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Abstract. Self-attention can capture long-range dependencies from in-
put sequences without inductive biases, resulting in quadratic complex-
ity. When transferring Vision Transformers to dense prediction tasks,
the models suffer huge computational costs. Recent methods have drawn
sparse attention to approximate attention regions and injected convo-
lution into self-attention layers. Motivated by this line of research, this
paper introduces group attention that has linear complexity with in-
put resolution while modeling global context features. Group attention
shares information across channels, and convolution is spatial sharing.
Both operations are complementary, and multi-scale convolution can
capture multiple views of the input. Merging multi-scale convolution
into group attention layers can help improve feature representation and
modeling abilities. To verify the effectiveness of the proposed method,
extensive experiments are conducted on benchmark datasets for various
vision tasks. On ImageNet-1K image classification, the proposed method
achieves 77.6% Top-1 accuracy at 0.7 GFLOPs, surpassing other meth-
ods under similar computational costs. When transferring pre-trained
model on ImageNet-1K to dense prediction tasks, the proposed method
attains consistent improvements across visual tasks.
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1 Introduction

Convolution extracts local features and has static weights while self-attention
captures long-range dependencies from the long sequences without considering
the order of tokens and has dynamic weights. In other words, Vision Transform-
ers (ViTs) generalize better than Convolution Neural Networks (CNNs), produc-
ing state-of-the-art performances across language, vision, and multimodal tasks.
Another line of research is to design hybrid networks that combine the best of
convolution and self-attention. Hybrid networks [8, 31, 18] can achieve better fea-
ture representation and trade-off between accuracy and computational costs. In
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the model cost aspect, the self-attention operation creates quadratic complex-
ity while convolution results in linear complexity with input resolution. Many
methods attempt to improve the efficiency of ViTs based on sparse attention
such as spatial reduction attention [27, 28, 32, 33], window attention [15, 6, 2, 31],
and linear self-attention [17, 22].

The goal of hybrid networks is to supplement strong inductive biases of con-
volution to self-attention. For example, this kind of network replaces absolute po-
sitional encoding with depth-wise convolution [4, 18, 3] or models local-to-global
features in a hierarchical manner [20, 16, 17]. In the conventional methods, con-
volution layers are used in earlier stages and self-attention layers are adopted at
later stages. In this way, earlier stages extract local features from high-resolution
input and later stages capture global features from low-resolution input. Hence,
high computational cost and memory access of self-attention are mitigated while
the model can achieve better hierarchical representation.

Sparse attention alleviates the quadratic complexity of self-attention by lim-
iting the query’s attendance. Concretely, each query attends to down-sampled
key/value tokens [27, 28, 32, 33], local windows [15, 6, 31, 2, 19], and relevant re-
gions [29]. Spatial reduction attention still keeps less important tokens while rel-
evant tokens are ignored. This leads to suboptimal selection of attention areas.
Window attention performs attention inside each window and requires window
shifting operation to exchange information across windows. Although window
attention achieves linear complexity with input sequences, the model has weak
receptive fields and modeling abilities.

Inspired by sparse attention research, this paper proposes group attention
that can model global contextual information at a low cost. The image tokens are
grouped into pre-defined token numbers. This is achieved by attending learnable
group queries to image tokens. The number of group tokens is smaller than image
tokens (8 vs. 3136 in the first stage). Then, MLPMixer [24] is used to exchange
information across grouped tokens, resulting in global information. The global
features are propagated back to local image features via cross-attention where
global features are queried by local image features. The local image features are
captured by multi-scale convolutions, interacting with global features to achieve
better feature modeling. The role of multi-scale convolutions is to extract local
features and encode the order of image tokens. Convolution shares information
across the spatial dimension while group attention shares information across the
channel dimension. Using both convolution and group attention in one layer can
help each other and enhance modeling abilities.

Extensive experiments are conducted and evaluated on ImageNet-1K [5] im-
age classification, MS-COCO [14] object detection and instance segmentation,
and ADE-20K [34] semantic segmentation. As a result, the proposed method
achieves competitive performances across dense prediction tasks. Typically, the
proposed method gets 77.% Top-1 accuracy at 0.7 GFLOPs that outperforms
other methods with similar computational costs. On MS-COCO dataset, the pro-
posed method surpasses the baseline RetinaNet with ResNet-50 by 1.2% while
reducing GFLOPs by 34.8%. The performances across instance segmentation
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and semantic segmentation tasks attain consistent improvements. It verifies the
effectiveness and generalization of the proposed method.

2 Related Works

2.1 Vision Transformers

In 2021s, ViT [7] successfully applies Transformer encoder [26] for the image
classification task, achieving promising performance compared to CNNs. Due to
the high resolution of the input image, ViT separates the images into a sequence
of 16×16 patches and considers a patch as a token. Self-attention blocks are per-
formed on all tokens and capture long-range dependencies. With this scheme,
ViT has high flexibility in extracting image features. When transferring ViT to
dense prediction tasks, the model creates high computational costs. To deal with
this issue, PVT [27] designs hierarchical ViT that performs attention on multi-
scale tokens. For fine-grained tokens, spatial reduction attention is used to reduce
the computational cost of self-attention. ResTv2 [33] recovers information loss in
spatial reduction attention via the upsampling layer. QuadTree [23] constructs
a token pyramid and allows each query to attend to relevant regions via Topk
selection. Swin Transformer [15] limits attention inside each square window and
window shifting is proposed to communicate information across non-overlapped
windows. CSWin [6] expands square windows to cross-shaped windows and per-
forms attention on these expanded windows. Slide-Transformer [19] proposed
window sliding that efficiently connects information across windows via depth-
wise convolution.

2.2 Hybrid Networks

Hybrid networks combine strengths from convolution and self-attention opera-
tion to achieve the balance between accuracy and computational costs. PVTv2
[28] incorporates depthwise convolution between two fully connected layers of
the MLP module. This incorporation effectively extracts local features on high-
dimension input and also works as adaptive positional encoding. CPVT [4] pro-
poses conditional position embedding using depthwise convolution. CMT [8]
adopts 3×3 depthwise convolution that downsamples key/value features and
encodes local information. EdgeViT [18] captures local and global features se-
quentially, achieving state-of-the-art performances on mobile devices. LVT [20]
uses convolution layers at stages 1-2, and self-attention layers at stages 3-4. Mo-
bileViT [16] improves MobileNetv2 [21] by inserting self-attention into the latter
stages of this network. MobileViTv2 [17] introduces separable self-attention that
has linear complexity with image resolution and has inserted positions similar
to MobileViT. MixFormer [2] combines depthwise convolution and window self-
attention in a parallel way. Furthermore, MixFormer also captures bidirectional
interactions across channel and spatial dimensions based on conventional atten-
tion. EMO [31] unifies the window self-attention layer and Convolution MLP
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Fig. 1: Overview architecture of the proposed method. H,W are the height and
width of the input image. C1, C2, C3, C4 are the number of channels across four
stages and N1, N2, N3, N4 are the number of stacked blocks across four stages.
MCGA block indicates Multi-scale Convolution meets Group Attention.

layer into a meta mobile block. Different from MixFormer, EMO implements
self-attention and convolution in a sequential manner. SwiftFormer [22] per-
forms local-to-global features in sequential implementation and global features
are captured by efficient additive attention.

3 Methodology

The overview architecture of the proposed method is shown in Figure 1. Fol-
lowing [27, 28, 15], the hierarchical network is obtained, including four stages.
Spatial dimensions are progressively down-sampled across four stages with stride
{4, 8, 16, 32}. Channel dimensions are doubled at every stage and the model
becomes deeper and wider. Each stage consists of one Patch Embedding and
stacked MCGA blocks. Patch Embedding splits the input image into a sequence
of patches, achieved by depthwise convolution with stride p (p is patch size).
Then, a sequence of patches (tokens) is fed into MCGA blocks to model short-
range and long-range dependencies across tokens. Finally, average pooling and
classifier implemented by linear layers are used to produce digit scores and fi-
nal output embedding. In the following, the MCGA block and the main part of
MCGA are analyzed in detail.
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Fig. 2: The detailed structure of the proposed MCGA block.
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Fig. 3: Detailed structure of the proposed MCGA attention. DW Conv denotes
depthwise convolution. Proj is 1×1 linear projection.

3.1 MCGA Block

Figure 2 shows the detailed structure of the proposed MCGA block. Similar
to [25, 27, 15], the MCGA block consists of Layer Normalization, MCGA at-
tention (spatial attention), Layer Normalization, Channel MLP (Multi-Layer
Perceptron), and two shortcut connections between spatial and channel layers.
Channel MLP includes two fully connected (FC) layers expanding channel di-
mensions and one GELU activation function inserted between two FC layers.
The role of the activation function is to learn non-linear mapping among tokens
due to the linearity of spatial and channel layers. A pair of layer normaliza-
tion and spatial attention is used to model similarity across spatial locations,
and layer normalization followed by channels MLP is to mix information across
the channel dimension. Both spatial and channel operations are complementary,
resulting in better token relationships.

3.2 MCGA Attention

Figure 3 illustrates the detailed structure of the proposed MCGA attention.
The main goal of the MCGA is to capture both local and global features at
low computational costs. For local features, multi-scale convolutions are utilized
to enlarge receptive fields, learn multiple scales of objects, and also encode the
order of image tokens. To extract global features, group attention is proposed
to group the image tokens into a small number of predefined tokens (8 tokens).
Self-attention in ViT [7] has quadratic complexity with the image resolution
while the proposed group attention only creates linear computational costs.

Multi-scale Convolutions. This paper applies depthwise convolutions that
capture the locality and translation-invariant of the image feature. This is achieved
by 3×3 and 5×5 depthwise convolutions with a small increase in parameters and
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Fig. 4: Comparision between vanilla self-attention [26, 25] and the proposed group
attention. O() denotes the model complexity. The proposed group attention
achieves better efficiency than original self-attention while still capturing global
information from the input tokens. G,L is the number of group tokens and image
tokens, respectively.

computational costs. The output of the two branches is denoted as Q3×3 and
Q5×5 for the input query of the group attention, as follows:

Q3×3 = DWConv3×3(X
r), (1)

Q5×5 = DWConv5×5(X
r), (2)

where Xr ∈ RH×W×d is the input tokens after reshaping the input token X ∈
RL×d. Token length is denoted by L = H ×W (H,W is the height and width
of the input feature) and channel d. DWConv3×3 indicates 3 × 3 depthwise
convolution. DWConv5×5 denotes 5× 5 depthwise convolution.

Group Attention. Figure 4 shows the detailed structure of the group attention.
Compared to original sef-attention [26, 25], the proposed group attention results
in much lower computational and memory access. The image tokens are queried
by group tokens to produce grouped features. It means that each group query
attends to all image tokens. Therefore, the proposed group attention still models
long-range dependencies from the image tokens.

Given the image token X ∈ RL×d, two linear projections are used to map
X to K,V matrices. The group tokens T ∈ RG×d are defined as learnable
parameters optimized with the network’s parameters. The tokens T are projected
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to query QG via linear transformation. Attention are performed between QG and
KI to create attention matrix with dimension G × L. Intuitively, each row of
the attention matrix reveals the similarity between each query and all image
tokens. It results in long-range dependencies. Then, softmax() are applied on
each row of the attention matrix, generating attention weights. The input and
attention weights are aggregated via matrix multiplication between value V and
the attention weights. Technically, these processes are summarized as follows,

GA(T,X) = softmax(
QGK

T
I√

d
)VI , (3)

where GA(T,X) is group attention with the two inputs T and X. QG =
TWG

Q,KI = XWI
K ,VI = XWI

V are group query, image key, and image value.
WG

Q,W
I
K ,WI

V ∈ Rd×d are linear projections from group tokens and image to-
kens. d is the number of channels. The output of group attention is the grouped
features with dimension G× d.

Feature Propagation. After producing the grouped features, Spatial MLPMixer
[24] is applied to mix the grouped features spatially. This means that each
grouped feature is fully connected with all grouped features. Hence, Spatial MLPMixer
exchanges global information across grouped features. In this paper, as the num-
ber of group tokens is fixed, using Spatial MLPMixer is suitable for mixing in-
formation. In conventional methods [24], when training the input with different
sizes, Spatial MLPMixer requires further interpolation layers to up/down-sample
the input token.

After mixing grouped features, two group attentions are used to propagate
global information to local features modeled by multi-scale convolutions. For the
first group attention branch, the global features are queried by local features.
In other words, the global features are set as a pair of key KM and value VM ,
and the output of 3×3 depthwise convolution is set as query Q3×3. Intuitively,
local features are updated by attending each local query to global features. This
process is similar for 5×5 depthwise convolution branch. The two outputs from
two branches are fused together by simple linear projections and summation.

Model Configuration. After obtaining the MCGA block, the number of chan-
nels and stacked blocks across stages are configured. Typically, the number of
channels across four stages is set to {32, 64, 128, 256} and the number of stacked
blocks is configured to {2, 2, 6, 6}. As the channel numbers are increasing, the
number of heads is {2, 2, 4, 8} for each group attention. Similar to [27, 28, 15],
the expansion ratio in MLP is set to 4 and kept unchanged across stages.

4 Experiments

Settings. The proposed method is trained and evaluated on ImageNet-1K for
the image classification task. After pretraining on ImageNet, the model is trans-
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Table 1: Performance on ImageNet-1K image classification
Method Input Size #params (M) GFLOPs Top-1 Acc (%)
PVTv2-B0 [28] 224 3.7 0.6 70.5
QuadTree-B-b0 [23] 224 3.5 0.7 72.0
DeiT-T [25] 224 6.0 1.3 72.2
EdgeViT-XXS [18] 256 4.1 0.6 74.4
LVT [20] 224 3.4 0.9 74.8
PVT-T [27] 224 13.0 1.8 75.1
VAN-B0 [9] 224 4.1 0.9 75.4
ResT-Lite [32] 224 10.5 1.4 77.2
Ours 224 10.3 0.7 77.6

ferred to dense prediction tasks, object detection, instance segmentation, and
semantic segmentation.

For the image classification task, the proposed method is trained for 300
epochs with a batch size of 1024, following [27, 15, 6, 18]. The optimizer is AdamW
with a learning rate of 10−3 and a weight decay of 0.05. The input image is resized
to 224×224. Standard data augmentations such as RandAug, Cutmix, Mixup,
and label smoothing are adopted, defined by [25, 27, 15].

For the object detection task, the proposed backbone is integrated with Reti-
naNet [13] using the codebase [1]. All the hyperparameters are similar to PVT
[27], Swin [15]. Specifically, the model is trained on the MS-COCO [14] dataset
for 12 epochs with a batch size of 16. The optimizer AdamW is used with a
learning rate of 10−4. The input image is resized to 1333×800.

For the instance segmentation task, the baseline model Mask R-CNN [10] is
used with the proposed backbone. Similar to the detection task, the MS-COCO
dataset is utilized to train and evaluate the integrated model.

For the semantic segmentation task, the backbone ResNet-50 [11] in segmen-
tor Semantic FPN [12] is replaced with the proposed method. The integrated
model is trained and evaluated on the ADE-20K [34] dataset. The model is
trained for 80K iterations with a batch size of 16. AdamW is used as an opti-
mizer with a learning rate of 10−4 and a weight decay of 10−4. The input image
is resized to 512×512.

Image Classification Results. Table 1 reports the performance on Image-
1K image classification. The proposed method achieves 77.6% Top-1 accuracy
with 0.7 GFLOPs, surpassing other methods under similar computational costs.
For example, the proposed method outperforms the baseline PVT-T [27] by 2.5%
with 38% GFLOPs, hybrid model PVTv2-B0 [28] by 7.1% with similar GFLOPs,
EdgeViT-XXS [18] by 3.2% with the similar computational cost, and the recent
method ResT-Lite by 0.4% with half of GFLOPs. It verifies the effectiveness of
the proposed method.
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Table 2: Performance on MS-COCO object detection using the RetinaNet
Method #params (M) GFLOPs AP AP 50 AP 75

ResNet-18 [11] 21 189 31.8 49.6 33.6
PoolFormer-S12 [30] 22 207 36.2 56.2 38.2
ResNet-50 [11] 38 250 36.3 55.3 38.6
PVT-T [27] 23 183 36.7 56.9 38.9
Ours 18 163 37.5 58.3 39.4

Table 3: MS-COCO instance segmentation results using Mask R-CNN [10]
Methods #params (M) GFLOPs AP box APmask APmask

50 APmask
75

ResNet-18 [11] 31 207 34.0 31.2 51.0 32.7
PVT-T [27] 33 208 36.7 35.1 56.7 37.3
ResNet-50 [11] 44 260 38.0 34.4 55.1 36.7
Ours 28 181 38.1 36.0 57.8 38.5

Object Detection Results. Table 2 shows performance on MS-COCO val-
idation set using detector RetinaNet [13]. As a result, the proposed method
outperforms the baseline RetinaNet with backbone ResNet-50 [11] by 1.2% AP
while saving 34.8% GFLOPs, PVT-T [27] by 0.8% AP with smaller GFLOPs. It
clarifies the versatility of the proposed method.

Instance Segmentation Results. Table 3 reports performance on the MS-
COCO [14] validation set using the model Mask R-CNN [10]. The proposed
method achieves consistent improvements similar to the object detection task.
For example, the proposed method gets 38.1% AP box, 36.0% APmask with 181
GFLOPs better than ResNet-18 by 4.1% AP box, 1.4% AP box, 6.8% APmask

with smaller GFLOPs, PVT-T by 0.9% APmask, and the baseline ResNet-50 by
1.6% APmask while saving 30% GFLOPs.

Table 4: ADE-20K semantic segmentation using Semantic FPN [12]
Method #params (M) GFLOPs mIoU
ResNet-18 [11] 15.5 32.2 32.9
PVT-T [27] 17.0 33.2 35.7
ResNet-50 [11] 28.5 45.6 36.7
Ours 12.8 24.4 37.0

Sematic Segmentation Results. Table 4 shows the performance of the pro-
posed method on ADE-20K [34] validation set using the baseline segmentor Se-
mantic FPN [12] with original backbone ResNet-50 [11]. The proposed method
achieves 37.0% mIoU with 24.4 GFLOPs that surpasses ResNet-18 by 4.1%
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mIoU while saving 24.2% GFLOPs, the PVT-T [27] by 1.3% mIoU with 73.5%
GFLOPs, and the baseline ResNet-50 [11] by 0.3% mIoU while saving 46.5%
GFLOPs.

The results on image classification, object detection, instance segmentation,
and semantic segmentation verify the efficiency, effectiveness, and generalization
of the proposed methods.

5 Conclusion

This paper combines the strengths of multi-scale convolutions and group atten-
tion (MCGA). The MCGA attention can capture both local and global features
at low computational costs. This is achieved by the proposed group attention.
Attending each group query to all spatial image tokens can still capture global
information while reducing a lot of computational costs. Extensive experiments
are conducted on benchmark datasets for image classification and dense predic-
tion tasks. As a result, the proposed method achieves better performances on
the ImageNet-1K dataset compared to previous methods. On dense prediction
tasks, the proposed method produces consistent improvements across detection,
instance segmentation, and semantic segmentation. In the future, the proposed
method will be scaled to bigger models and applied to other tasks such as key-
point detection, and video classification.
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