
Camera Pose Optimization with Genetic Algorithm
in Digital Twin

1st Kwanho Kim and 2nd Kanghyun Jo
dept. of Electrical, Electronic and Computer Engineering

University of Ulsan
Ulsan, South Korea

aarony12@ulsan.ac.kr1, acejo@ulsan.ac.kr2

Abstract—With the increase of interest in digital twin, the way
to link dynamic objects into digital twin is also important task as
well as static environment. However, there are many situations
that the developer can not know all about real environment.
This paper focus on finding camera extrinsic parameters(6-DOF
camera pose) to fix misalignment between real and digital twin
images. Due to the absent of knowledge about function of image
I(θ) given camera parameter θ, this work can’t use gradient
descent algorithm known as a powerful optimization method in
deep learning. So this paper propose how to apply GA(Genetic
Algorithm) for optimizing camera parameters. Fitness function,
one of the most important property in GA, is composed of
similarity between two images. This paper propose novel ap-
proach to calculate similarity using classical feature extraction
and matching methods. Even though this work use classic feature
extraction method, errors are estimated within 1.42m for camera
position and 1.22◦ for rotation in all experiments(Averagely
0.744m and 0.903◦). The code of the algorithm can be found
in the following link: https://github.com/Kwan-Ho-Kim/Camera-
pose-optimization.git.

Index Terms—Digital twin, computer vision, optimization

I. INTRODUCTION

A digital twin is the environment generated by imitating
a real environment. Recently, there have been many uses for
digital twins in the industry such as smart factory, autonomous
driving, monitoring system. In the building of digital twin,
linking dynamic objects(such as vehicle, pedestrian, etc.) be-
tween digital twin and real one is an important task as well
as static environment(building, road, etc.). Dynamic objects
are linked with digital twin by observing real sensor data.
But sometimes, developer should know exact sensor pose or
parameters to make reliable digital twin. This paper focus on
finding the pose of a camera using image captured on virtual
environment.

Fig. 1 represents the motivation of this work. The misalign-
ment between images are caused by the errors between the
camera parameters. This misalignment will inevitably cause
serious errors when building real-time digital twin. Before
starting this work, it was very hard to manually find camera
pose by comparing two images. In other words, even though
the developers know a intrinsic parameters of a camera,
images are not exactly matched if they do not know the
extrinsic parameters of the camera. This paper proposes the
method to find camera pose using Genetic Algorithm(GA) and
experiment in digital twin.

Fig. 1. Misalignment problem of images from digital twin and real. Blue
bounding boxes on the left-bottom image from real environment are generated
by YOLOv8 [1] trained with VisDrone [2] dataset. Bounding boxes on the
right-bottom image from virtual environment are generated by just mapping
those from real image to twin image. The image above is made by overlap
two bottom images. Red ellipses show the misalignment between the images
captured on real camera and digital twin camera. Because of this problem,
the vehicles in the green circle are placed in the wrong position, compared
with vehicles in left-bottom image.

II. RELATED WORK

A. Camera pose estimations

As the increasing of performance of deep learning networks,
many researchers have been trying to utilize neural network for
camera pose estimation [3]–[5]. PoseNet [3], one of the most
popular camera pose estimation network, used GoogLeNet [6]
as a base model and simple Euclidean distance as a loss
function to regress 6D pose (3D position and orientation).
Nevertheless, they estimate the camera pose within approx-
imately 2m and 6◦ for outdoor scene. However, supervised
deep learning algorithm based methods need to gather datasets.
In many real-world industrial scenarios, it is often not feasible
to collect datasets, and even if collected, it can be time-
consuming.

Camera extrinsic parameters can be found by just math-
ematical method [7]–[10] rather than deep learning based
algorithms. These approaches tried to solve Perspective
n Points(PnP) algorithms usually used for Simultaneously

Localization And Mapping(SLAM). Solving Perspective-3-
Points(P3P) problem [8] utilizes 3 points while Direct Linear
Transform(DLT) which is the most classical approach uses at
least 6 points to find camera extrinsic parameters. Although
these methods don’t need to collect datasets in advance, there
are still challenges to know corresponding points between
two image. To automatically find matching points, feature
extracting algorithms [11]–[13] have been utilized so far, but
there are still issues about accuracy that depends on feature
extracting performance. In section III, this paper proposes the
method to relieve the problem of mismatched points from
feature extraction algorithms by fitness function of GA.

B. Optimization methods

Gradient descent(GD) is the basic optimization algorithm at
deep learning that apply GD to the weights of neural networks
[1], [3]–[6]. GD updates the arguments to the direction of
decreasing loss. It can also be used as optimization for
extrinsic camera parameters if we know the function of an
image given camera parameters. But that function cannot be
defined in the case of this work. Meta-heuristic algorithms
such as GA, Particle Swarm Optimization(PSO) [14] find
optimal value without any function between image and camera
parameters. GA used at this paper is one of Evolutionary
Algorithms [14], [15] that mimic selection of nature. GAVO
[16] and its variations [17], [18] utilize GA and PSO to find
proper velocity of a robot even though velocities are not the
target of meta-heuristic algorithms, generally. Similar with
GAVOs [16]–[18], in this paper, 6-DOF camera pose is used
as population of GA and found by using novel techniques.

III. PROPERTIES OF GENETIC ALGORITHM

A. Population

The first step of this work is to manually find similar camera
pose as shown in Fig. 1(above image). GA is applied after
the this step. To optimize camera extrinsic parameters, 6-DOF
camera pose(3D position & rotation) is chosen as population.
Population is randomly selected from pre-determined range
expressed with noise ni in (1).

θi = θs + ni (1)

In (1), θ represents 6-DOF camera pose used as population.
Subscript i represents the chromosome in population and s
represents the starting pose determined from manual searching.

B. Fitness

Fitness function is the most important property in GA.
What this work should consider is how to calculate similarity
between two different view images. However, original methods
usually used at template matching to compare two images are
not suitable for this work because they can’t consider pixel
position but only pixel value. To consider pixel position, this
paper propose to calculate fitness with feature extraction and
matching(This work use SIFT [11] and BFMatcher).

Firstly, features are extracted from two images to be com-
pared. Then, features are matched by matching algorithm

Fig. 2. Similarity between two different view images. Circles with same color
and connected line show matching point from feature extraction. Average
distance of the lines is utilized as fitness function

such as BFMatcher. To save the memories and remove low-
confidence matching, in this paper, only 10% of matching
points are remained. After feature extraction and matching,
Euclidean distance is calculated for each matching points.
Fig. 2 shows the concepts of calculating fitness function.

S = − 1

N

N∑
i=1

||PC
i − PT

i ||2 (2)

In (2), S represents the fitness component of similarity
between images from target and one of chromosome. 2D
vector Pi means the position of ith matching points in an
image. N means the number of matching points(Superscript
C for each chromosome, T for target). Minus symbol is added
to make the equation as a fitness from loss function.

Let us consider one of the offspring watch totally weird
space so the features can not be extracted. Nevertheless,
sometimes it will keep high fitness due to the low number
of matching points and mismatched points. To alleviate this
problem, this work introduce the other fitness component K,
the number of features, and compound two fitness component
using the parameter α. Total fitness function using two com-
ponents is shown in (3). α is set to 0.1 in this paper. Equation
(3) represents full fitness function combining S and K.

f = (1− α)S + αK (3)

C. Crossover

Crossover method proposed in this paper is inspired by
those of GAVOs [16]–[18]. 3D position and rotation of off-
spring are calculated by linear interpolation(Lerp). To let each
populations to explore more space, after Lerp, this work add
random noise nt in predetermined range. Fig. 4 shows how to
get offspring with (4).

θt+1 = Lerp(θti , θ
t
j) + nt (4)

Parents are selected from PMF(Probability Mass Function)
made by fitness while noise parameters ni, n

t in (1), (4) from
uniform distribution. Probabilities for each chromosome to
be selected as a parent are calculated by normalizing the

Fig. 3. Visualization of change while optimizing. Each images are made by overlap based on target camera. The leftmost images represent the first step and
the rightmost images represent the optimal step(not last step). The images in between represent random steps between two images. The steps to reach best
fitness for Rotary, FlatRoad, UOU are 861, 846, 86, respectively.

Fig. 4. The range of offspring. This figure shows how the noise let the
populations to have more explorations. P1 and P2 represent parents expressed
as blue points. Red points(expressed as +) represent the offspring without
noise while green points(expressed as x) represent those with noise. Linear
interpolation can be used for not only the position, but also the rotation, using
quaternion. Black points(expressed as *) represent mutated offspring.

fitness. In order to prevent overfit, if the variance of fitness
in population becomes less than threshold(20 in this paper),
iteration restart at the global best pose.

D. Mutation

In this paper, mutation probability is set to 0.25 for each
genes(e.g. 3D position & rotation). If a gene is selected as a
mutation, it is randomly regenerated by adding noise of same
range as ni in (1). In other words, all genes explore more wide
solution space with a probability of 0.25 as shown in Fig. 4.

IV. EXPERIMENTS

A. Environment

This paper experiment in three environment to validate the
performance: Rotary, Flat Road, UOU(University of Ulsan).
The environments are shown in Fig. 3 with the visualization

TABLE I
ADJUSTABLE PARAMETERS AND THE VALUES USED

Parameters Environment
Rotary Flat road UOU

Fitness Compound Ratio α 0.1 0.01 0.01
Feature Filtering Ratio 0.1

Overfit Threshold 20
Num. of Population 20
Num. of Exchange 18

Pos. Random Range 3
Rot. Random Range 4
Pos. Expand Ratio 1.25
Rot. Expand Ratio 1.25

Mutation Probability 0.25
Iteration 1000

of similarity of two images during optimization. Adjustable
parameters are shown in Table I. To ensure the method of this
work is also suitable for general case, parameters are set to
same values for all environment except to Fitness Compound
Ratio which thoroughly depends on environments. As shown
in Fig. 3, Rotary has small amount of features while Flat Road
and UOU has a lot.

B. results

Fig. 3 shows the changes of images overlaped on the target
until algorithm find optimal pose. Even though some images
seem to have lower performance than previous one, the final
images show the algorithm of this work can figure out optimal
camera pose.

Fig. 5 and Table II shows the changes during optimiza-
tion. Similarity S and Fitness f are calculated by (2), (3),
respectively. Position error means distance between positions
of the target and chromosome. Rotation error means angle(◦)

TABLE II
CHANGES OF METRIC DURING OPTIMIZATION.

1 100 200 300 400 500 600 700 800 900 1000

Rotary
f(Fitness) 32.97 143.06 160.49 174.82 174.82 174.82 174.82 174.82 174.82 181.97 196.733
Pos. Error [m] 3.14 0.82 1.12 0.257 0.257 0.257 0.257 0.257 0.257 0.204 0.332
Rot. Error [◦] 10.46 1.84 1.80 1.18 1.18 1.18 1.18 1.18 1.18 0.58 1.22

Flat Road
f(Fitness) -53.01 28.545 33.57 33.57 33.57 33.83 33.83 33.83 33.83 34.01 34.01
Pos. Error [m] 3.215 0.339 0.780 0.780 0.780 0.356 0.356 0.356 0.356 0.48 0.48
Rot. Error [◦] 6.80 0.87 0.98 0.98 0.98 0.59 0.59 0.59 0.59 0.79 0.79

UOU
f(Fitness) 92.27 85.27 80.87 111.75 116.269 107.94 114.81 85.60 93.32 110.72 84.66
Pos. Error [m] 4.449 4.87 4.68 3.955 3.56 1.98 3.60 5.287 7.57 2.73 5.72
Rot. Error [◦] 0.88 3.17 1.46 1.39 0.79 0.67 0.48 3.20 1.33 1.70 3.00

Fig. 5. Changes of metric during optimization in UOU environment. All
of the evaluation metrics are normalized to compare changes easier. Ranges
in the legend shows the maximum and minimum value that correspond to
horizontal dashed-lines in the graph. Vertical lines show the restart points
caused by preventing overfit. Note that the large the fitness(f), the better.
Other metrics should be small(S is inversely proportional to Similarity in
(2)).

between directions of the target and chromosome. An interval
between restart points is defined as the episode in this paper.
Although optimal pose were found at the first episode in
this case, by exploring more solution space, graph shows the
algorithm try to find whether there is another optimal value
or not. The fact that fitness can not reach global best in all of
the episodes implicitly tell us that convergence to the optimal
point within an episode depends on the restarting point. Also,
the fact that fitness reach global best at some episode means
convergence to the optimal point with total iteration does not
depend on starting point.

In Table II, changes of metrics for this work are quantita-
tively represented. In environments of Rotary and Flat Road,
optimal poses are obtained at final step. However, in the case
of UOU environment, optimal poses are obtained at 86th step
and the metrics in the table are sampled every 100 steps. So
the values of metrics are represented in Fig. 5. As a results,
this work estimate camera pose with errors within 1.42m
for position, 1.22◦ for rotation in all experiments(Averagely
0.744m and 0.903◦).

ACKNOWLEDGMENT

This result was supported by ”Regional Innovation
Strategy (RIS)” through the National Research
Foundation of Korea(NRF) funded by the Ministry of
Education(MOE)(2021RIS-003)

REFERENCES

[1] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[2] P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu, “Vision meets drones: A
challenge,” 2018.

[3] A. Kendall, M. Grimes, and R. Cipolla, “Convolutional networks for
real-time 6-dof camera relocalization,” CoRR, vol. abs/1505.07427,
2015. [Online]. Available: http://arxiv.org/abs/1505.07427

[4] H. Hu, A. Wang, M. Sons, and M. Lauer, “Vipnet: An end-to-end 6d
visual camera pose regression network,” in 2020 IEEE 23rd Interna-
tional Conference on Intelligent Transportation Systems (ITSC), 2020,
pp. 1–7.

[5] H. Chen, P. Wang, F. Wang, W. Tian, L. Xiong, and H. Li, “Epro-pnp:
Generalized end-to-end probabilistic perspective-n-points for monocular
object pose estimation,” 2022.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[7] S. Urban, J. Leitloff, and S. Hinz, “Mlpnp - A real-
time maximum likelihood solution to the perspective-n-point
problem,” CoRR, vol. abs/1607.08112, 2016. [Online]. Available:
http://arxiv.org/abs/1607.08112

[8] Z. Zhang, “A flexible new technique for camera calibration,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, pp.
1330 – 1334, 12 2000.

[9] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE Journal on Robotics and Automation, vol. 3, no. 4, pp. 323–344,
1987.

[10] E.-S. Kim and S.-Y. Park, “Extrinsic calibration of a camera-lidar multi
sensor system using a planar chessboard,” in 2019 Eleventh International
Conference on Ubiquitous and Future Networks (ICUFN), 2019, pp. 89–
91.

[11] T. Lindeberg, Scale Invariant Feature Transform, 05 2012, vol. 7.
[12] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust

features,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 404–417.

[13] X. Wang, Z. Liu, Y. Hu, W. Xi, W. Yu, and D. Zou, “Featurebooster:
Boosting feature descriptors with a lightweight neural network,” 2023.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[15] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” 2017.

[16] Z. Gyenes, L. Bölöni, and E. G. Szádeczky-Kardoss, “Can genetic
algorithms be used for real-time obstacle avoidance for lidar-equipped
mobile robots?” Sensors, vol. 23, no. 6, p. 3039, 2023.

[17] J. Kim, K. Kim, and K. Jo, “Obstacle avoidance in dynamic environment
using particle swarm optimization and kalman filter,” in 2023 23rd
International Conference on Control, Automation and Systems (ICCAS),
2023, pp. 1199–1203.

[18] ——, “Genetic algorithm based obstacle avoidance for 4-wheeled robot,”
in 2023 62nd Annual Conference of the Society of Instrument and
Control Engineers (SICE), 2023, pp. 297–300.

