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Abstract—Facial age group and gender recognition have at-
tracted significant interest due to their wide range of applications
and practical uses, including aiding advertising platforms in
delivering relevant content. Performing efficient simultaneous
recognition of facial age group and gender is crucial for these
applications, necessitating seamless performance on inexpensive
devices to mitigate implementation expenses. This work intro-
duces an Efficient Local-Global Attention Network (ELGA-Net)
for facial age group and gender recognition simultaneously. It
proposes an Efficient Local-Global Attention (ELGA) block to
enhance the quality of feature maps locally while capturing
global contextual information by learning relationships between
different parts of the feature maps. As a result, the proposed
network achieves competitive performance on the UTKFace
dataset. Moreover, it attains real-time speed at 113 frames per
second (FPS) on an Intel Core i7-9750H CPU 2.6 GHz device
when integrated with face detection as an initial process.

Index Terms—Age group and gender recognition, intelligent
advertising, local global attention, multi-task network, real-time
recognition.

I. INTRODUCTION

The landscape of outdoor and offline advertising has wit-
nessed notable developments. It includes digital technologies
integration into traditional methods, such as digital signage [1]
and billboards [2] with a focus on dynamic content and interac-
tive displays. These platforms leverage data analytics to meet
campaign effectiveness, incorporating artificial intelligence
technology for optimizing advertising. Moreover, computer
vision technology facilitates real-time audience analytics by
performing object recognition, such as facial attributes [3],
for dynamic content adjustments. According to those analytic
results, the advertising platform can provide more relevant
promotional content.

In the advertising industry, age and gender are significant
attributes as they provide valuable demographic insights for
targeted marketing [4]. Recognizing the age or age group and
gender of the target audience enables advertisers to create
more relevant and tailored campaigns, including factors like
preferences, interests, and buying behaviors. This information
helps align products with the needs and interests of specific
demographic groups, ensuring that advertising messages res-
onate effectively. It would result in improved engagement,

higher conversion rates, enhanced brand perception, optimized
marketing budgets, and a better customer experience.

Age group and gender recognition can be performed through
a face, utilizing computer vision and deep learning models
to analyze facial features and estimate a person’s age group
and gender from images. These systems employ deep convolu-
tional neural networks (DCNNs) and diverse training datasets
to learn patterns within facial data. In recent studies addressing
age-related tasks in computer vision, researchers have pro-
posed innovative approaches to overcome challenges inherent
in facial age recognition. A meta-set learning approach [5]
was introduced that leverages unfairness in facial age datasets
to achieve unbiased age classification in diverse conditions.
Another work [4] focused on developing an efficient DCNN
architecture incorporating a residual mini multi-level and deep
lite attention module for performing age group recognition.
For gender recognition, DCNN architectures using transfer
learning approaches, the research in [6] employed DCNN
architectures using transfer learning approaches. A bottleneck
transformer encoder [7] was initiated to increase recognition
performance by executing global context learning efficiently.

Performing age group and gender recognition individually
using different independent networks can potentially lead
to increased computational complexity and parameters. This
scenario may require additional computational power and
memory, thus resulting in higher hardware requirements. Even
age or gender recognition requires face detection as an initial
process [8]. Therefore, adopting a unified network in simulta-
neously executing age group and gender recognition can offer
more resource efficiency. Liao et al. [9] designed an effective
multi-task architecture that learns gender and age together,
leveraging the dependency between these attributes to enhance
recognition accuracy. It introduces a random forest method
for extracting robust multi-instance and multi-scale features
to mitigate the impact of intra-subject distortions. Another
study in [10] utilized DCNN architecture with a pre-trained
mechanism for gender and age estimation using a multi-
tasking approach, demonstrating promising performance. Un-
fortunately, the DCNN generates a lot of parameters and
operations, leading to operating slowly, especially on low-cost
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Fig. 1. The efficient local-global attention network (ELGA-Net) for simultaneous facial age group and gender recognition. Conv3, BN, DO, FC, and
Downsampling indicate 3× 3 convolution with strides 1, batch normalization, dropout, fully connected, and 2× 2 max-pooling with strides 2, respectively.
ReLU, LeakyReLU, Sigmoid, and Softmax are activation functions. The hyperparameters in this network, such as the number of channels, are empirically set.

or CPU devices used on an advertising platform.
In light of parameters, computation, and speed, this

work proposes an Efficient Local-Global Attention Network
(ELGA-Net) for simultaneously performing facial age group
and gender recognition. It introduces an Efficient Local-Global
Attention (ELGA) block to enhance the quality of feature maps
locally while capturing global contextual information by learn-
ing relationships between different parts of the feature maps.
This network generates a few parameters and requires low
computational resources, making it ideal to implement on a
low-cost or CPU device. This work delineates its contributions
as follows:

1) An Efficient Local-Global Attention Network (ELGA-
Net) to perform simultaneous facial age group and
gender recognition. It shows promising performance on
the UTKFace [11] benchmark dataset.

2) A novel Efficient Local-Global Attention (ELGA) block
is offered to capture local (supported by attention mod-
ules) and global information within the feature maps.
It can enhance the quality of feature maps, guiding to
improve recognition performance.

3) A simultaneous facial age group and gender recognizer
designed for rapid execution on a CPU device. It demon-
strates real-time performance, achieving 113 frames per
second (FPS) when integrated with a face detector.

II. PROPOSED ARCHITECTURE

The efficient network presented in this study consists of
four stages followed by a multi-task classification module,
as illustrated in Fig. 1. This network incorporates efficient
local-global attention block located at the fourth stage. The
proposed network generates only 552,029 parameters and
24.35 MFLOPs.

A. The Efficient Local-Global Attention (ELGA) Block

Convolutional Neural Networks (CNNs) have long been
proven capable of capturing local patterns in images [12],
owing to their local receptive fields. On the other hand, Vision
Transformers (ViTs) can capture global dependencies and
relationships across different parts of the image by performing

a self-attention technique [13]. CNNs are adept at feature
extraction, while Transformers can understand the broader
context. This work proposes a novel Efficient Local-Global
Attention (ELGA) block to leverage the strengths of both
CNNs and Transformers. It consists of an efficient CNN block,
integrated by an efficient transformer encoder shown in Fig.
2. ELGA conveys more significant efficiency via a channel-
splitting mechanism to adopt parallel convolution and self-
attention paths as local and global information extractor mod-
ules. Technically, given the input feature map X ∈ RH×W×C ,
it is split into Xl ∈ RH×W×C

2 and Xg ∈ RH×W×C
2 . Then

it performs local (supported by attention modules) and global
modules on Xl and Xg, respectively, defined as follows:

ELGA(X) = LN(X+Concat[AM(Local(Xl)),

Global(Xg)]),
(1)

where Concat and LN are concatenation and layer normaliza-
tion operations. AM is the attention strategy, applying channel
and spatial attention modules. Inspired by [14], this work
proposed multi-scale and multi-band-level based depthwise
convolution to capture the local information. Given an input
feature map Xl ∈ RH×W×C

2 , it is split the input feature map
Xl into Xl1 ∈ RH×W×C

4 and Xl2 ∈ RH×W×C
4 based on

channel axes. Then, it applies a small square kernel (3×3) and
a sequence of two orthogonal band kernels (11×1 and 1×11),
respectively. It also uses channel and spatial attention modules
that apply global average pooling and average pooling across
channels, respectively, with sigmoid activation to enhance
the feature map quality. The overall local extractor module,
enhanced by attention modules, is described as follows:

Local(Xl) = Concat[DW3×3(Xl1),

DW1×11(DW11×1(Xl2))],
(2)

AM(X′
l) = SA(CA(X′

l)) (3)

where DWm×n indicates depthwise convolution operations
with m×n kernel size. CA and SA denote channel and spatial
attention operations, respectively.

Following the success of the efficient transformer encoder
on [7], ELGA utilized the Bottleneck Transformer Encoder
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Fig. 2. The efficient local-global attention (ELGA) block. Conv, DWConv, DO, and LN indicate convolution, depthwise convolution, dropout, and layer
normalization, respectively. ReLU, Leaky ReLU, and Sigmoid are activation function.

(BTE) as a global extractor module to capture global context
and relationships between different parts of the feature maps.
Given an input feature map Xg ∈ RH×W×C

2 , it computes
the feature map into a query (Q), key (K), and value (V) by
involving a 1×1 convolution operation with a reduction chan-
nel r and multi-head mechanism with NumHead, followed
by Rectified Linear Unit (ReLU) to generate a skinnier Q, K,
and V matrix with shape H × W × (( C/2

NumHead )/r). Then,
we perform these matrices using Scaled Dot-Product Attention
(SDPA), which is formulated as follows:

SDPA (Q,K,V) = softmax

(
QKT

√
dk

)
V, (4)

where T is a transpose matrix operation and dk is a scaling
factor to control the softmax temperature. Subsequently, a con-
catenation operation combines the outputs from all attention
heads, which is followed by a 1 × 1 convolution operation,
incorporating dropout (DO) and ReLU activation layers to
restore the channel dimensions to match the input tensor
Xg ∈ RH×W×C

2 . Further, a linear projection is executed using
a 1 × 1 convolution operation with LeakyReLU activation,
integrated with a residual connection and layer normalization
around both the bottleneck multi-head attention and the final
convolution layer of the global module.

B. The Overall Network

As shown in Fig. 1, the proposed efficient network com-
prises four stages following [7]. The initial three stages involve

a 3×3 convolution layer with strides of one, followed by batch
normalization and LeakyReLU activation. These convolution
operations increase the number of channels from 16 to 64.
In the third stage, dropout is applied before the convolution
operation to address potential overfitting issues. It employs a
2×2 max-pooling operation with strides of two after each stage
to facilitate downsampling. Moving to the fourth stage, we
introduce the proposed ELGA block, followed by a flattening
operation to generate a vector embedding. Subsequently, the
multi-task classification module is performed in the last part
of the network, consisting of a shared fully connected layer
with ReLU activation and dropout mechanism followed by two
separate branches or heads for each classification task. These
branches have their own fully connected layers customized
for the particular task, where, in this work, age group and
gender recognition tasks involve utilizing softmax and sigmoid
activations, respectively.

III. IMPLEMENTATION SETUP

Building upon the methodology established in a previous
study [4], [7], we train the proposed architecture on the UTK-
Face, FG-NET, and LFW datasets for simultaneous facial age
group and gender recognition, as well as individual age and
gender recognition, respectively. To perform age and gender
recognition separately on the FG-NET and LFW datasets, we
remove the final gender or age classification branch from the
proposed network, respectively. The training employs an initial
learning rate of 10−3 with a batch size of 256 over 300



TABLE I
SIMULTANEOUS AGE GROUP AND GENDER RECOGNITION EVALUATION RESULTS ON UTKFACE DATASET.

Networks Params MFLOPs Age Accuracy
(%) ↑

Gender Accuracy
(%) ↑

Average Accuracy
(%) ↑

InceptionNeXt N16 [14] 695,845 82.43 86.38 88.54 87.46
GhostNet N10 [15] 665,765 15.43 86.62 89.16 87.89
FasterNet N16 [16] 623,621 35.61 89.19 89.70 89.45
VAN N16 [17] 617,381 76.69 88.74 90.39 89.57
AggerCPU [4] 486,951 40.58 89.77 91.79 90.78
GenderBTE [7] 555,645 24.80 90.26 92.11 91.19
Proposed 552,029 24.35 90.97 91.95 91.46

TABLE II
AGE RECOGNITION EVALUATION RESULTS ON THE FG-NET DATASET.

Networks Params
(M)

Mean Absolute
Error ↓

ADPF [18] 14.00 2.86
MSFCL [19] 15.00 2.71
AggerCPU [4] 0.49 2.71
BridgeNet [20] 120.00 2.56
MWR based on VGG16 [21] 40.00 2.23
Proposed 0.56 2.69

TABLE III
GENDER RECOGNITION EVALUATION RESULTS ON LFW DATASET.

Networks Number of
Parameters

Accuracy
(%) ↑

Althnian et al. [22] 15,473,190 72.50
Rouhsedaghat et al. [23] 16,900 94.63
GenderBTE [7] 555,770 96.50
Greco et al. [24] 3,538,984 98.73
Proposed 551,642 96.58

epochs, utilizing the Adam optimizer. To dynamically adjust
the learning rate based on changes in average accuracy, we
implement a learning rate reduction mechanism by decreasing
the rate by a factor of 0.75 after 20 epochs of stagnant
average accuracy, contributing to adaptive learning throughout
the training process. The hyperparameter reduction channel r
on the BTE is empirically set to 4. The training utilizes an
Nvidia GeForce GTX 1080Ti GPU with 11GB of memory
through the Tensorflow and Keras framework. Additionally,
we evaluate the FPS for both the proposed architecture and
the recognizer using an Intel Core i7-9750H CPU running at
2.6 GHz with 20GB of RAM.

IV. EXPERIMENTAL RESULTS

A. Evaluation on Datasets

1) UTKFace for Simultaneous Age Group and Gender
Recognition: Widely recognized in the field of facial age
group and gender recognition research, UTKFace [11] com-
prises 23,708 facial images, each meticulously annotated with
age, gender, and ethnicity details. Notably, it spans a wide
age range from 0 to 116 years and features diverse images
depicting variations in pose, illumination, expression, and
other relevant factors. The dataset is partitioned into 80%

for training and 20% for testing. As a result, shown in
Table I, the proposed network, equipped with only 552,029
parameters and 24.35 MFLOPs, achieves good accuracies of
90.97%, 91.95%, and 91.46% for age, gender, and average
recognition, respectively. This performance surpasses the state-
of-the-art networks in simultaneous (multi-task) facial age
group and gender recognition. This work also compares our
proposed network with InceptionNeXt N16 [14], VAN N16
[17], GhostNet N10 [15], and FasterNet N16 [16] networks,
which means applied 16, 16, 10, and 16 as initial embedding
channel dimensions, respectively, to generate the networks
variant that has a comparable number of parameters with our
proposed model.

2) FG-NET for Age Recognition: FG-NET [25] dataset
comprises 1,002 facial images obtained from 82 subjects,
showcasing various variations in pose, expression, and illu-
mination. Adhering to established protocols [26], [27], the
dataset adopts k-fold cross-validation and leave-one-person-
out (LOPO) methodologies. The evaluation process of this
dataset computes results based on average values, utilizing
the mean absolute error (MAE) metric. Table II shows the
MAE result of the proposed network compared to the state-
of-the-art networks. Despite securing the third position, the
model demonstrates strong competitiveness, boasting an MAE
of 2.69 for age recognition. This trails behind the top-ranking
model by a mere 0.46 and the second-best by just 0.13.
Remarkably, the proposed architecture achieves this level of
performance while maintaining a significantly lower parameter
count compared to its competitors.

3) LFW for Gender Recognition: The LFW [28] dataset
comprises over 13,000 face images, characterized by two
labels: females and males, with females accounting for 23%
and males for 77% of the total instances, demonstrating a
considerable imbalance. Following the previous setting [7],
this dataset is divided into training (70%) and testing (30%)
sets. Table III illustrates the competitive accuracy achieved by
the proposed network, which reaches 96.58% as the second-
best among state-of-the-art networks. However, the proposed
network boasts significantly fewer parameters compared to the
first-best.

B. Model Analysis

This section explores the impact of individual components
within the proposed module on recognition performance using
the UTKFace dataset. Initially, we conduct an ablation study



TABLE IV
ABLATION STUDY OF THE PROPOSED NETWORK FOR SIMULTANEOUS AGE GROUP AND GENDER RECOGNITION ON UTKFACE DATASET.

Baseline Local with
Attention Modules Global Params MFLOPs Age Accuracy

(%) ↑
Gender Accuracy

(%) ↑
Average Accuracy

(%) ↑
✓ 549,093 23.92 88.47 91.93 90.20
✓ ✓ 549,765 24.03 90.46 91.73 91.10
✓ ✓ 551,485 24.27 90.43 92.08 91.26
✓ ✓ ✓ 552,029 24.35 90.97 91.95 91.46

TABLE V
COMPARISONS OF DIFFERENT BLOCKS APPLIED ON THE FOURTH STAGE OF THE PROPOSED NETWORK FOR SIMULTANEOUS AGE GROUP AND GENDER

RECOGNITION ON UTKFACE DATASET.

Fourth Stage Block Params MFLOPs Age Accuracy
(%) ↑

Gender Accuracy
(%) ↑

Average Accuracy
(%) ↑

FasterNet Block [16] 568,293 26.34 88.92 91.93 90.43
VAN Block [17] 601,061 30.65 90.08 91.77 90.93
GhostNet Block [15] 638,917 27.03 89.92 92.08 91.00
RM2L + DELA Block from AggerCPU [4] 572,647 26.41 89.72 92.31 91.02
InceptionNeXt Block [14] 582,709 28.34 89.92 92.31 91.12
BTE Block [7] 555,645 24.80 90.26 92.11 91.19
Proposed ELGA Block 552,029 24.35 90.97 91.95 91.46

TABLE VI
RUNTIME EFFICIENCY OF THE SIMULTANEOUS AGE GROUP AND GENDER RECOGNITION ON UTKFACE DATASET.

Networks Params MFLOPs Age Accuracy
(%) ↑

Gender Accuracy
(%) ↑

Average Accuracy
(%) ↑

AG & GD
(FPS) ↑

FD + AG & GD
(FPS) ↑

VAN N16 [17] 617,381 76.69 88.74 90.39 89.57 42.75 37.05
InceptionNeXt N16 [14] 695,845 82.43 86.38 88.54 87.46 54.03 44.45
GhostNet N10 [15] 665,765 15.43 86.62 89.16 87.89 89.25 65.61
FasterNet N16 [16] 623,621 35.61 89.19 89.70 89.45 136.79 89.73
AggerCPU [4] 486,951 40.58 89.77 91.79 90.78 183.79 109.18
GenderBTE [7] 555,645 24.80 90.26 92.11 91.19 199.39 113.46
Proposed 552,029 24.35 90.97 91.95 91.46 194.29 113.43

by systematically removing each module from the proposed
model and assessing the resulting performance differences.
Additionally, we analyze the final feature extraction process
through a late block comparison analysis.

1) Ablation Study: Table IV presents the findings from the
ablation study, focusing on the average accuracy metrics for
simultaneous age group and gender. The results indicate that
employing the Local (with Attention Modules) and Global
branches individually can improve performance by 0.90% and
1.06%, respectively, compared to the baseline consisting of
the initial three stages and downsampling blocks. Furthermore,
integrating Local and Global modules leads to a performance
enhancement of 1.26% compared to the baseline.

2) Late Block Comparison Analysis: This analysis involves
replacing the proposed ELGA block in the fourth stage with
state-of-the-art alternatives. Table V shows that the proposed
ELGA block consisting of the initial three stages and down-
sampling blocks can provide the best average accuracy of age
group and gender recognition. ELGA block can outperform
BTE, InceptionNeXt, and the other state-of-the-art blocks.

C. Runtime Efficiency
The offered simultaneous facial age group and gender

recognition using the proposed ELGA-Net with 552,029 pa-
rameters and 24.35 MFLOPs demonstrates real-time efficiency
on a CPU with an Intel Core i7-9750H 2.6 GHz, as shown
in Table VI. It achieves second-best, reaching a speed of

194.29 frames per second for simultaneous facial age group
and gender recognition (AG & GD) and 113.43 frames per
second when integrated with face detection [29] (FD + AG &
GD). This speed is slightly slower (0.03 FPS difference) than
the fastest network, GenderBTE [7]. Even so, the proposed
network offers superior performance based on age group and
gender average accuracy (0.27% difference). Fig. 3 shows the
recognition results of the proposed network, where light blue
and yellow bounding boxes indicate the male and female faces,
respectively.

V. CONCLUSION

This work introduces an efficient local-global attention
network (ELGA-Net) for simultaneous facial age group and
gender recognition. It comprises an efficient local-global atten-
tion (ELGA) block utilizing multi-scale and multi-band-level-
based depthwise convolution to capture local information and
a bottleneck transformer encoder to grasp global context and
relationships between different parts of the feature maps in
a parallel structure. The proposed network demonstrates com-
petitive performance on the UTKFace dataset for simultaneous
facial age group and gender recognition, and it also performs
well on the FG-NET and LFW datasets for separate age
group and gender recognition tasks. Additionally, the proposed
network achieves real-time speed at 113.43 FPS on a CPU
device, integrated with face detection as an initial process.



Fig. 3. The simultaneous facial age group and gender recognition results on
new samples of the proposed network trained on the UTKFace dataset.

In future work, the proposed recognition will be extended to
operate on more cost-effective devices to support Robot Vision
applications.
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