
DETRs Beat YOLOs on Real-time Object Detection

Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang, Jinman Wei, Cheng Cui
Yuning Du, Qingqing Dang, Yi Liu

Baidu Inc.
{lvwenyu01, xushangliang, zhaoyian, wangguanzhong} @baidu.com

Abstract

Recently, end-to-end transformer-based detectors (DE-
TRs) have achieved remarkable performance. However,
the issue of the high computational cost of DETRs has not
been effectively addressed, limiting their practical applica-
tion and preventing them from fully exploiting the benefits
of no post-processing, such as non-maximum suppression
(NMS). In this paper, we first analyze the influence of NMS
in modern real-time object detectors on inference speed,
and establish an end-to-end speed benchmark. To avoid the
inference delay caused by NMS, we propose a Real-Time
DEtection TRansformer (RT-DETR), the first real-time end-
to-end object detector to our best knowledge. Specifically,
we design an efficient hybrid encoder to efficiently process
multi-scale features by decoupling the intra-scale interac-
tion and cross-scale fusion, and propose IoU-aware query
selection to improve the initialization of object queries. In
addition, our proposed detector supports flexibly adjust-
ment of the inference speed by using different decoder lay-
ers without the need for retraining, which facilitates the
practical application of real-time object detectors. Our RT-
DETR-L achieves 53.0% AP on COCO val2017 and 114
FPS on T4 GPU, while RT-DETR-X achieves 54.8% AP
and 74 FPS, outperforming all YOLO detectors of the same
scale in both speed and accuracy. Furthermore, our RT-
DETR-R50 achieves 53.1% AP and 108 FPS, outperform-
ing DINO-Deformable-DETR-R50 by 2.2% AP in accuracy
and by about 21 times in FPS. Source code and pretrained
models will be available at PaddleDetection1.

1. Introduction

Object detection is a fundamental vision task that in-
volves identifying and localizing objects in an image. There
are two typical architectures for modern object detec-
tors: CNN-based and Transformer-based. Over the past
few years, there has been extensive research into CNN-

1https://github.com/PaddlePaddle/PaddleDetection

8 10 12 14 16 18 20 22 24
Latency T4 TensorRT FP16 (ms)

48

49

50

51

52

53

54

55

CO
CO

 A
P

(%
)

L

X

L

X
L

L

XL

X

L

X

Better

MS COCO Object Detection

YOLOv5
PP-YOLOE
YOLOv6
YOLOv7
YOLOv8
RT-DETR(ours)

Figure 1: Compared to other real-time object detectors, our
proposed detector achieves state-of-the-art performance in
both speed and accuracy.

based object detectors. The architecture of these detectors
has evolved from the initial two-stage [9, 26, 3] to one-
stage [19, 31, 1, 10, 22, 13, 36, 14, 7, 33, 11], and two
detection paradigms, anchor-based [19, 22, 13, 10, 33] and
anchor-free [31, 7, 36, 14, 11], have emerged. These stud-
ies have made significant progress in both detection speed
and accuracy. The Transformer-based object detectors (DE-
TRs) [4, 29, 34, 43, 23, 35, 20, 16, 40] have received ex-
tensive attention from the academia since it was proposed
due to its elimination of various hand-crafted components,
such as non-maximum suppression (NMS). This architec-
ture greatly simplifies the pipeline of object detection and
realizes end-to-end object detection.

Real-time object detection is a significant research field
and has a wide range of applications, such as object track-
ing [39, 42], video surveillance [24], autonomous driv-
ing [2, 38], etc. Existing real-time detectors generally

1

ar
X

iv
:2

30
4.

08
06

9v
1

 [
cs

.C
V

]
 1

7
A

pr
 2

02
3

https://github.com/PaddlePaddle/PaddleDetection

adopt a CNN-based architecture, which achieves a reason-
able trade-off in detection speed and accuracy. However,
these real-time detectors usually require NMS for post-
processing, which is usually difficult to optimize and not
robust enough, resulting in delays in the inference speed of
the detectors. Recently, owing to the efforts of researchers
in accelerating training convergence and reducing optimiza-
tion difficulty, transformer-based detectors have achieved
remarkable performance. However, the issue of the high
computational cost of DETRs has not been effectively ad-
dressed, which limits the practical application of DETRs
and results in an inability to take full advantage of their ben-
efits. This means that although the object detection pipeline
is simplified, it is difficult to realize real-time object detec-
tion due to the high computational cost of the model it-
self. The above questions naturally inspire us to consider
whether we can extend DETR to real-time scenarios, taking
full advantage of end-to-end detectors to avoid the delay
caused by NMS on real-time detectors.

To achieve the above goals, we rethink DETR and con-
duct detailed analysis and experiments on its key com-
ponents to reduce unnecessary computational redundancy.
Specifically, we find that although the introduction of multi-
scale features is beneficial in accelerating the training con-
vergence and improving performance [43], it also leads to a
significant increase in the length of the sequence feed into
encoder. As a result, the transformer encoder becomes the
computational bottleneck of the model due to the high com-
putational cost. To achieve real-time object detection, we
design an efficient hybrid encoder to replace the original
transformer encoder. By decoupling the intra-scale interac-
tion and cross-scale fusion of multi-scale features, the en-
coder can efficiently process features with different scales.
Furthermore, previous works [35, 20] showed that the ob-
ject query initialization scheme of the decoder is crucial for
the detection performance. To further improve the perfor-
mance, we propose IoU-aware query selection, which pro-
vides higher quality initial object queries to the decoder by
providing IoU constraints during training. In addition, our
proposed detector supports flexibly adjustment of the infer-
ence speed by using different decoder layers without the
need for retraining, which benefits from the design of the
decoder in the DETR architecture and facilitates the practi-
cal application of the real-time detector.

In this paper, we propose a Real-Time DEtection
TRansformer (RT-DETR), the first real-time end-to-end ob-
ject detector to our best knowledge. RT-DETR not only out-
performs current state-of-the-art real-time detector in terms
of accuracy and speed, but also requires no post-processing,
so the inference speed of the detector is not delayed and
remains stable, fully exploiting the advantage of end-to-
end detection pipeline. Our proposed RT-DETR-L achieves
53.0% AP on COCO val2017 and 114 FPS on NVIDIA

Tesla T4 GPU, while RT-DETR-X achieves 54.8% AP and
74 FPS, outperforming all YOLO detectors of the same
scale in both speed and accuracy. Thus, our RT-DETR
becomes a new SOTA for real-time object detection, as
shown in Fig. 1. Furthermore, our proposed RT-DETR-R50
achieves 53.1% AP and 108 FPS, while RT-DETR-R101
achieves 54.3% AP and 74 FPS. Among them, RT-DETR-
R50 outperforms DINO-Deformable-DETR-R50 by 2.2%
AP (53.1% AP vs 50.9% AP) in accuracy and by about 21
times in FPS (108 FPS vs 5 FPS).

The main contributions of this paper are summarized as
follows: (i) we propose the first real-time end-to-end object
detector, which not only outperforms current state-of-the-
art real-time detector in terms of accuracy and speed, but
also requires no post-processing, so the inference speed of
it is not delayed and remains stable; (ii)we analyze the in-
fluence of NMS on real-time detectors in detail and draw
a conclusion about CNN-based real-time detectors from a
post-processing perspective; (iii)our proposed IoU-aware
query selection shows excellent performance improvement
in our model, which sheds new light on improving the ini-
tialization scheme of object queries; (iv)our work provides
a feasible solution for the real-time implementation of end-
to-end detectors, and the proposed detector can flexibly ad-
just the model size and the inference speed by using differ-
ent decoder layers without the need for retraining.

2. Related work
2.1. Real-time Object Detectors.

Through years of continuous development, the YOLO
series [25, 1, 32, 22, 13, 10, 7, 36, 14, 33, 11] have become
the synonymous with real-time object detectors, which can
be roughly classified into two categories: anchor-based [25,
1, 32, 10, 33] and anchor-free [7, 36, 14, 11]. Judging from
the performance of these detectors, anchor is no longer the
main factor restricting the development of YOLO. However,
the aforementioned detectors produce numerous redundant
bounding boxes, requiring the utilization of NMS during the
post-processing stage to filter them out. Unfortunately, this
leads to performance bottlenecks, and the hyperparameters
of NMS have a significant impact on the accuracy and speed
of the detectors. We believe this is incompatible with the
design philosophy of real-time object detectors.

2.2. End-to-end Object Detectors.

End-to-end object detectors [4, 29, 34, 43, 23, 35, 20, 16,
40] are well-known for their streamlined pipelines. Carion
et al.[4] first propose the end-to-end object detector based
on Transformer, named DETR (DEtection TRansformer).
It has attracted significant attention due to its distinctive
features. Particularly, DETR eliminates the hand-designed
anchor and NMS components in the traditional detection

2

pipeline. Instead, it employs the bipartite matching and
directly predicts the one-to-one object set. By adopting
this strategy, DETR simplifies the detection pipeline and
mitigates the performance bottleneck caused by NMS. De-
spite its obvious advantages, DETR suffers from two ma-
jor issues: slow training convergence and hard-to-optimize
queries. Many DETR variants have been proposed to ad-
dress these issues. Concretely, Deformable-DETR [43] ac-
celerates training convergence with multi-scale features by
enhancing the efficiency of the attention mechanism. Con-
ditional DETR [23] and Anchor DETR [35] decrease the
optimization difficulty of the queries. DAB-DETR [20] in-
troduces 4D reference points and iteratively optimizes the
prediction boxes layer by layer. DN-DETR [16] acceler-
ates training convergence by introducing query denoising.
DINO [40] builds upon previous works and achieves state-
of-the-art result. Although we are continually improving
the components of DETR, our goal is not only to further
improve the performance of the model, but also to create a
real-time, end-to-end object detector.

2.3. Multi-scale Features for Object Detection.

Modern object detectors have demonstrated the signif-
icance of utilizing multi-scale features to improve perfor-
mance, especially for small objects. FPN [18] introduces a
feature pyramid network that fuses features from adjacent
scales. Subsequent works [21, 8, 30, 10, 14, 33, 11] ex-
tend and enhance this structure, and they are widely adopted
in real-time object detectors. Zhu et al. [43] first intro-
duce multi-scale features into DETR and improve the per-
formance and convergence speed, but this also leads to a
significant increase in the computational cost of DETR. Al-
though the deformable attention mechanism alleviates com-
putational cost to some degree, the incorporation of multi-
scale features still results in a high computational burden.
To address this issue, some works attempt to design the
computationally efficient DETR. Efficient DETR [37] re-
duces the number of encoder and decoder layers by initial-
izing object queries with dense prior. Sparse DETR [27]
selectively updates the encoder tokens that are expected to
be referenced by the decoder, thereby reducing the compu-
tational overhead. Lite DETR [15] enhances the efficiency
of encoder by reducing the update frequency of low-level
features in an interleaved way. Although these studies have
reduced the computational cost of DETR, the goal of these
works is not to promote DETR as a real-time detector.

3. End-to-end Speed of Detectors
3.1. Analysis of NMS

NMS is a widely adopted post-processing algorithm in
object detection, employed to eliminate overlapping predic-
tion boxes output by the detector. Two hyperparameters are

0.001 0.005 0.01 0.05 0.1 0.25
Score threshold

0

2000

4000

6000

8000

Nu
m

 o
f b

ox
es

3570

2523
2057

1124
764

381

9281

5877

4690

2142

1304
581

YOLOv5 (anchor-based)
YOLOv8 (anchor-free)

Figure 2: The number of boxes at different score thresholds.

IoU thr. AP NMS
(Score=0.001) (%) (ms)

0.5 52.1 2.24

0.6 52.6 2.29

0.8 52.8 2.46

Score thr. AP NMS
(IoU=0.7) (%) (ms)

0.001 52.9 2.36

0.01 52.4 1.73

0.05 51.2 1.06

Table 1: The effect of IoU and score threshold on model
accuracy and NMS execution time.

required in NMS: score threshold and IoU threshold. Spe-
cially, prediction boxes with scores below the score thresh-
old are directly filtered out, and whenever the IoU of two
prediction boxes exceeds the IoU threshold, the box with
the lower score will be discarded. This process is performed
iteratively until all boxes of every category have been pro-
cessed. Therefore, the execution time of NMS primarily
depends on the number of input prediction boxes and two
hyperparameters.

To verify this opinion, we leverage YOLOv5 (anchor-
based) [10] and YOLOv8 (anchor-free) [11] for experi-
ments. We first count the number of prediction boxes re-
maining after the output boxes is filtered by different score
thresholds with the same input image. We sample some
scores from 0.001 to 0.25 as thresholds to count the re-
maining prediction boxes of two detectors and draw them
into a histogram, which intuitively reflects that NMS is
susceptible to its hyperparameters, as shown in Fig. 2.
Furthermore, we take YOLOv8 as an example to eval-
uate the model accuracy on the COCO val2017 and
the execution time of the NMS operation under differ-
ent NMS hyperparameters. Note that the NMS post-
processing operation we adopt in our experiments refers to
TensorRT efficientNMSPlugin, which involves mul-

3

Backbone
S3

S4
S5

AIFI

CCFM

 Io
U

-a
w

ar
e

Q
ue

ry
 S

el
ec

tio
n

 D
ec

od
er

 &
 H

ea
d

F5

 Efficient Hybrid Encoder

C

Fusion

Conv1x1 s1

BN

SiLU

Conv3x3 s2

BN

SiLU

Fusion

Fusion

Figure 3: Overview of RT-DETR. We first leverage features of the last three stages of the backbone {S3, S4, S5} as the input
to the encoder. The efficient hybrid encoder transforms multi-scale features into a sequence of image features through intra-
scale feature interaction (AIFI) and cross-scale feature-fusion module (CCFM). The IoU-aware query selection is employed
to select a fixed number of image features to serve as initial object queries for the decoder. Finally, the decoder with auxiliary
prediction heads iteratively optimizes object queries to generate boxes and confidence scores.

C FConcatenate Element-wise add Flatten

1x1 Conv

c 1x1 Conv c

c RepBlock

c
N×

C
c

F

Fusion

Figure 4: The fusion block in CCFM.

tiple CUDA kernels, including EfficientNMSFilter,
RadixSort, EfficientNMS, etc., and we only report
the execution time of EfficientNMS kernel. We test the
speed on T4 GPU, and the input image and pre-processing
in the above experiments are consistent. The hyperparam-
eters we used and the corresponding results are shown in
Tab. 1.

3.2. End-to-end Speed Benchmark

To enable a fair comparison of the end-to-end inference
speeds of various real-time detectors, we establish an end-
to-end speed test benchmark. Considering that the exe-
cution time of NMS can be influenced by the input im-
age, it is necessary to choose a benchmark dataset and cal-
culate the average execution time across multiple images.
The benchmark adopts COCO val2017 as the default
dataset, appending the NMS post-processing plugin of Ten-
sorRT for real-time detectors that require post-processing.
Specifically, we test the average inference time of the de-

tector according to the hyperparameters of the correspond-
ing accuracy taken on benchmark dataset, and excluding
IO and Memory-Copy operations. We utilize this bench-
mark to test the end-to-end speed of anchor-based detectors
YOLOv5 [10] and YOLOv7 [33], as well as anchor-free de-
tectors PP-YOLOE [36], YOLOv6 [14] and YOLOv8 [11]
on T4 GPU. The test results are shown in Tab. 2. According
to the results, we conclude that for real-time detectors that
require NMS post-processing, anchor-free detectors out-
perform anchor-based detectors with equivalent accuracy
because the former takes significantly less post-processing
time than the latter, which was neglected in previous works.
The reason for this phenomenon is that anchor-based detec-
tors produce more predicted boxes than anchor-free detec-
tors (three times more in our tested detectors).

4. The Real-time DETR
4.1. Model Overview

The proposed RT-DETR consists of a backbone, a hybrid
encoder and a transformer decoder with auxiliary prediction
heads. The overview of the model architecture is illustrated
in Fig. 3. Specifically, we leverage the output features of the
last three stages of the backbone {S3, S4, S5} as the input to
the encoder. The hybrid encoder transforms multi-scale fea-
tures into a sequence of image features through intra-scale
interaction and cross-scale fusion (described in Sec. 4.2).
Subsequently, the IoU-aware query selection is employed
to select a fixed number of image features from the encoder
output sequence to serve as initial object queries for the de-
coder (described in Sec. 4.3). Finally, the decoder with aux-
iliary prediction heads iteratively optimizes object queries

4

QS

Concat

Concat

ConcatSSE

MSE

SSE

CSF

AIFI

CCFM

(a) (b) (c)

(d) (e)

QS QS

QS QS

Figure 5: The set of variants with different types of en-
coders. QS represents the query selection, SSE represents
the single-scale encoder, MSE represents the multi-scale
encoder, and CSF represents cross-scale fusion.

to generate boxes and confidence scores.

4.2. Efficient Hybrid Encoder

Computational bottleneck analysis. To accelerate train-
ing convergence and improve performance, Zhu et al. [43]
suggest introducing multi-scale features and propose the
deformable attention mechanism to reduce computation.
However, although the improvement in the attention mech-
anism reduces the computational overhead, the sharply in-
creased length of input sequence still causes the encoder
to become a computational bottleneck, hampering the real-
time implementation of DETR. As reported in [17], the
encoder accounts for 49% of the GFLOPs but contributes
only 11% of the AP in Deformable-DETR [43]. To over-
come this obstacle, we analyze the computational redun-
dancy present in the multi-scale transformer encoder and
design a set of variants to prove that the simultaneous in-
teraction of intra-scale and cross-scale features is computa-
tionally inefficient.

High-level features are extracted from low-level features
that contain rich semantic information about objects in the
image. Intuitively, it is redundant to perform feature in-
teraction on the concatenate multi-scale features. To ver-
ify this opinion, we rethink the encoder structure and de-
sign a range of variants with different encoders, as shown

in Fig. 5. The set of variants gradually improves model ac-
curacy while significantly reducing computational cost by
decoupling multi-scale feature interaction into two-step op-
erations of intra-scale interaction and cross-scale fusion (de-
tailed indicators refer to Tab. 3). We first remove the multi-
scale transformer encoder in DINO-R50 [40] as baseline A.
Next, different forms of encoder are inserted to produce a
series of variants based on baseline A, elaborated as fol-
lows:

• A → B: Variant B inserts a single-scale transformer
encoder, which uses one layer of transformer block.
The features of each scale share the encoder for intra-
scale feature interaction and then concatenate the out-
put multi-scale features.

• B→ C: Variant C introduces cross-scale feature fusion
based on B and feeds the concatenate multi-scale fea-
tures into the encoder to perform feature interaction.

• C→ D: Variant D decouples the intra-scale interaction
and cross-scale fusion of multi-scale features. First,
the single-scale transformer encoder is employed to
perform intra-scale interaction, then a PANet-like [21]
structure is utilized to perform cross-scale fusion.

• D→ E: Variant E further optimizes the intra-scale in-
teraction and cross-scale fusion of multi-scale features
based on D, adopting an efficient hybrid encoder de-
signed by us (see below for details).

Hybrid design. Based on the above analysis, we rethink
the structure of the encoder and propose a novel Efficient
Hybrid Encoder. As shown in Fig. 3, the proposed en-
coder consists of two modules, the Attention-based Intra-
scale Feature Interaction (AIFI) module and the CNN-
based Cross-scale Feature-fusion Module (CCFM). AIFI
further reduces computational redundancy based on vari-
ant D, which only performs intra-scale interaction on S5.
We argue that applying the self-attention operation to high-
level features with richer semantic concepts can capture the
connection between conceptual entities in the image, which
facilitates the detection and recognition of objects in the im-
age by subsequent modules. Meanwhile, the intra-scale in-
teractions of lower-level features are unnecessary due to the
lack of semantic concepts and the risk of the risk of duplica-
tion and confusion with interactions of high-level features.
To verify this view, we only perform the intra-scale inter-
action on S5 in variant D, and the experimental results are
reported in Tab. 3, see row DS5 . Compared to the vanilla
variant D, DS5 significantly reduces the latency (35% faster)
but delivers an improvement in accuracy (0.4% AP higher).
This conclusion is crucial for the design of real-time detec-
tors. CCFM is also optimized based on variant D, insert-
ing several fusion blocks composed of convolutional layers

5

0.0 0.2 0.4 0.6 0.8 1.0
IoU score

0.5

0.6

0.7

0.8

0.9

Cl
as

sif
ica

tio
n

sc
or

e

Figure 6: We calculate the classification scores and IoU
scores of the encoder features selected by the query selec-
tion on val2017, and visualize the scatter plot with classi-
fication scores greater than 0.5. The red and blue points are
calculated from the model trained by applying the vanilla
query selection and the proposed IoU-aware query selec-
tion, respectively.

into the fusion path. The role of the fusion block is to fuse
the adjacent features into a new feature, and its structure is
shown in Fig. 4. The fusion block contains N RepBlocks,
and the two-path outputs are fused by element-wise add. We
can formulate this process as follows:

Q = K = V = Flatten(S5)

F5 = Reshape(Attn(Q,K,V))

Output = CCFM({S3, S4, F5})
(1)

where Attn represents the multi-head self-attention, and
Reshape represents restoring the shape of the feature to the
same as S5, which is the inverse operation of Flatten.

4.3. IoU-aware Query Selection

The object queries in DETR are a set of learnable embed-
dings, which are optimized by the decoder and mapped to
classification scores and bounding boxes by the prediction
head. However, these object queries are difficult to interpret
and optimize because they have no explicit physical mean-
ing. Subsequent works [35, 20, 43, 37, 40] improve the ini-
tialization of object query and extend it to content query and
position query (anchor). Among them, [43, 37, 40] all pro-
pose query selection schemes, which have in common that

they utilize the classification score to select top K features
from the encoder to initialize object queries (or only posi-
tion queries [40]). However, due to the inconsistent distri-
bution of classification score and location confidence, some
predicted boxes have high classification scores but are not
close to GT boxes, which results in boxes with high clas-
sification scores and low IoU scores being selected, while
boxes with low classification scores and high IoU scores
are discarded. This impairs the performance of the detec-
tor. To address this issue, we propose IoU-aware query
selection by constraining the model to produce high clas-
sification scores for features with high IoU scores and low
classification scores for features with low IoU scores during
training. Therefore, the prediction boxes corresponding to
the top K encoder features selected by the model accord-
ing to the classification score have both high classification
scores and high IoU scores. We reformulate the optimiza-
tion objective of the detector as follows:

L(ŷ, y) = Lbox(b̂, b) + Lcls(ĉ, b̂, y, b)

= Lbox(b̂, b) + Lcls(ĉ, c, IoU)
(2)

where ŷ and y denote prediction and ground truth, ŷ =
{ĉ, b̂} and y = {c, b}, c and b represent categories and
bounding boxes, respectively. We introduce the IoU score
into objective function of the classification branch (similar
to VFL [41]) to realize the consistency constraint on the
classification and localization of positive samples.
Effectiveness analysis. To analyze the effectiveness of the
proposed IoU-aware query selection, we visualize the clas-
sification scores and IoU scores of the encoder features
selected by the query selection on val2017, as shown
in Fig. 6. Specifically, we first select the top K (K = 300
in our experiment) encoder features according to the clas-
sification scores, and then visualize the scatter plot with
classification scores greater than 0.5. The red and blue
points are calculated from the model trained by applying
the vanilla query selection and IoU-aware query selection,
respectively. The closer the point is to the top right of the
figure, the higher the quality of the corresponding feature,
i.e. the classification label and bounding box are more likely
to describe the real object in an image. According to the vi-
sualization results, we found that the most striking feature
is that a large number of blue points are concentrated in the
top right of the figure, while red points are concentrated in
the bottom right. This shows that the model trained with
IoU-aware query selection can produce more high-quality
encoder features.

Furthermore, we quantitatively analyze the distribution
characteristics of the two types of points. There are 138%
more blue points than red points in the figure, i.e. more red
points with a classification score less than or equal to 0.5,
which can be considered as low-quality features. We then
analyze the IoU scores of features with classification scores

6

Model Backbone #Epochs #Params (M) GFLOPs FPSbs=1 APval APval
50 APval

75 APval
S APval

M APval
L

Real-time Object Detectors
YOLOv5-L[10] - 300 46 109 54 49.0 67.3 - - - -
YOLOv5-X[10] - 300 86 205 43 50.7 68.9 - - - -
PPYOLOE-L[36] CSPRepResNet 300 52 110 94 51.4 68.9 55.6 31.4 55.3 66.1
PPYOLOE-X[36] CSPRepResNet 300 98 206 60 52.3 69.9 56.5 33.3 56.3 66.4
YOLOv6-L[14] - 300 59 150 99 52.8 70.3 57.7 34.4 58.1 70.1
YOLOv7-L[33] - 300 36 104 55 51.2 69.7 55.5 35.2 55.9 66.7
YOLOv7-X[33] - 300 71 189 45 52.9 71.1 57.4 36.9 57.7 68.6
YOLOv8-L[11] - - 43 165 71 52.9 69.8 57.5 35.3 58.3 69.8
YOLOv8-X[11] - - 68 257 50 53.9 71.0 58.7 35.7 59.3 70.7
End-to-end Object Detectors
DETR-DC5 [4] R50 500 41 187 - 43.3 63.1 45.9 22.5 47.3 61.1
DETR-DC5 [4] R101 500 60 253 - 44.9 64.7 47.7 23.7 49.5 62.3
Anchor-DETR-DC5 [35] R50 50 39 172 - 44.2 64.7 47.5 24.7 48.2 60.6
Anchor-DETR-DC5 [35] R101 50 - - - 45.1 65.7 48.8 25.8 49.4 61.6
Conditional-DETR-DC5 [23] R50 108 44 195 - 45.1 65.4 48.5 25.3 49.0 62.2
Conditional-DETR-DC5 [23] R101 108 63 262 - 45.9 66.8 49.5 27.2 50.3 63.3
Efficient-DETR [37] R50 36 35 210 - 45.1 63.1 49.1 28.3 48.4 59.0
Efficient-DETR [37] R101 36 54 289 - 45.7 64.1 49.5 28.2 49.1 60.2
SMCA-DETR [6] R50 108 40 152 - 45.6 65.5 49.1 25.9 49.3 62.6
SMCA-DETR [6] R101 108 58 218 - 46.3 66.6 50.2 27.2 50.5 63.2
Deformable-DETR [43] R50 50 40 173 - 46.2 65.2 50.0 28.8 49.2 61.7
DAB-Deformable-DETR [20] R50 50 48 195 - 46.9 66.0 50.8 30.1 50.4 62.5
DN-Deformable-DETR [16] R50 50 48 195 - 48.6 67.4 52.7 31.0 52.0 63.7
DAB-Deformable-DETR++ [16] R50 50 47 - - 48.7 67.2 53.0 31.4 51.6 63.9
DN-Deformable-DETR++ [16] R50 50 47 - - 49.5 67.6 53.8 31.3 52.6 65.4
DINO-Deformable-DETR [40] R50 36 47 279 5 50.9 69.0 55.3 34.6 54.1 64.6
Real-time End-to-end Object Detector (ours)
RT-DETR-R50 R50 72 42 136 108 53.1 71.3 57.7 34.8 58.0 70.0
RT-DETR-R101 R101 72 76 259 74 54.3 72.7 58.6 36.0 58.8 72.1
RT-DETR-L HGNetv2 72 32 110 114 53.0 71.6 57.3 34.6 57.3 71.2
RT-DETR-X HGNetv2 72 67 234 74 54.8 73.1 59.4 35.7 59.6 72.9

Table 2: Main results. Real-time detectors and our RT-DETR share a common input size of 640, and end-to-end detectors
use an input size of (800, 1333). The end-to-end speed results are reported on T4 GPU with TensorRT FP16 using official
pre-trained models followed the method proposed in Sec. 3. (Note: We do not test the speed of DETRs, except for DINO-
Deformable-DERT for comparison, as they are not real time detectors.)

greater than 0.5, and we find that there are 120% more
blue points than red points with IoU scores greater than 0.5.
Quantitative results further demonstrate that the IoU-aware
query selection can provide more encoder features with ac-
curate classification (high classification scores) and precise
location (high IoU scores) for object queries, thereby im-
proving the accuracy of the detector. The detailed quantita-
tive results are presented in Sec. 5.4.

4.4. Scaled RT-DETR

To provide a scalable version of RT-DETR, we replace
the ResNet [12] backbone with HGNetv2. We scale the
backbone and hybrid encoder together using a depth mul-
tiplier and a width multiplier. Thus, we get two versions
of RT-DETR with different numbers of parameters and
FPS. For our hybrid encoder, we control the depth multi-
plier and width multiplier by adjusting the number of Rep-
Blocks in CCFM and the embedding dimension of the en-
coder, respectively. It is worth noting that our proposed
RT-DETR of different scales maintains a homogeneous de-
coder, which facilitates the distillation of light detectors us-

ing high-precision large DETR models. This would be an
explorable future direction.

5. Experiments
5.1. Setups

Dataset. We perform extensive experiments on the Mi-
crosoft COCO dataset to validate the proposed detector. For
the ablation study, we train on COCO train2017 and val-
idate on COCO val2017 dataset. We use the standard
COCO AP metric with a single scale image as input.
Implementation Details. We use ResNet [12] and
HGNetv2 series pretrained on ImageNet [28] from
PaddleClas2 [5] as our backbone. The AIFI consists of
1 transformer layer and the fusion block in CCMF con-
sists of 3 RepBlocks for the base model by default. In
IoU-aware query selection, we select the top 300 encoder
features to initialize object queries of the decoder. The
training strategy and hyperparameters of the decoder al-
most follow DINO [40]. We train our detectors using

2https://github.com/PaddlePaddle/PaddleClas

7

https://github.com/PaddlePaddle/PaddleClas

AdamW optimizer with base learning rate = 0.0001,
weight decay = 0.0001, global gradient clip norm =
0.0001, and linear warmup steps = 2000. Learning
rates of backbone setting follows [4]. We also use expo-
nential moving average (EMA) with ema decay = 0.9999.
The 1× configuration means that the total epoch is 12, if not
specified, all ablation experiments use 1×. The final results
reported use a 6× configuration. The data augmentation in-
cludes random {colour distort, expand, crop, flip, resize}
operations, follow [36].

5.2. Comparison with SOTA

Tab. 2 compares the proposed RT-DETR with other
real-time and end-to-end object detectors. Our proposed
RT-DETR-L achieves 53.0% AP and 114 FPS, while RT-
DETR-X achieves 54.8% AP and 74 FPS, outperforming
all YOLO detectors of the same scale in both speed and ac-
curacy. Furthermore, our proposed RT-DETR-R50 achieves
53.1% AP and 108 FPS, while RT-DETR-R101 achieves
54.3% AP and 74 FPS, outperforming the state-of-the-art
end-to-end detector of the same backbone in both speed and
accuracy.
Compared to real-time detectors. For a fair compari-
son, we compare the speed and accuracy of the scaled RT-
DETR with current real-time detectors in an end-to-end set-
ting (speed test method refers to Sec. 3.2). We compare
the scaled RT-DETR with YOLOv5 [10], PP-YOLOE [36],
YOLOv6v3.0 (hereinafter referred to as YOLOv6) [14],
YOLOv7 [33] and YOLOv8 [11] in Tab. 2. Compared to
YOLOv5-L / PP-YOLOE-L / YOLOv7-L, RT-DETR-L sig-
nificantly improves accuracy by 4.0% / 1.6% / 1.8% AP, in-
creases FPS by 111.1% / 21.3% / 107.3%, and reduces the
number of parameters by 30.4% / 38.5% / 11.1%. Com-
pared to YOLOv5-X / PP-YOLOE-X / YOLOv7-X, RT-
DETR-X improves accuracy by 4.1% / 2.5% / 1.9% AP,
increases FPS by 72.1% / 23.3% / 64.4%, and reduces the
number of parameters by 22.1% / 31.6% / 5.6%. Compared
to YOLOv6-L / YOLOv8-L, RT-DETR-L achieves 0.2% /
0.1% AP improvement in accuracy, 15.2% / 60.6% FPS in-
crease in speed, and 45.8% / 25.6% reduction in the num-
ber of parameters. Compared to YOLOv8-X, RT-DETR-X
achieves a 0.9% AP improvement in accuracy, a 48.0% FPS
increase in speed, and a 1.5% reduction in the number of
parameters.
Compared to end-to-end detectors. Tab. 2 shows that
RT-DETR achieves the state-of-the-art performance in all
end-to-end detectors with the same backbone. Compared
to DINO-Deformable-DETR-R50 [40], RT-DETR-R50 sig-
nificantly improves the accuracy by 2.2% AP (53.1% AP
vs. 50.9% AP) and the speed by 21 times (108 FPS vs
5 FPS), and reduces the number of parameters by 10.6%.
Compared to SMCA-DETR-R101 [6], RT-DETR-R101 sig-
nificantly improves accuracy by 8.0% AP.

Variant AP(%) #Params(M) Latency(ms)

A 43.0 31 7.2
B 44.9 32 11.1
C 45.6 32 13.3
D 46.4 35 12.2

DS5
46.8 35 7.9

E 47.9 42 9.3

Table 3: Results of analytical experiment that decouple
multi-scale feature fusion into two-step operations of intra-
scale interaction and cross-scale fusion.

5.3. Ablation Study on Hybrid Encoder

To verify the correctness of our analysis about the en-
coder and the effectiveness of the proposed hybrid encoder,
we evaluate the indicators of the set of variants designed
in Sec. 4.2, including AP, number of parameters and latency
on T4 GPU. The experimental results are shown in Tab. 3.
Variant B delivers a 1.9% AP improvement over A, while
increasing the number of parameters by 3% and the latency
by 54%. This proves that the intra-scale feature interaction
is significant but the vanilla transformer encoder is expen-
sive. Variant C delivers 0.7% AP improvement over B and
keeps the number of parameters unchanged, while the la-
tency increases by 20%. This shows that the cross-scale
feature fusion is also necessary. Variant D delivers 0.8%
AP improvement over C, while increasing the number of
parameters by 9% but reducing latency by 8%. This sug-
gests that decoupling intra-scale interaction and cross-scale
fusion can reduce computation while improving accuracy.
Compared to the vanilla variant D, DS5 reduces the latency
by 35% but delivers 0.4% AP improvement. This proves
that the intra-scale interactions of lower-level features are
unnecessary. Finally, variant E equipped with our proposed
hybrid encoder delivers 1.5% AP improvement over D. De-
spite a 20% increase in the number of parameters, the la-
tency is reduced by 24%, making the encoder more compu-
tationally efficient.

5.4. Ablation Study on IoU-aware Query Selection

We conduct an ablation study on IoU-aware query se-
lection, and the quantitative experimental results are shown
in 4. The query selection we adopt selects the top K (K =
300) encoder features as the content queries according to
the classification scores, and the bounding boxes corre-
sponding to these selected features are employed as ini-
tial position queries. We compare the encoder features se-
lected by the two query selections on val2017 and calcu-
late the proportions of classification scores greater than 0.5
and both scores greater than 0.5, corresponding to columns
“Propcls” and “Propboth” respectively. The results show

8

Query selection AP(%) Propcls(%) Propboth(%)

Vanilla 47.9 0.35 0.30
IoU-aware 48.7 0.82 0.67

Table 4: Results of the ablation study on IoU-aware query
selection. Propcls and Propboth represent the proportion of
classification scores greater than 0.5 and both scores greater
than 0.5 respectively.

that the encoder features selected by IoU-aware query selec-
tion not only increase the proportion of high classification
scores (0.82% vs 0.35%), but also provide more features
with high classification scores and high IoU scores (0.67%
vs 0.30%). We also evaluate the accuracy of the detectors
trained with the two types of query selection on val2017,
where the IoU-aware query selection achieves an improve-
ment of 0.8% AP (48.7% AP vs 47.9% AP).

5.5. Ablation Study on Decoder

Tab. 5 shows the accuracy and speed of each decoder
layer of RT-DETR with different decoder layers. When the
number of decoder layers is 6, the detector achieves the
best accuracy of 53.1% AP. We also analyze the influence
of each decoder layer on the inference speed and conclude
that each decoder layer consumes about 0.5 ms. Further-
more, we find that the difference in accuracy between adja-
cent layers of the decoder gradually decreases as the index
of the decoder layer increases. Taking the 6-layer decoder
as an example, using 5-layer for inference only loses 0.1%
AP (53.1% AP vs 53.0% AP) in accuracy, while reducing
latency by 0.5 ms (9.3 ms vs 8.8 ms). Therefore, RT-DETR
supports flexibly adjustment of the inference speed by using
different decoder layers without the need for retraining for
inference, which facilitates the practical application of the
real-time detector.

6. Conclusion
In this paper, we propose RT-DETR, the first real-time

end-to-end detector to our best knowledge. We first per-
form a detailed analysis of NMS and establish an end-to-
end speed benchmark to verify the fact that the inference
speed of current real-time detectors is delayed by NMS.
We also conclude from the analysis of NMS that anchor-
free detectors outperform anchor-based detectors with the
same accuracy. To avoid delays caused by NMS, we de-
sign a real-time end-to-end detector that includes two key
improved components: a hybrid encoder that can efficiently
process multi-scale features and IoU-aware query selection
that improves the initialization of object queries. Extensive
experiments demonstrate that RT-DETR achieves state-of-
the-art performance in both speed and accuracy compared

ID
AP (%)

Latency(ms)
Det4 Det5 Det6 Det7

7 - - - 52.6 9.6
6 - - 53.1 52.6 9.3
5 - 52.9 53.0 52.5 8.8
4 52.7 52.7 52.7 52.1 8.3
3 52.4 52.3 52.4 51.5 7.9
2 51.6 51.3 51.3 50.6 7.5
1 49.6 48.8 49.1 48.3 7.0

Table 5: Results of the ablation study on decoder. ID repre-
sents the index of the decoder layer and AP represents the
model accuracy obtained by different decoder layers. Detk
represents the detector with k decoder layers. Results are
reported on RT-DETR-R50 with 6× schedule setting.

to other real-time detectors and end-to-end detectors of sim-
ilar size. In addition, Our proposed detector supports flex-
ibly adjustment of the inference speed by using different
decoder layers without the need for retraining, which facil-
itates the practical application of real-time object detectors.
We hope that this work can be put into practice and provide
inspiration for researchers.

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 1,
2

[2] Daniel Bogdoll, Maximilian Nitsche, and J Marius Zöllner.
Anomaly detection in autonomous driving: A survey. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4488–4499, 2022. 1

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018. 1

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 213–229.
Springer, 2020. 1, 2, 7, 8

[5] Cheng Cui, Ruoyu Guo, Yuning Du, Dongliang He, Fu Li,
Zewu Wu, Qiwen Liu, Shilei Wen, Jizhou Huang, Xiaoguang
Hu, Dianhai Yu, Errui Ding, and Yanjun Ma. Beyond self-
supervision: A simple yet effective network distillation alter-
native to improve backbones. CoRR, abs/2103.05959, 2021.
7

[6] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai,
and Hongsheng Li. Fast convergence of detr with spatially
modulated co-attention. In Proceedings of the IEEE/CVF

9

international conference on computer vision, pages 3621–
3630, 2021. 7, 8

[7] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430, 2021. 1, 2

[8] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7036–7045,
2019. 3

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1

[10] Jocher Glenn. Yolov5 release v7.0. https://github.
com/ultralytics/yolov5/tree/v7.0, 2022. 1, 2,
3, 4, 7, 8

[11] Jocher Glenn. Yolov8. https://github.com/
ultralytics/ultralytics/tree/main, 2023. 1,
2, 3, 4, 7, 8

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7

[13] Xin Huang, Xinxin Wang, Wenyu Lv, Xiaying Bai, Xiang
Long, Kaipeng Deng, Qingqing Dang, Shumin Han, Qiwen
Liu, Xiaoguang Hu, et al. Pp-yolov2: A practical object
detector. arXiv preprint arXiv:2104.10419, 2021. 1, 2

[14] Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng
Cheng, Bo Zhang, Zaidan Ke, Xiaoming Xu, and Xiangxi-
ang Chu. Yolov6 v3. 0: A full-scale reloading. arXiv preprint
arXiv:2301.05586, 2023. 1, 2, 3, 4, 7, 8

[15] Feng Li, Ailing Zeng, Shilong Liu, Hao Zhang, Hongyang
Li, Lei Zhang, and Lionel M Ni. Lite detr: An inter-
leaved multi-scale encoder for efficient detr. arXiv preprint
arXiv:2303.07335, 2023. 3

[16] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni,
and Lei Zhang. Dn-detr: Accelerate detr training by intro-
ducing query denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13619–13627, 2022. 1, 2, 3, 7

[17] Junyu Lin, Xiaofeng Mao, Yuefeng Chen, Lei Xu, Yuan
He, and Hui Xue. Dˆ 2etr: Decoder-only detr with com-
putationally efficient cross-scale attention. arXiv preprint
arXiv:2203.00860, 2022. 5

[18] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 3

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1

[20] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi,
Hang Su, Jun Zhu, and Lei Zhang. Dab-detr: Dynamic
anchor boxes are better queries for detr. arXiv preprint
arXiv:2201.12329, 2022. 1, 2, 3, 6, 7

[21] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018. 3, 5

[22] Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang,
Qingqing Dang, Yuan Gao, Hui Shen, Jianguo Ren, Shumin
Han, Errui Ding, et al. Pp-yolo: An effective and ef-
ficient implementation of object detector. arXiv preprint
arXiv:2007.12099, 2020. 1, 2

[23] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,
Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3651–3660, 2021. 1, 2, 3, 7

[24] Rashmika Nawaratne, Damminda Alahakoon, Daswin
De Silva, and Xinghuo Yu. Spatiotemporal anomaly de-
tection using deep learning for real-time video surveillance.
IEEE Transactions on Industrial Informatics, 16(1):393–
402, 2019. 1

[25] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 2

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1

[27] Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and Sae-
hoon Kim. Sparse detr: Efficient end-to-end object detection
with learnable sparsity. arXiv preprint arXiv:2111.14330,
2021. 3

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015. 7

[29] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-
feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan
Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14454–14463, 2021. 1, 2

[30] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781–10790, 2020. 3

[31] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019. 1

[32] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-yolov4: Scaling cross stage partial
network. In Proceedings of the IEEE/cvf conference on com-
puter vision and pattern recognition, pages 13029–13038,
2021. 2

[33] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv
preprint arXiv:2207.02696, 2022. 1, 2, 3, 4, 7, 8

10

https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/ultralytics/tree/main
https://github.com/ultralytics/ultralytics/tree/main

[34] Jianfeng Wang, Lin Song, Zeming Li, Hongbin Sun, Jian
Sun, and Nanning Zheng. End-to-end object detection
with fully convolutional network. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 15849–15858, 2021. 1, 2

[35] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
Anchor detr: Query design for transformer-based detector.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 36, pages 2567–2575, 2022. 1, 2, 3, 6, 7

[36] Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang,
Cheng Cui, Kaipeng Deng, Guanzhong Wang, Qingqing
Dang, Shengyu Wei, Yuning Du, et al. Pp-yoloe: An evolved
version of yolo. arXiv preprint arXiv:2203.16250, 2022. 1,
2, 4, 7, 8

[37] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient
detr: improving end-to-end object detector with dense prior.
arXiv preprint arXiv:2104.01318, 2021. 3, 6, 7

[38] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and
Kazuya Takeda. A survey of autonomous driving: Common
practices and emerging technologies. IEEE access, 8:58443–
58469, 2020. 1

[39] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xi-
angyu Zhang, and Yichen Wei. Motr: End-to-end multiple-
object tracking with transformer. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part XXVII, pages 659–675.
Springer, 2022. 1

[40] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel Ni, and Heung-Yeung Shum. Dino: Detr with
improved denoising anchor boxes for end-to-end object de-
tection. In The Eleventh International Conference on Learn-
ing Representations, 2022. 1, 2, 3, 5, 6, 7, 8

[41] Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko Sun-
derhauf. Varifocalnet: An iou-aware dense object detector.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8514–8523, 2021. 6

[42] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng
Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating every
detection box. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXII, pages 1–21. Springer, 2022. 1

[43] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1, 2, 3, 5, 6, 7

11

	1 . Introduction
	2 . Related work
	2.1 . Real-time Object Detectors.
	2.2 . End-to-end Object Detectors.
	2.3 . Multi-scale Features for Object Detection.

	3 . End-to-end Speed of Detectors
	3.1 . Analysis of NMS
	3.2 . End-to-end Speed Benchmark

	4 . The Real-time DETR
	4.1 . Model Overview
	4.2 . Efficient Hybrid Encoder
	4.3 . IoU-aware Query Selection
	4.4 . Scaled RT-DETR

	5 . Experiments
	5.1 . Setups
	5.2 . Comparison with SOTA
	5.3 . Ablation Study on Hybrid Encoder
	5.4 . Ablation Study on IoU-aware Query Selection
	5.5 . Ablation Study on Decoder

	6 . Conclusion

