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Abstract—Potholes and cracks on the road often appear during
traffic operations. This is one of the main factors causing traffic
accidents and is a major concern for vehicle owners. Early
detection and repair of potholes and cracks is essential to ensure
smooth traffic flow and avoid risks. This paper proposes a
method to improve the YOLOv8s network in general object
detection and applies it to detecting potholes and manhole covers
to support automatic detection and road repair. The research
focuses on replacing the original convolution operations in the
backbone and neck modules with the new one called Receptive
Field Coordinate Attention Convolution. This module uses the
Group Convolution and Coordinate Attention mechanism to
enhance feature extraction capabilities. The experimental results
are conducted on the pothole and manhole cover detection
dataset and reported using mean average precision. As a result,
the proposed network achieves the best performance at 77.1%
of mAP@0.5 and 36.8% of mAP@0.5:0.95 and demonstrates
superiority over other networks.

Index Terms—Coordinate Attention, Convolutional Neural
Network (CNN), Group convolution, YOLOv8.

I. INTRODUCTION

Road traffic is a type of transportation system that makes
an important contribution to each country’s economic and
social development. Among them, pothole and manhole cover
pose many challenges for maintenance agencies and are a
great danger to all types of vehicles. These road defects
are automatically generated during operation by many factors
such as adverse weather, environment, heavy traffic load, and
substandard maintenance [1]. Pothole and manhole cover not
only reduce the experience of road users but also compromise
safety, causing collisions and accidents that lead to vehicle
damage and can cause death [2]. Usually, the collection and
processing of road damage data is carried out manually or
reported by road users through their experiences. Although
these methods are simple to implement, they are ineffective,
have high costs, and easily cause delays [3]. Today, the
rapid development of sensor technology, machine learning, and
artificial intelligence (AI) facilitate modern and more effective
approaches to pothole detection and maintenance. The pothole
and manhole cover detection systems utilize different sensor
methods such as conventional cameras, infrared cameras, and
LIDAR combined with machine learning algorithms to detect
and evaluate road surface conditions more accurately [4].
Inspired by the vision-based approach, this paper proposes
a technique to improve the YOLOv8s network architecture
for pothole and manhole cover detection. Through a thorough

analysis of each component in the YOLOv8s network archi-
tecture, this work replaces all standard convolution operations
with a new convolution operation called Receptive Field Co-
ordinate Attention Convolution (RFCAConv) inside the back-
bone and neck modules. The RFCAConv is a combination of
lightweight convolution (Group convolution) and Coordinate
Attention (CA) mechanisms to enhance feature extraction for
each feature map level. Optimization of network parameters
and computational complexity while still ensuring object de-
tection efficiency holds great potential for deployment in real-
time systems with low-computing and embedded devices.

The major contributions of this paper are as follows:
• Improves the YOLOv8s network architecture for pothole

and manhole cover detection supporting road safety sys-
tems.

• The proposed approach achieves better performance than
other methods on the pothole and manhole cover dataset.

The remainder of the manuscript is organized as follows: Sec-
tion II presents the approaches related to pothole and manhole
detection. Section III introduces the details of the proposed
method. Section IV explains and analyzes the experiments.
Finally, Section V concludes the issue and directs the future
works.

II. RELATED WORKS

The related works section introduces the various methods
applied in pothole and manhole cover detection. These tech-
niques can be split into two groups: sensors-based and CNN-
based techniques.

A. Sensors-based techniques.

Detecting and evaluating road surface conditions is a labor-
intensive and costly task. Therefore, researchers focus on
designing compact systems and ensuring accuracy using mo-
bile sensors such as accelerometer [5], vibration sensor [6],
LIDAR [7], and Stereo vision [8]. The accelerometer-based
and vibration-based approaches achieve high accuracy and do
not depend on vision. Still, they have low response speeds
and require driving over potholes to detect and measure. The
LIDAR-based approaches can detect objects in poor lighting
and visibility conditions. Therefore, it is often used to detect
potholes at night. The stereo image-based system can retrieve
information about potholes’ size, depth, and location. Despite
its remarkably high accuracy, this method has disadvantages
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Fig. 1. The overall proposed network architecture and sub-modules.



such as computational complexity and sensitivity to move-
ments and vibrations.

B. CNN-based techniques.

The authors in [9] evaluated the detection speed and preci-
sion of different semantic segmentation and object detection
algorithms for the pothole detection task. The experimental
results demonstrate that the performance of the YOLOv3
network architecture is superior to the YOLOv2 network
architecture in both precision and speed. Similarly, the ex-
periments in [10] also proposed a new dataset for pothole
detection and improved the precision by integrating with
Sparse R-CNN. Another study proposed a two-part location-
aware convolutional neural network to detect potholes. In this
method, a localization part is responsible for suggesting re-
gions containing potholes and selecting the most relevant area.
Then, these regions are recognized by another classification
network. Later versions of the YOLO network family were
also applied for pothole detection in research [11], including
YOLOv4, YOLOv4 Tiny, and YOLOv5s. Experiments show
that YOLOv4 and YOLOv4 Tiny achieve better performance
than YOLOv5s. The work in [12] used and compared various
pothole detection network architectures based on YOLOv5,
YOLOR, and Faster R-CNN. These methods replace various
backbone network architectures to create diverse comparisons.

III. PROPOSED METHODOLOGY

Fig. 1 shows the overall proposed network architecture.
This network involves three modules: Backbone, Neck, and
Detection head.

A. Proposed network architecture

This work thoroughly studies and assesses each component
of the original YOLOv8 network architecture [13]. Based on
that analysis, the research fine-tunes several blocks in the
architecture of Backbone and Neck modules. More specifi-
cally, the Cross Stage Partial Bottleneck with two convolutions
(C2f), the Spatial Pyramid Pooling Fast (SPPF), and the first
Conv are reused. The remaining Conv blocks are replaced by
an RFCAConv architecture [14]. The architecture of Conv,
C2f, and SPPF are shown in the sub-module part of Fig. 1.

The backbone network consists of a Conv layer, followed
by four identical blocks, and ends with the SPPF layer. The
four intermediate blocks are built upon several C2f layers
(ratio of 3, 3, 6, 6, and 3 times) and an RFCAConv layer.
The architecture of the RFCAconv layer is shown in Fig.
2. The RFCAConv layer is inspired by the combination of
the Coordinate Attention mechanism and standard convolution
(Conv2D). RFCAConv is applied to solve the problem of
sharing convolution kernel parameters and improve the feature
extraction ability of the standard convolution operation. It
uses lightweight convolutions (group convolution) to reduce
network parameters and the Coordinate Attention mecha-
nism helps the network capture the salient features. Suppose,
F ∈ RW×H×C and F ′ ∈ RW×H×C are the input and
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Fig. 2. The RFCAConv architecture.

output feature maps, respectively. The operating principle of
RFCAConv is described as follows:

F ′ = f3×3(FMain × FH × FW ), (1)

where f i×i is the i × i Conv2D (i = 1 or i = 3). FMain is
the output feature map of the main branch. FH and FW are
splitted from feature map FHW of Coordinate Attention.

FMain = Reshape(BN(ReLU(g3×3(F ))), (2)

FWH = δ([AV GH(FMain), AV GW (FMain)]), (3)

where δ denotes the non-linear activation function. The
AV GH and AV GW are Average Pooling layers according
to the H-axis (kernel size (H, 1)) and W-axis (kernel size
(1,W )), respectively. The operation [·] describes the Concate-
nation layer.

FH = σ(f1×1(F ′
H)), (4)

FW = σ(f1×1(F ′
W )), (5)

in which, F ′
H and F ′

W are separated tensors from FHW .
The Neck module reuses the Path Aggregation Network

(PAN) architecture as in the original YOLOv8 network and
replaces all Conv layers with the RFCAConv layers. The
current feature maps are upsampled and aggregated with
previous low-level feature maps from the Backbone module
using Concatenation operations. Via this module, the feature
maps will be enriched and generated with three scales for



small, medium, and large objects. These feature maps go
through the Detection head module to identify the object.

The Detection head module also leverages the three de-
tection heads from the original YOLOv8 with the decouple
head and free-anchor technique. The output feature maps
from the Neck module transfer to two sibling blocks. Each
block consists of a Conv layer and standard convolution layer
for bounding box regression (four coordinates of the box:
x, y, h, w) and classification (number of classes: c) on three
object levels. The Conv block is built based on a 1×1 standard
convolution layer (Conv2D), a BN, and a ReLU activation
function. Table I shows the details of the Detection head
module.

TABLE I
THE DETAILS OF THE DETECTION HEAD MODULE.

Heads Input Anchor Ouput Object
1 80× 80× 256 Free 80× 80× 4/80× 80× c Small
2 40× 40× 512 Free 40× 40× 4/40× 40× c Medium
3 20× 20× 512 Free 20× 20× 4/20× 20× c Large

B. Loss function

The loss function used in this paper is defined as follows:

L = λBoxLBox + λDFLLDFL + λClsLCls, (6)

where the bounding box regression loss integrates LBox with
LDFL and they apply the CIoU loss [15] and Distribution
Focal Loss (DFL) [16], respectively. The classification loss
LCls is computed by the Binary Cross Entropy loss [17]. The
λBox, λCls, and λdfl are balancing parameters.

IV. EXPERIMENTS

A. Dataset

The pothole and manhole cover detection dataset [14] was
taken from a specific road with damage in an industrial area
of Žilina city, Slovakia with an image resolution of 1920 ×
1080. The dataset includes 1,052 images under clear weather
conditions (training set: 736 images, test set: 159 images, and
validation set: 157 images) and four subsets under adverse
weather conditions such as Rain, Sunset, Evening, and Night.
The images are divided into two classes: Potholes and Manhole
covers. A detailed description of this dataset is presented in
Table II.

TABLE II
THE DETAILS OF EACH SUBSET IN THE POTHOLE AND MANHOLE COVER

DETECTION DATASET.

Subset Images Instances Potholes Manhole covers
Clear 1,052 2,128 1,896 232
Rain 286 458 383 75

Sunset 201 404 364 40
Evening 250 339 286 53

Night 310 262 220 42

B. Experimental setup

Based on the YOLOv8 framework, this work uses the
Python programming language and the Pytorch library to
modify the architectures. The training and evaluation processes
are conducted on a GeForce GTX 1080Ti 11GB GPU. The
training phase applies the Stochastic Gradient Descent (SGD)
optimization. The initial learning rate is set at 10−4 and then
increase to 10−2. The momentum is set at 0.937. The training
process goes through 200 epochs with a batch size of 16. The
balance parameters are set as follows: λBox=1.5, λCls=0.5,
and λDFL=1.5. Several data augmentation methods are used,
such as translate, scale, flip, and mosaic. The input image size
in the training phase is 640 × 640. For the inference phase,
image sizes are 640 × 640 and 1080 × 1080, a batch size of
16, a confidence threshold = 0.5, and an IoU threshold = 0.5.
The inference time is reported in milliseconds (ms).

C. Experimental results

The experiments evaluate the proposed network and com-
pare it with the networks trained from scratch (YOLOv5s
[18], YOLOv8s [13]), and several other networks in reference
[14] with different input image resolutions. The comparison
results are shown in Table III. For an input image size of
640×640, the proposed network achieves 74.2% of mAP@0.5
and 34.1% of mAP@0.5:0.95. This result is superior to other
competitors except for YOLOv3-4 [14] on mAP@0.5 (0.5%↓)
while network parameters and computational complexity are
comparable to the YOLOv8s network. The speed of the
proposed network is better than other networks and YOLOv5s
(0.6 ms↓) and is comparable to YOLOv8s (0.4 ms↑). For an
input image size of 1080×1080, the proposed network reaches
77.1% of mAP@0.5 and 36.8% of mAP@0.5:0.95. These
results are largely better than other competitive networks
except for YOLOv3-SPP [14] (2.0%↓) and YOLOv8s (0.7%↓).
However, in terms of speed, the proposed network is lower
than YOLOv8s (8.4 ms↑) network and can be compared to
YOLOv5s (2.0 ms↑). The above results prove that choosing
the input image size increases object detection accuracy but
reduces the inference speed quite a lot. Therefore, choosing
the appropriate input image size is necessary to build real-time
systems on low-computing devices. Fig. 3 shows several qual-
itative results on the Potholes and Manhole covers dataset with
different weather conditions (Clear, Evening, Night, Rain, and
Sunset). This work also implements the comparison between
the proposed network and YOLOv8s as presented in Fig. 4.
The comparison proves that the proposed network is better
than the YOLOv8s network architecture when detecting the
potholes and manhole covers with long distances and large
angles of the camera. The balance in the performance of the
proposed network with acceptable computation complexity
and network parameters allows the proposed model can be
applied in real-time road safety systems. Nevertheless, the
proposed model is still affected by several conditions that
reduce the detection ability such as dense potholes, overlap-
ping between potholes and manhole covers, distance from the
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objects to the camera, and the camera angles. Especially, the
lighting conditions as the results are shown in Table IV.

D. Ablation studies

To evaluate the ability of the proposed module to com-
bine with the components of the original architecture of
the YOLOv8 network, this work conducted several ablation
studies as shown in Table V. These experiments mainly focus
on the feature extraction capabilities of the RFCAConv module
with the first Conv, SPP, and SPPF modules. Replacing all
Conv modules in the Backbone network reduces accuracy and
increases network parameters and computational complexity.
Combining the first Conv module and RFCAConv improves
accuracy, network parameters, and computational complexity.

Finally, the experiment achieved the best results using a com-
bination of all three modules: the first Conv, RFCAConv, and
SPPF. This is the selection of proposed network architecture
that is trained, evaluated, and reported based on the Pothole
and Manhole covers dataset.

V. CONCLUSION AND FUTURE WORK

This study improves the YOLOv8s architecture network for
pothole and manhole cover detection. The research focuses on
rebuilding the backbone and neck modules using a combina-
tion of the first CONV, RFCAConv, and SPPF modules. With
the balance of network parameters, computational complexity,
and inference speed, the proposed network promises to be
applied to real-time road safety systems with low-computing



TABLE III
THE COMPARISON RESULT BETWEEN THE PROPOSED NETWORK AND OTHER NETWORKS ON THE CLEAR WEATHER VALIDATION SET.

Models Image size Parameter GFLOPs Weight(MB) mAP@0.5 (%) mAP@0.5:0.95 (%) Inf. time (ms)
YOLOv3-1 [14] 640×640 N/A N/A N/A 28.5 9.2 35.0
YOLOv3-2 [14] 640×640 N/A N/A N/A 56.3 20.2 35.0
YOLOv3-3 [14] 640×640 N/A N/A N/A 68.1 26.8 35.0
YOLOv3-4 [14] 640×640 N/A N/A N/A 74.7 31.4 35.0

YOLOv3-SPP [14] 640×640 N/A N/A N/A 71.1 28.6 36.0
YOLOv5s† [18] 640×640 7,050,367 15.4 14.3 67.6 25.3 2.8
YOLOv8s† [13] 640×640 11,126,358 28.4 22.5 73.7 34.0 1.8

Proposed method 640×640 11,234,502 29.1 22.8 74.2 34.1 2.2
YOLOv3 [14] 1080×1080 N/A N/A N/A 77.1 33.0 82.0

YOLOv3-SPP [14] 1080×1080 N/A N/A N/A 79.1 35.4 84.0
YOLOv5s† [18] 1080×1080 7,050,367 15.4 14.3 75.5 31.4 9.4
YOLOv8s† [13] 1080×1080 11,126,358 28.4 22.5 78.1 37.5 3.0

Proposed method 1080×1080 11,234,502 29.1 22.8 77.1 36.8 11.4
Inf. time (ms): Inference time is evaluated on a GeForce GTX 1080Ti GPU.
†: The models are trained from scratch.
Red color: Best competitor.

TABLE IV
THE EVALUATION RESULTS ON DIFFERENT VALIDATION SETS.

Dataset mAP@0.5 (%) mAP@0.5:0.95(%) Inf. time
Evening 37.7 13.9 18.4

Night 16.3 5.54 20.4
Rain 37.4 13.1 18.9

Sunset 32.5 11.6 21.0

Proposed YOLOv8s

Fig. 4. The comparison result between proposed method and YOLOv8s on
validation set.

devices. In the future, the detector will be developed with
other novel attention techniques to enhance small-size object
detection and compare the performance to the latest YOLOv9.
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vision based pothole detection under challenging conditions,” Sensors,
vol. 22, p. 8878, 11 2022.

[11] S.-S. Park, V.-T. Tran, and D.-E. Lee, “Application of various yolo
models for computer vision-based real-time pothole detection,” Applied
Sciences, vol. 11, no. 23, 2021.

[12] K. R. Ahmed, “Smart pothole detection using deep learning based on
dilated convolution,” Sensors, vol. 21, no. 24, 2021.

[13] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.
[14] X. Zhang, C. Liu, D. Yang, T. Song, Y. Ye, K. Li, and Y. Song, “Rfaconv:

Innovating spatial attention and standard convolutional operation,” 2023.
[15] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo,

“Enhancing geometric factors in model learning and inference for object
detection and instance segmentation,” CoRR, vol. abs/2005.03572, 2020.

[16] M. S. Hossain, J. M. Betts, and A. P. Paplinski, “Dual focal loss to
address class imbalance in semantic segmentation,” Neurocomputing,
vol. 462, pp. 69–87, 2021.

[17] R. Rubinstein and D. Kroese, The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation and
Machine Learning. Information Science and Statistics, Springer New
York, 2011.

[18] G. Jocher and et al., “ultralytics/yolov5: v3.1 - Bug Fixes and Perfor-
mance Improvements,” Oct. 2020.


	Introduction
	related works
	Sensors-based techniques.
	CNN-based techniques.

	Proposed Methodology
	Proposed network architecture
	Loss function

	experiments
	Dataset
	Experimental setup
	Experimental results
	Ablation studies

	Conclusion and future work
	References

