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Abstract. Currently, Artificial Intelligence has penetrated every corner
of social life. Agriculture is one of the most important fields that attracts
a lot of attention from researchers to develop serving tools. This paper fo-
cuses on developing a vision-based tomato detector to support robotics
and automatic harvesting systems. The main technique is to improve
the YOLOv8n network architecture with the entire replacement of the
original convolution module with a new convolution module, named the
Receptive Field Attention Convolution. The experiment was trained and
evaluated on the Laboro Tomato dataset. As a result, the proposed net-
work achieved 88.2% of mAP@0.5 and 45.8% of mAP@0.5:0.95. These
results show that the proposed network has better performance than
other networks under the same experimental conditions.

Keywords: Convolutional neural network (CNN) · Tomato detection ·
Receptive Field Attention Convolution · YOLOv8.

1 Introduction

Since ancient times, planting, tending, and harvesting have been the main ac-
tivities in agriculture that are carried out by manual methods. In particular,
harvesting is the last stage and requires the most labor to ensure product qual-
ity. Tomato is an agricultural product with high nutritional and economic value.
According to a report from the Food and Agriculture Organization of the United
Nations (FAO), the world produces 190 million tons of tomatoes every year
which is concentrated largely in countries such as China, India, Turkey, USA,
Italy, Egypt, Spain, Mexico, Brazil, and Nigeria [14]. Tomatoes are a watery fruit
and are easily damaged. Therefore, it requires care and precision in harvesting
and storage. With the development of robotics and artificial intelligence (AI),
agricultural activities are gradually automating harvesting [2], pruning [12], and
spraying [11]. Since then, many smart farms have appeared and machines have
gradually replaced farmers. Also to automate tomato harvesting, this paper pro-
poses an improved computer vision-based detector from the YOLOv8n network
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with a perfect replacement of the original convolution operations by the Re-
ceptive Field Attention Convolutions (RFAConv) [15]. Using a combination of
lightweight architectures and attention mechanisms, the detector can be applied
in low-computation mobile devices used in robotics or automated harvesting
systems.

The new contributions of this paper are shown as follows:
1 - Proposes an improved tomato detector based on YOLOv8n architecture that
can be applied to robots and automated harvesting systems.
2 - The proposed tomato detector performs better than other detectors on the
Laboro Tomato dataset.
The remaining parts of this paper are distributed like this: Section 2 introduces
the tomato detection methods used in smart agriculture. Section 3 explains the
details of improved architecture. Section 4 analyzes the experimental setup and
results. Section 5 concludes the issue and future work orientation.

2 Related works

2.1 Traditional machine learning-based methods

Traditional machine-learning techniques have long been applied to fruit detec-
tion and classification in agriculture. The study by [8] applied the Support Vector
Machine (SVM) method in RGB color space to identify fruits and branches in
natural environments. The work [10] combined the HSV space method with an
advanced segmentation algorithm to find mature tomatoes placed in complex
backgrounds. The authors in [6] implemented the Hough transform and SVM
based on the color and texture properties of fruits to distinguish them from
tomatoes. The research [13] proposed a pomegranate recognition method com-
bining multi-feature fusion and support vector machine (SVM) using the 3D
point cloud. In general, these traditional methods achieved quite good accuracy
but had high computational complexity, making it difficult to deploy in real-time
applications.

2.2 CNN-based methods

The rapid development of CNN networks in the Computer Vision domain has
brought many improvements in performance and accuracy beyond traditional
machine learning-based methods. In particular, the advent of the YOLO network
series has accelerated the deployment of computer vision-based applications in
agriculture. The work [9] evaluated the Single-Shot MultiBox Detector (SSD)
and YOLO networks to detect green and reddish tomatoes. The authors in [7]
replaced circular boundary boxes with traditional rectangular boundary boxes in
the YOLOv3 network to improve tomato detection. The study [3] enhanced mAP
cherry detection by modifying the labeled boxes using the DenseNet in YOLOv4.
The experiments in [5] optimized the YOLOv5 network using the Focus, Cross-
stage network, and EIOU loss to detect tomatoes with small sizes. The CAM-
YOLO detector [1] incorporated attention mechanisms to enhance the small-
size tomato detection in the YOLOv5 network. The research [16] introduced
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RepGhost and ECA attention to YOLOv7 to build a dragon fruit detector. CNN
networks have achieved high accuracy and performance in real-time systems but
still contain a lot of potential for improvement and development.

3 Methodology

Fig. 1 shows the overall proposed tomato detection network. This network is
an improvement from YOLOv8 architecture [4] which consists of three modules:
backbone, neck, and detection head.
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Fig. 1. The architecture of proposed tomato detector.
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3.1 Proposed network architecture

Inspired by the original YOLOv8 network architecture [4], this work focuses on
testing and evaluating the blocks in use. From that observation, the research
modified the backbone and neck module and reused the original architecture of
the detection head. Specifically, in the backbone and neck modules, the Cross
Stage Partial Bottleneck with two convolutions (C2f) and the Spatial Pyramid
Pooling Fast (SPPF) are reused and the Conv block is replaced with a new
convolutional architecture called Receptive Field Attention Convolution (RFA-
Conv) [15].
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Fig. 2. The architecture of RFAConv module.

The Backbone module starts with an RFAConv block, followed by four iden-
tical aggregation blocks (each consisting of an RFAConv block and C2f blocks
in a ratio of 3, 6, 6, and 3 times) and an SPPF block. Fig. 2 describes the ar-
chitecture of RFAConv which is a combination of the Recptive Field Attention
(RFA) mechanism and standard convolution (2D Conv). The RFA is proposed
to solve the problem of convolution kernel parameters sharing and improve the
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feature extraction ability of standard convolution. This block implements the
lightweight convolution layers (group convolution) that can save a lot of network
parameters. Besides, the generated attention mechanism controls the network to
focus on learning important information on each feature map level. Suppose,
F ∈ RW×H×C and F ′ ∈ RW×H×C are input and output feature maps, respec-
tively. The operating principle of RFAConv can be expressed as follows:

F ′ = Conv2D3×3(Reshape(ARF × FRF )), (1)

where ARF is the Receptive Field Attention map, FRF is the Receptive Field
Spatial Feature, Conv2D3×3 is the 3× 3 standard convolution, and Reshape is
the reshape operation to change the dimension of tensor.

ARF and FRF are calculated based on the following equations:

ARF = Softmax(g1×1(AvgPool(F ))), (2)

FRF = ReLU(BN(g3×3(F ))), (3)

in which, gi×i presents the group convolution operation with kernel size i ×
i, AvgPool is average pooling layer, and BN stands for batch normalization.
Softmax and ReLU are activation functions.
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Fig. 3. The architecture of Conv (a), Cross Stage Partial Fast BottleNeck (b), and
Spatial Pyramid Pooling Fast (c) blocks.

The final part of the backbone module is the Spatial Pyramid Pooling Fast
(SPPF) block. The architecture of the SPPF in the YOLOv8 is reused as shown
in Fig. 3 (c). This experiment only applies the kernel size of 5× 5 for the whole
of max pooling layers.
The Path Aggregation Network (PAN) architecture is reutilized in the neck
module of the proposed network following the original YOLOv8 and also re-
places the whole of the Conv blocks with the RFAConv blocks. This module
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upsamples and aggregates the current feature maps with previous feature maps
from the backbone module by concatenation operations. The neck module gener-
ates the three scale output feature maps corresponding to three scales of object
(small, medium, and large). Those feature maps were enriched the information
and serve as three inputs for the detection heads.
The detection head module also leverages the architecture of three detection
heads from the original YOLOv8. To predict the object, this method applies
a decouple head and free-anchor technique. Three feature maps from the neck
module transfer to two siblings of the Conv block and standard convolution for
bounding box regression (four coordinates: x, y, h, w) and classification (number
of classes: c) on three object scales: small, medium, and large. Fig. 3 (a) de-
scribes the Conv block. This block is built by a 1× 1 standard convolution layer
(Conv2D), a batch normalization (BN), and a ReLU activation function. In the
proposed network, the Conv blocks are only used in the detection head module.
The details of the detection head module are shown in Table 1.

Table 1. The details of the detection head module.

Heads Input Anchor Ouput Object

1 80× 80× 256 Free 80× 80× 4/80× 80× 2 Small

2 40× 40× 512 Free 40× 40× 4/40× 40× 2 Medium

3 20× 20× 512 Free 20× 20× 4/20× 20× 2 Large

3.2 Loss function

The loss function is defined as follows:

L = λboxLbox + λdflLdfl + λclsLcls, (4)

where Lbox and Ldfl use the CIoU loss and Distribution Focal Loss (DFL) re-
spectively to calculate the bounding box regression. The classification loss Lcls

applies the Binary Cross Entropy loss to compute. The λbox, λcls, and λdfl are
balancing parameters.

4 Experiments

4.1 Dataset

The Laboro Tomato is an image dataset of growing tomatoes at different stages
of ripeness, created by the authors in [1] for object detection and segmenta-
tion tasks. Following the work in [1], this experiment uses 989 images with 903
images for the training phase and 86 images for the evaluation phase. The an-
notations of each object in the image are converted to YOLO format with two
main categories: ripe and unripe.
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4.2 Experimental setup

The proposed model is implemented on the Pytorch framework and the Python
programming language. The experiment is trained and evaluated on a GeForce
GTX 1080Ti 11GB GPU. The optimizer is Stochastic Gradient Descent (SGD)
optimization. The learning rate is initialized at 10−2 and ends at 10−4. The mo-
mentum is set at 0.937. The training process uses 200 epochs with a batch size of
64. The balance parameters are set as follows: λbox=7.5, λcls=0.5, and λdfl=1.5.
This work applies data augmentation methods such as mosaic, translate, scale,
and flip to enrich the training dataset and avoid over-fitting problems. In the
inference process, several arguments are set based on an image size of 640×640,
a batch size of 64, a confidence threshold = 0.5, and an IoU threshold = 0.5.
The speed testing is reported in milliseconds (ms).

4.3 Experimental results

The proposed network’s performance is evaluated based on the comparison re-
sults with the re-trained networks from scratch and the recent research on the
Laboro Tomato dataset. More specifically, this work trains and evaluates the
proposed network, one version of YOLOv5 architectures (YOLOv5n), and five
of YOLOv8 architectures (x, l, m, s, n). After that, its results are compared
to the results in [1] on the Laboro Tomato dataset. As a result, the proposed
network achieves 88.2% of mean Average Precision with an IoU threshold of
0.5 (mAP@0.5) and 45.8% of mAP with ten IoU thresholds from 0.5 to 0.95
(mAP@0.5:0.95). From these experimental results, for the mAP@0.5 measure,
the object detection ability of the proposed network is superior to other net-
works even when compared with larger versions of the YOLOv8 network (0.1 %
↑ compared to the best competitor). For mAP@0.5:0.95, the proposed network
is still better than other networks except for the YOLOv8x network architec-
ture (0.7% ↓). Speed testing (Inference time) also presents that the proposed
network has the same performance as YOLOv8m (0.2 ms ↓) but the network
parameters are nearly 8.5 times smaller. Additionally, the network parameters

Table 2. Comparison result of proposed tomatoes detection network with other net-
works on the Laboro Tomato validation set. The symbol “†” denotes the re-trained
networks. N/A means not-available values.

Models Parameter GFLOPs Weight (MB) mAP@0.5 mAP@0.5:0.95 Inf. time (ms)

YOLOv5n† 1,766,623 4.2 3.8 87.1 37.5 4.9

YOLOv8n† 3,006,038 8.1 6.2 88.1 42.2 3.5

YOLOv8s† 11,126,358 28.4 22.5 88.1 44.0 5.2

YOLOv8m† 25,840,918 78.7 52.0 86.7 45.3 10.5

YOLOv8l† 43,608,150 164.8 87.6 86.3 41.4 18.1

YOLOv8x† 68,125,494 257.4 136.7 88.0 46.5 25.5

YOLOv5 [1] N/A N/A N/A 85.9 N/A N/A
YOLOv5+CSP [1] N/A N/A N/A 86.9 N/A N/A
CAM-YOLO [1] N/A N/A N/A 88.1 N/A N/A

Our 3,054,394 8.4 6.4 88.2 45.8 10.3
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Fig. 4. The qualitative results of the proposed network on the validation set of the
Laboro Tomato dataset with IoU threshold = 0.5 and confidence threshold = 0.5. The
numbers are predicted confidence scores.
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Proposed YOLOv8nOriginal

Fig. 5. The comparison results of the proposed network and YOLOv8n on the val-
idation set of the Laboro Tomato dataset with IoU threshold = 0.5 and confidence
threshold = 0.5. The numbers are predicted confidence scores.
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are only equivalent to the nano network in the YOLOv8 family (YOLOv8n).
These advantages allow the proposed network to be deployed on low-computing
devices applied in real-time harvesting systems. Table 2 shows the comparison
results and Fig. 4 exhibits several qualitative results on the Laboro Tomato val-
idation set. This work also compares the performance of the proposed network
with the YOLOv8n network. The results in Fig. 5 demonstrate that the pro-
posed network can detect well in cases where tomatoes are obscured by leaves
(1st row) or branches (2nd row). Besides, the proposed network is also capable
of detecting tomatoes that are small in size and quite far away (3rd row). The
results mentioned above show better performance of the proposed network when
compared with existing networks. However, that performance also depends on
several factors such as the color of the tomato and the background, the size of
the tomato, the distance, and the moving speed of the camera.

4.4 Ablation study

This work conducted several ablation studies to assess the efficiency of each
block in the whole of the proposed network. Each block is replaced in turn,
trains and evaluates on the Laboro Tomato set as shown in Table 3. The results
show that replacing the first Conv block with the RFAConv block can increase
the detection ability of the proposed network (2.0% ↑ of mAP@0.5 and 1.7% ↑
of mAP@0.5:0.95). Adaptation of the SPP with the SPPF block also pushes up
the detection accuracy while the network parameters are the same. This is the
reason why this research decided to use RFAConv and SPPF block to build the
best model.

Table 3. Ablation studies with different types of backbones on the Laboro Tomato
validation set.

Blocks Proposed backbones

First Conv D D
RFAConv D D D D
SPPF D D
SPP D D

Parameter 3,054,038 3,054,038 3,054,394 3,054,394

GFLOPs 8.3 8.3 8.4 8.4

Weight (MB) 6.4 6.4 6.4 6.4

mAP@0.5 86.7 87.2 89.2 88.2

mAP@0.5:0.95 44.6 42.4 44.1 45.8

5 Conclusion

This paper improved the YOLOv8 architecture for tomato detection supporting
for the robot and automatic harvest systems. The proposed network consists of
three modules, including the backbone, neck, and detection head. The backbone
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and neck modules are redesigned by replacing the whole of the Conv blocks with
the RFAConv blocks. While the detection head is reused from the original ar-
chitecture in YOLOv8. The network achieves 88.2% of mAP@0.5 and 45.8% of
mAP@0.5:0.95 which are better performance results when compared to recent
methods. The optimization of the model size, inferent time, and detection preci-
sion provides the ability to operate on low-computing devices. In the future, the
work will be extended with larger tomato datasets and a deeper network with
transformer for small-size tomato detection.
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