS) method [24]. To further reduce spectral distortion, the
MRA approaches reconstruct the HRMS image by injecting
the structure information of the PAN image into the upsam-
pled LRMS image. Typical methods include highpass filter
(HPF) fusion [31], indusion method [21], smoothing filter-
based intensity modulation (SFIM) [25] etc. The VO tech-
niques reformulate the pansharpening task as a variational
optimization problem, such as Bayesian methods [38] and
variational approaches [12, 13, 15, 16].
Deep Learning Approaches. In the last decade, deep
learning (DL) methods have been studied for pansharpen-
ing, and this type of method directly learns the mapping
from LRMS and PAN to HRMS. Typical DL-based pan-
sharpening methods mainly contain two types of network
architecture, i.e., residual structure and two-branch struc-
ture. The residual structure adds upsampled LRMS images
to the output of the network to obtain the HRMS in the
form of regression residuals, such as PanNet [45], Fusion-
Net [14], SRPPNN [4], etc [20, 34, 41, 49]. Recently, the
two-branch structure is becoming more and more popular.
This type of method usually conducts feature extraction for
PAN and LRMS image, respectively, and fuses their fea-
tures to reconstruct HRMS image, such as GPPNN [43],
Proximal PanNet [5], SFIIN [50], etc [2, 6, 40, 44, 51, 52].
Both types of methods upsample LRMS first and then carry
out other operations, implying that upsampling is a vital
step for pan-sharpening.

2.2. Image Upsampling Method

Classical Methods. Many local interpolation-based up-
sampling methods are widely used in pansharpening tasks
to obtain large-scale MS, especially the bicubic interpola-
tion method [9]. Besides, there are plenty of similar tech-
niques, such as nearest interpolation [35], bilinear interpola-
tion [35], etc [27,30]. However, this type of method suffers
from seriously poor adaptability.
Deep Learning Methods. As deep learning blossoms,
many learning-based upsampling methods have been pro-
posed. For instance, transposed convolution [17] is widely
used in many tasks to upsample low-resolution images,
which can learn a self-adaptive weight for local interpo-
lation. Following this work, an attention-based image up-
sampling method [22] is recently proposed for deep im-
age super-resolution tasks by utilizing the transformer [36].
However, this method ignores the channel specificity since
it uses the same weight for the same position of all channels,
which is unsuitable for pansharpening due to the differences
among spectral image channels. Additionally, there are also
many other upsampling methods, such as Pu-Net [46], ES-
PCNN [32], etc [28,29,39]. Among them, ESPCNN is pro-
posed for single-image super-resolution, which enlarges the
receptive field by multi-convolution layers.

However, these upsampling methods suffer from three
issues. Firstly, almost all these methods only have a local
receptive field, making them unable to explore the global
information of LRMS. Secondly, most of the upsampling
methods can’t exploit the PAN information as guidance.
Thirdly, channel specificity is not considered in these meth-
ods.

3. Proposed Upsampling Method
In this section, we first introduce our proposed

probability-based global cross-modal upsampling (PGCU)
method. Then, we design a network architecture to imple-
ment the PGCU method.

3.1. Probabilistic Modeling

Before presenting our upsampling method, we first de-
fine some necessary notations. As aforementioned, the
pansharpening task aims to obtain an HRMS image from
the LRMS image under the guidance of the PAN im-
age. In our method, the upsampled image is denoted as
H ∈ RC×W×H , the LRMS image is represented as L ∈
RC×w×h, and the PAN image is defined as P ∈ RW×H .
Additionally, we denote each pixel of the upsampled image
as hc,i,j ∈ R, c = 1, . . . , C, i = 1, . . . ,W, j = 1, . . . ,H .
Next, we will directly model the pixel hc,i,j from a proba-
bilistic perspective and propose a new upsampling method
for the pansharpening task.

Generally, in our proposed upsampling method, we treat
each pixel hc,i,j as a random variable and then aim to model
its probability distribution by utilizing information from the
LRMS image L and the PAN image P . More precisely,
PGCU uses the expectation of a discrete distribution to ap-
proximate the one of continuous distribution. For the sake
of simplicity, we don’t put subscript here and assume a
pixel in the HRMS image h obeys a continuous distribu-
tion which has support over the interval [0, 1] and p(·) is its
probability density function. Thus, the expectation of h is

E(h) =
∫ 1

0

hp(h)dh ≈
i=k∑
i=0

hip(hi)δhi, (1)

where hi is the sample drawn from [0, 1], k is sample size,
and

∑
i p(hi)δhi = 1. Here we use the sampling method to

approximate the integral numerically. Besides, there must
exist a discrete distribution D(·) satisfying condition,

D(hi) = p(hi)δhi = wi, i = 1, 2, ..., k. (2)

wi can thus represent the importance of the sample hi.
Then, the expectation of continuous variable h can be ap-
proximated by the expectation of discrete distribution D(·).
So thus, we assume that hc,i,j obeys a discrete distribution

hc,i,j ∼ D(hc,i,j |vc,pc,i,j), (3)



where D(hc,i,j |vc,pc,i,j) is a discrete distribution with
variable value vc ∈ Rn and probability vector parameter
pc,i,j ∈ Rn, i.e., samples and sample importance. Further,
by considering the fact that the pixel value hc,i,j of the up-
sampled image is dependent on the LRMS image L and the
PAN image P , we hypothesize that both vc and pc,i,j are
a function of L and P . Once vc and pc,i,j are known, the
distribution D(·) can be explicitly written as

P (hc,i,j = vck|L,P ) = pc,i,jk , k = 1, 2, . . . , n (4)

Additionally, in the definition of the discrete distribution
D(·), it should be noted that all the pixels in the cth channel
share a common distribution value vector vc, and different
channels have different vc, which can thus characterize the
common property of each channel and the distinctive prop-
erty of different channels.

As aforementioned, the distribution parameters (i.e., vc

and pc,i,j) are defined as the function of L and P . In
general, we adopt three functions, i.e., Vθv (·) and Gθg (·),
Fθf (·), to generate vc and pc,i,j . Specifically, the genera-
tion process of vc is

vc = Vθv (L,P ), (5)

where Vθv (L,P ) is implemented by utilizing the structure
information of P and the spectral information of L to gen-
erate a high expressive distribution value vc, θv is parameter
of Vθv , and each channel has its own vc. As for pc,i,j , we
first generate two feature vectors as follows:

fc,i,j = Fθf (L,P ), (6)
gc,k = Gθg (L,P ), k = 1, . . . , n (7)

where Fθf (L,P ) aims to extract cross-modal information
in the local patch for each pixel, fc,i,j is thus a feature vec-
tor which captures the cross-modal information of the cor-
responding pixel, Gθg (L,P ) is also implemented by using
the cross-modal information in local patch to capture the
property of distribution value feature vc, gc,k is thus an-
other feature vector which characterizes the information of
the probability density function near the corresponding dis-
tribution value feature, θf is the parameter of Fθf , and θg is
the parameter of Gθg . Further, by computing the similarity
of the two vectors, we can obtain pc,i,j as follows:

p̃c,i,jk =
< fc,i,j , gc,k >

||~fc,i,j ||2||gc,k||2
, k = 1, . . . , n (8)

pc,i,j = Softmax(p̃c,i,j), (9)

where < ·, · > is the inner product operator, || · ||2 is the `2
norm, and Softmax is a normalization function, which trans-
forms p̃c,i,j to be a probability (i.e., the sum is 1). So far,
we have defined the generation process of vc and pc,i,j , and
thus we can obtain the distribution of each pixel hc,i,j , i.e.,

Figure 2. How our proposed PGCU module can be used in the
existing pansharpening networks. (a) PGCU module is embedded
into the residual backbone; (b) PGCU module is embedded into
the two-branch backbone; (c) The overall flow of the PGCU mod-
ule.

D(hc,i,j |vc(θv),p
c,i,j(θf , θg)). Now it should be noted

that the distribution D(·) is parameterized by θv, θf , and
θg . Once these parameters are learned, we can easily ob-
tain the upsampled image H̃ = (h̃c,i,j)c,i,j by taking the
expectation, namely,

h̃c,i,j = E(hc,i,j), (10)

where E(·) is the expectation operator.
In summary, the above process defines a new upsampling

method for pansharpening called PGCU. Next, we will de-
sign an efficient network to implement the PGCU method.

3.2. Network Architecture

Figure 2 (c) illustrates the overall network architecture
of the PGCU module, which consists of three blocks, i.e.,
information extraction (IE) block, distribution and expec-
tation estimation (DEE) block, and fine adjustment (FA)
block. The detailed structure of the three blocks is shown
in Figure 3. Additionally, the usage of the PGCU module
is also presented in Figure 2 (a) and (b), from which we
can see that the PGCU module can be easily embedded into
current pansharpening networks.

3.2.1 Information Extraction

The information extraction (IE) block receives PAN image
P and LRMS image L as input and outputs variable value
vc of the discrete distribution D(hc,i,j |vc,pc,i,j) of pixel
hc,i,j in the upsampled image H and the cross-modal fea-
tures for subsequent feature vector construction. To exploit



Figure 3. The detailed structure of each block in the PGCU module, where D represents the vector dimension in F and G.

information from the LMRS image and PAN image simulta-
neously, we first perform feature extraction on both of them.
This process can be modeled by two functions (i.e., Vθv (·)
andGθg (·)) as aforementioned. Here, we design two blocks
to implement them, which is defined as

V = Conv{Cat[DSN (P ),DSM (L)]}, (11)
G = Conv{Cat[DSN (P ),DSM (L)]}, (12)

where V = {vc}Cc=1, G = {gc,k}C,nc=1,k=1, Conv(·) is con-
volutional operator, Cat(·) is concatenate operator, DSN (·)
is the downsampling block for PAN image and DSM (·) is
the downsampling block for LRMS image. The downsam-
pling (DS) block consists of one convolutional layer with
stride s and one (2,2) max pooling layer.

Additionally, each pixel in the LRMS image is actually
can be regarded as a degradation from the nearest corre-
sponding points in HRMS. Considering this fact, we first
simply use the nearest upsampling method to construct a
large-scale MS tensor before extracting features for each
pixel. As aforementioned, this process can be defined by
Fθf (·), and this function is explicitly implemented by the
designed block as follows

F = Conv{Cat[Conv(P ),Conv(Nearest(L))]}, (13)

where F = {fc,i,j}C,W,Hc=1,i=1,j=1 and Nearest(·) is the near-
est upsampling method.

3.2.2 Distribution and Expectation Estimation

The distribution and expectation estimation (DEE) block es-
timates a distribution probability for each pixel and com-
putes the expected value to get the estimated value of the
pixel in the upsampled image. In this DEE block, feature F
and G obtained from the previous IE block are input to the

channel projection block, which is used to model the chan-
nel specificity. Each channel projection block consists of a
linear layer and a LayerNorm. The Linear layer is used to
map the input features (i.e., F andG) to a new feature space
of the corresponding channel. The following LayerNorm is
utilized to highlight the differences among each individual
feature vector. The channel projection for each channel is
formulated as

PFV = Cat{LayerNorm[Lineari(F )]i}Ci=1, (14)

V FV = Cat{LayerNorm[Lineari(G)]i}Ci=1, (15)

where F consists of feature vectors for each position of the
upsampled image (without channel specificity) and G con-
sists of feature vectors for each position of distribution value
(without channel specificity). Then, the similarity matrix
is calculated by Eq. (8) and further normalized by Eq. (9)
to obtain the distribution probability. Finally, the expected
pixel value is computed by taking the expectation.

3.2.3 Fine Adjustment

The fine adjustment (FA) module is implemented by a sin-
gle convolutional layer, which is beneficial to better utilize
the local information and the dependence among channels
to compensate for the global feature and channel specificity.

Table 1. The basic information for each dataset.

Datasets WordView2 WordView3 GaoFen2
Train/Test 768/80 2160/208 2720/208

PAN 128×128 128×128 128×128
LRMS 32×32×4 32×32×4 32×32×4
HRMS 128×128×4 128×128×4 128×128×4



Table 2. The average results of component replacement experiments. Methods with * represent the method whose upsampling method is
replaced by our PGCU method without any further changes. The best results in each column are in bold.

Method
WorldView2 WorldView3 GaoFen2

SAM↓EGRAS↓SSIM↑SCC↑PSNR↑ SAM↓EGRAS↓SSIM↑SCC↑PSNR↑ SAM↓EGRAS↓SSIM↑SCC↑PSNR↑
PanNet [45] 0.037 1.504 0.925 0.939 37.459 0.106 4.101 0.871 0.930 28.212 0.019 0.912 0.962 0.927 42.619

PanNet* 0.023 0.952 0.970 0.976 41.659 0.077 3.174 0.919 0.959 30.319 0.011 0.573 0.986 0.958 46.715
MSDCNN [47] 0.028 1.109 0.960 0.967 40.344 0.080 3.254 0.916 0.956 30.076 0.018 0.837 0.968 0.940 43.254

MSDCNN* 0.026 1.078 0.964 0.968 40.631 0.078 3.183 0.920 0.958 30.283 0.015 0.720 0.978 0.946 44.711
FusionNet [14] 0.028 1.131 0.957 0.963 40.081 0.089 3.4834 0.901 0.947 29.541 0.018 0.877 0.966 0.932 42.974

FusionNet* 0.024 0.994 0.967 0.971 41.255 0.077 3.203 0.919 0.958 30.261 0.013 0.636 0.983 0.955 45.839
GPPNN [43] 0.025 1.006 0.968 0.972 41.190 0.081 3.305 0.916 0.955 29.979 0.012 0.595 0.986 0.954 46.566

GPPNN* 0.022 0.942 0.970 0.975 41.659 0.075 3.174 0.920 0.959 30.349 0.010 0.519 0.989 0.963 47.815
SFIIN [50] 0.024 1.007 0.967 0.971 41.115 0.079 3.239 0.917 0.956 30.143 0.012 0.628 0.986 0.947 46.199

SFIIN* 0.023 0.950 0.970 0.975 41.617 0.077 3.145 0.922 0.960 30.399 0.010 0.495 0.989 0.964 48.156

4. Experiments

In this section, we conduct several experiments to verify
the effectiveness of our proposed PGCU method. Specifi-
cally, we first select five representative DL-based pansharp-
ening approaches, including PanNet [45], MSDCNN [47],
FusionNet [14], GPPNN [43] and SFIIN [50] as backbones
and replace the upsampling method in these approaches
with our PGCU method. Among these approaches, Pan-
Net adopts transposed convolution upsampling method and
the other four use bicubic interpolation for upsampling. Be-
sides, to further prove that the improvement isn’t brought
from the increase of parameter quantity, we carry out
an equal parameter experiment. Secondly, we compare
our proposed PGCU method with five popular upsampling
methods, including traditional bicubic interpolation [35],
nearest interpolation [35], and the latest DL-based trans-
posed convolution (TConv) [17], attention-based image up-
sampling (ABIU) [22], and ESPCNN [32]. Thirdly, we con-
duct an ablation study on the main factors of our method.
Finally, we provide a visualization analysis of the distribu-
tion of pixels in the learned upsampled image. The hyper-
parameters s,N,M , and L of PGCU are set as 2, 3, 2, and
128, respectively. All the experiments are conducted on a
PC with Intel Core i7-8700K CPU and one GeForce RTX
3090 Ti with 24GB memory.

4.1. Datasets and Evaluation Metrics

Three datasets are used in our experiments, which are
generated from three different satellites, i.e., WordView2,
WordView3, and GaoFen2. Each dataset is divided into
training and testing sets. The basic information for each
dataset is shown in Table 1. In all datasets, we generate
LRMS images via downsampling HRMS by a scale of four
using bicubic interpolation. And every pixel is normalized
to [0, 1] for numerical stability. Five popular metrics are
chosen to evaluate the performance of each method [37],
including spectral angle mapper (SAM), the relative dimen-

sionless global error in synthesis (ERGAS), the structural
similarity (SSIM), the spatial correlation coefficient (SCC),
and the peak signal-to-noise ratio (PSNR).

4.2. Component Replacement Experiment

To verify the effectiveness of our PGCU method, we
first test our method in a plug-and-play way by directly
replacing the original upsampling methods in five SOTA
DL-based pansharpening methods with our PGCU method.
Each pair of approaches (e.g., PanNet and PanNet*) is ex-
perimented under the same conditions. The experiment re-
sults are shown in Table 2. It can be easily observed that all
five backbones have a significant performance improvement
on all the datasets after replacing their upsampling meth-
ods with our PGCU method. A visual image comparison
is shown in Figure 4, from which we can draw the same
conclusion as Table 2.

Further, to prove the fact that the performance improve-
ment doesn’t come from the increase of model complexity
(i.e., the increase in the number of parameters) but from
the reasonable design of our PGCU method, we increase
the parameter quantity of two backbones (i.e., PanNet and
GPPNN) to the same as after component replacement.
Specifically, we increase the number of ResNet blocks for
PanNet and Pan-Ms blocks for GPPNN to make the param-
eter quantity of PanNet and GPPNN slightly greater than
or equal to PanNet* and GPPNN*’s, respectively. The ex-
perimental results are illustrated in Table 3. Slight perfor-
mance improvement can be seen after increasing the num-
ber of parameters in PanNet and GPPNN. However, there’s
still a large performance gap compared with PanNet* and
GPPNN*, which implies that the performance improvement
attributes to our PGCU method.

4.3. Comparison with Other Upsampling Methods

To further illustrate the superiority of our PGCU method,
we compare our method with five popular above-mentioned
upsampling methods. Similar to the previous experiment,



Table 3. The results of equal parameter experiment. The parameter quantity of methods with � is incremented to be the same as methods
with *. The best results in each column are in bold.

Method Param
WorldView2 WorldView3 GaoFen2

SAM↓EGRAS↓SSIM↑SCC↑PSNR↑ SAM↓EGRAS↓SSIM↑SCC↑PSNR↑SAM↓EGRAS↓SSIM↑SCC↑PSNR↑
PanNet 0.10M 0.037 1.504 0.925 0.939 37.459 0.106 4.101 0.871 0.930 28.212 0.019 0.912 0.962 0.927 42.619

PanNet� 0.15M 0.035 1.487 0.927 0.941 37.553 0.104 4.035 0.872 0.931 28.349 0.019 0.910 0.962 0.927 42.630
PanNet* 0.15M 0.023 0.952 0.970 0.976 41.659 0.077 3.174 0.919 0.959 30.319 0.011 0.573 0.986 0.958 46.715
GPPNN 0.12M 0.025 1.006 0.968 0.972 41.190 0.081 3.305 0.916 0.955 29.979 0.012 0.595 0.986 0.954 46.566

GPPNN�0.17M 0.024 0.994 0.968 0.973 41.318 0.0823 3.307 0.915 0.954 29.934 0.012 0.568 0.987 0.955 46.962
GPPNN* 0.17M 0.022 0.942 0.970 0.975 41.659 0.075 3.174 0.920 0.959 30.349 0.010 0.519 0.989 0.963 47.815

Figure 4. Visualize comparison of one sample image from the WV2 dataset. PSNR value is shown under the corresponding method.

the backbone networks are PanNet and GPPNN, and the
used datasets are WorldView2 and GaoFen2.

The experimental results are recorded in Table 4. As can
be seen, the backbone network with our proposed PGCU
method can obtain the best performance. Specifically, all
the competing methods aren’t capable of exploiting the
global information of LRMS. Besides, the first four meth-
ods also ignore the cross-modal information from the PAN
image. As for the ABIU method, although it can utilize
cross-modal information, its sampling weights are consis-
tent for all channels at the same location, which ignores the
difference among channels. Compared with these methods,
our proposed PGCU can not only make full use of cross-
modal and global information but also adequately model the
channel specificity, which is why our method performs best.

4.4. Parameter Analysis and Ablation Study

The length of the feature vector D for distribution value
and pixel in the upsampled image is a very important hyper-
parameter for our proposed PGCU, which determines the
representational ability for each pixel. The parameter anal-
ysis experiment is reported in Table 5. As can be seen, a
short vector will lead to the inability to represent pixel in-
formation, and a long vector will result in redundant infor-

mation.
Further, we conduct an ablation experiment to investi-

gate the function of different information sources or opera-
tors. The experiment is conducted using PanNet as a back-
bone on the GaoFen2 dataset, and the results are shown in
Table 6. Specifically, to exploit the importance of PAN im-
age information, the feature extraction only performs on
LRMS images. Then, the performance has an apparent
decline, implying that utilizing cross-modal information is
crucial. Additionally, the channel projection module is re-
moved from our method to study the importance of model-
ing the channel specificity. We can observe that the perfor-
mance also has an apparent drop, which verifies the neces-
sity of modeling the channel specificity.

4.5. Visualization Analysis

To further explore the results obtained by PGCU, we an-
alyze the distribution of pixels via information theory and
discover some interesting phenomena. The visualization
results are shown in Figure 5. The first row shows each
channel of the HRMS image. The second row shows the
clustering of pixels of different channels using the distribu-
tion of pixels and the Kmeans with JS divergence as the dis-
tance metric. Pixels in the same class are stained the same



Table 4. The comparison results of our PGCU method with other upsampling methods. The best and second-best results are highlighted in
bold and underlined, respectively.

Backbone Upsampling Method
WordView2 GaoFen2

SAM↓ EGRAS↓ SSIM↑ SCC↑ PSNR↑ SAM↓ EGRAS↓ SSIM↑ SCC↑ PSNR↑

PanNet

Nearest [35] 0.026 1.085 0.959 0.967 40.255 0.019 0.942 0.961 0.9238 42.359
Bicubic [35] 0.025 1.066 0.960 0.969 40.369 0.018 0.887 0.964 0.934 42.823
TConv [17] 0.024 1.014 0.964 0.972 40.833 0.019 0.839 0.969 0.940 43.076

ESPCNN [32] 0.025 1.053 0.961 0.969 40.511 0.015 0.718 0.977 0.951 44.691
ABIU [22] 0.026 1.069 0.962 0.967 40.492 - - - - -

PGCU 0.024 0.953 0.970 0.976 41.659 0.012 0.573 0.986 0.958 46.715

GPPNN

Nearest [35] 0.026 1.016 0.961 0.969 41.112 0.013 0.599 0.982 0.951 46.532
Biubic [35] 0.025 1.006 0.968 0.972 41.190 0.012 0.595 0.986 0.954 46.566
TConv [17] 0.025 1.002 0.967 0.971 40.993 0.011 0.564 0.987 0.954 47.116

ESPCNN [32] 0.024 0.980 0.969 0.973 41.413 0.011 0.556 0.987 0.956 47.282
ABIU [22] - - - - - - - - - -

PGCU 0.022 0.942 0.970 0.975 41.659 0.010 0.519 0.989 0.963 47.815

Table 5. Experimental results with different feature vector lengths.

Feature Vector
Length

GaoFen2
SAM↓ EGRAS↓ SSIM↑ SCC↑ PSNR↑

32 0.017 0.780 0.974 0.948 43.722
64 0.014 0.670 0.981 0.954 45.334
96 0.013 0.621 0.984 0.955 46.166

128 0.012 0.573 0.986 0.958 46.715
160 0.013 0.601 0.984 0.957 46.436
192 0.014 0.622 0.983 0.956 46.003

Table 6. Ablation study on PAN information and channel speci-
ficity.

PAN
Information

Channel
Projection

GaoFen2
SAM↓ EGRAS↓ SSIM↑ SCC↑ PSNR↑

8 8 0.014 0.684 0.980 0.951 45.107
8 4 0.013 0.612 0.984 0.956 46.181
4 8 0.013 0.648 0.985 0.956 46.056
4 4 0.012 0.573 0.986 0.958 46.715

color, and many non-local patches in the same color can
be found. The third row shows each channel’s normalized
information entropy of pixels. The vast difference among
information entropy maps of different channels shows that
the uncertainty of pixels with the same location in different
channels is diverse. And our PGCU method can adaptively
take full advantage of information from each channel.

5. Conclusion and Future Work

In this paper, we first propose a novel upsampling
method for pansharpening from a probabilistic perspective
by introducing global and PAN information into the up-
sampling process while fully modeling channel specificity.
Then we design a network to implement this method, and
this module can help improve the performance of current

Figure 5. Visualization analysis on the obtained HRMS.

SOTA methods in a plug-and-play manner. In the future, we
will apply our upsampling module to more guided image
super-resolution tasks, i.e., depth image super-resolution
[48], MRI super-resolution [33], multispectral, and hyper-
spectral image fusion [42].
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