
Human Facial Age Group Recognizer using
Assisted Bottleneck Transformer Encoder

Adri Priadana[0000−0002−1553−7631], Duy-Linh Nguyen[0000−0001−6184−4133],
Xuan-Thuy Vo[0000−0002−7411−0697], and Kang-Hyun Jo∗[0000−0002−4937−7082]

Department of Electrical, Electronic and Computer Engineering, University of Ulsan,
Ulsan, South Korea

priadana3202@mail.ulsan.ac.kr, ndlinh301@mail.ulsan.ac.kr,

xthuy@islab.ulsan.ac.kr, acejo@ulsan.ac.kr

Abstract. Recognizing age from facial images has attracted consider-
able attention because of its wide array of applications and practical
utilities. These include support for advertising platforms, access control,
forensic objectives, and video surveillance. Efficient facial age recognition
for these varied purposes is essential, necessitating smooth operation on
low-cost devices or, at the very least, on a CPU to minimize implementa-
tion costs. This work proposes a lightweight CNN architecture efficiently
integrated with a transformer encoder to perform facial age group recog-
nition. An assisted bottleneck transformer encoder (ABTE) is introduced
to enhance the feature extractor, generating only a few parameters and
requiring low computation. As a result, the proposed architecture can
achieve competitive performance on the two benchmark datasets, UTK-
Face and FG-NET. Moreover, this recognizer can attain real-time speed
at 147 and 136 frames per second (FPS) with a single and double uti-
lization of the ABTE, respectively, while maintaining its performance.

Keywords: Age Group Recognition · Assisted Bottleneck Transformer
· Convolutional Neural Network (CNN) · Facial Age Recognition · Trans-
former Encoder.

1 Introduction

Age estimation from facial images has garnered significant interest due to its
broad range of applications and practical uses, including support for advertising
platforms [22,16], access control [7], forensic applications and video surveillance
[2]. In advertising applications, it can assist platforms in audience segmenta-
tion and delivering relevant ads and products. For example, in some countries,
vending machines can suggest beverages like alcohol or tobacco based on facial
age estimation, ensuring compliance with age restrictions for specific items. In
forensic applications, it can be used to determine victim or criminal profiles.
In the context of surveillance and access control, it can be employed to restrict
access to specific areas for individuals of particular age groups. Age recognition
involves automatically predicting a person’s exact age [26] or categorizing them
based on face into age groups [13,16] such as child, teen, adult, and old.
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As a popular deep learning technique, Convolutional Neural Networks (CNNs)
have demonstrated remarkable performance in age estimation based on facial im-
ages. Many studies [1,5,11,20,25] have utilized and proposed deeper CNN archi-
tectures to enhance their performance. However, it frequently yields architectures
with a significant parameter count, potentially causing operational inefficiency.
This limitation can hinder implementation on platforms or machines that utilize
low-cost or CPU devices. Hence, the need for efficient architectures with reduced
computational demands is evident.

Recently, several efforts have been directed towards designing CNN architec-
tures that are more efficient [18,16] and faster [15], generating few parameters
and low operation for enhanced overall efficiency and speed. Moreover, the Vision
Transformer (ViT) technique [6] and its variant, inspired by the Transformer
architecture [24], initially designed for machine translation tasks, has become
dominant and proven to offer high classification performance in computer vision
tasks. However, Transformer-based architectures often prioritize accuracy over
computational efficiency, which is critical for operation on resource-constrained
devices, such as CPUs or mobile platforms. By combining CNN architectures
with the Transformer encoder in an efficient manner, it is possible to create mod-
els with fewer parameters and reduced computational demands while maintain-
ing or even improving performance. Therefore, it can be satisfactorily performed
on a lower-cost device and contribute more to procurement cost reduction.

This work proposes a lightweight CNN architecture integrated efficiently with
a transformer encoder to perform a facial age group recognition task. A novel
assisted bottleneck transformer encoder, improved from [14], is introduced to
enhance the feature extractor used in the recognizer. It generates few parameters
and low computation. As a result, the age group recognizer can operate more
efficiently and rapidly when identifying age groups based on facial features. To
summarize, the notable contributions of the present study include the following:

1. A lightweight CNN architecture integrated with a transformer encoder to
perform age group recognition based on facial features. It demonstrates
highly competitive performance on UTKFace [29] and FG-NET [10] bench-
mark datasets.

2. A novel assisted bottleneck transformer encoder (ABTE), inspired by [14],
is offered as a strategy to capture spatial relationship representations within
the feature maps. The enhancement significantly improves the quality of
feature maps, leading to enhanced recognition performance.

3. A facial age group recognizer capable of swift operation on a CPU device. It
can achieve real-time performance at 147 and 136 frames per second (FPS)
with one and two times assisted bottleneck transformer encoder, respectively.

2 Related Work

Due to the exceptional capabilities of Convolutional Neural Networks (CNNs),
the majority of studies in recent years have adopted this approach for age recog-
nition based on human faces. For example, Li et al. [11] introduced BridgeNet,



Human Facial Age Group Recognizer using Assisted Bottleneck Transformer 3

which incorporates local regressors in learning continuity-aware weights for age
recognition from facial images. Badr et al. [1] adopted ResNet-34 as a founda-
tion to develop a system called landmark ratios with task importance (LRTI)
for age estimation. Another researcher [5] presented a feature constraint rein-
forcement network (FCRN) for leveraging the influence of gender constraints on
age estimation. Meanwhile, Shin et al. [20] utilized the VGG architecture as an
encoder, introducing a novel moving window regression algorithm designed to es-
timate facial age precisely. Wang et al. [25] adopted the ResNet34 and proposed
a meta-set learning (MSL) approach for exploiting the unfairness of face-aging
datasets.

There has been a trend in developing lightweight CNN architectures to con-
sider efficient computation applied for mobile or CPU-based devices. Savchenko
[18] employed MobileNet for estimating facial age in mobile applications, pro-
ducing a model with 3.5 million parameters. In a different study [16], an efficient
CNN architecture was introduced, boasting a mere four hundred thousand pa-
rameters. This architecture comprises two branches of feature extractors boosted
by an innovative attention mechanism. In the most recent advancement [15], a
novel efficient CNN architecture is presented, integrating a lightweight back-
bone featuring a combination of different mini-feature map levels stimulated by
a slight attention block. This network can perform real-time facial age recogni-
tion on CPU devices.

3 The Proposed Method

The proposed CNN model is designed with proficient feature extraction and
classification phases, as illustrated in Fig. 1. This architecture stands out for
its efficiency, boasting a mere 446,468 parameters and approximately 24 million
floating-point operations (MFLOPs).

3.1 The Feature Extraction Module

Following a common optimal design approach, the proposed seamless feature ex-
traction strategically utilizes a shallow convolution layer, each employing a 3×3
filter size for precision and effectiveness. It initiates with 16 channels, followed
by increments to 32 and, ultimately, to 64. This deliberate design intention aims
to minimize the number of parameters and computational burden within the
architecture. Additionally, the architecture utilizes batch normalization (BN)
after each convolution operation, followed by sigmoid linear units (SiLU) ac-
tivation, to address gradient-related issues. It incorporates three max-pooling
operations as pivotal for downsampling the feature map effectively. These op-
erations employ two 3 × 3 and one 2 × 2 kernel sizes, each with strides set at
2. The careful selection of these parameters facilitates a systematic reduction in
the spatial dimensions of the feature map, contributing to enhanced efficiency
in subsequent processing stages. The downsampling mechanism is strategically
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Fig. 1. The proposed lightweight CNN architecture integrated efficiently with a as-
sisted bottleneck transformer encoder to perform facial age group recognition. Conv3
indicates 3 × 3 convolution operation with stride 1. MaxPool3 and Maxpool2 denote
3 × 3 and 2 × 2 max pooling operations with stride 2, respectively. BN, DO, and FC
are batch normalization, dropout, and fully connected layers.

positioned to optimize the overall computational load, ensuring the architec-
ture’s responsiveness to real-time demands. It is important to note that opting
for fewer convolution layers can result in a shallower network, which impacts its
performance. In response, we introduce an assisted bottleneck transformer en-
coder (ABTE) to capture spatial relationship representations within the feature
maps by applying self-attention as the core operation, enhancing recognition
performance. The proposed architecture situates this encoder between the final
max-pooling and flattening operation in the layer sequence.

3.2 The Assisted Bottleneck Transformer Encoder (ABTE)

Nowadays, Vision Transformer (ViT) [6] with self-attention has shown impres-
sive performance in image classification tasks. The self-attention mechanism al-
lows the model to capture relationships between different parts of the input
image using a global context. It makes the architecture particularly effective
for tasks that require understanding long-range relationships within an image.
ViT has achieved state-of-the-art performance on various image classification
benchmarks. It attains competitive accuracy with fewer parameters. However,
the computational efficiency of ViT still becomes a concern because the self-
attention mechanism has a quadratic complexity regarding the input sequence
length. Many researchers have proposed various techniques to address these is-
sues. This work proposes an assisted bottleneck transformer encoder (ABTE).
It consists of an efficient transformer encoder, assisted by an enhanced efficient
convolution module shown in Fig. 2. Following the efficient transformer encoder
in [14], a bottleneck transformer encoder (BTE) is applied to enhance the com-
putational efficiency of the encoder. BTE employs a reduction channel denoted
as r and a multi-head mechanism with NumHead to generate a more stream-
lined input tensor of dimensions H ×W × (( C

NumHead )/r) before transforming
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Fig. 2. The proposed assisted transformer encoder consists of an efficient transformer
encoder, assisted by an efficient inception depthwise convolution module.

it into a query (Q), key (K), and value (V). The implementation of scaled dot-
product attention, as depicted in Fig. 3, is similar to the structure of the original
transformer encoder and is defined by the following definition:

Attention (Q,K,V) = softmax

(
QKT

√
dk

)
V, (1)

where T is a transpose matrix operation and dk indicates a scaling factor to
control the softmax temperature. Improved from BTE, we apply an inception
depthwise convolution (IDC) module from InceptionNeXt [28] in parallel struc-
ture to assist the BTE. This module decomposes multi-kernel depthwise convo-
lution into four parallel branches along the channel dimension. It splits the input
feature map X into four elements [X1,X2,X3,X4] based on channel axes and
applies small square kernels (3 × 3), two orthogonal band kernels (11 × 1 and
11× 11), and an identity mapping, respectively, defined as follows:

IDC(X) = Concat[DW3×3(X1),DW1×11(X2),DW11×1(X3),X4], (2)

where Concat and DWm×n indicate concatenation and depthwise convolution
operations with m×n kernel size, respectively. IDC module function to preserve
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performance by efficiently applying multi-scale and large-kernel-based convo-
lution. We also utilize squeeze-and-excitation (SE) [9] module and layer nor-
malization to enhance and normalize the feature maps resulting from the IDC
module. Fig. 4 shows the IDC and SE modules in more detail. In this work,
ABTE performs interaction or connection between BTE and IDC branches to
share information by adding the feature map resulting from the convolution op-
eration in the BTE branch to the IDC branch using an element-wise addition
operation. The proposed encoder also uses this mechanism to allocate a more sig-
nificant portion to BTE in extracting information. Based on the model analysis
results described in the ablation study subsection in the next section, BTE con-
tributes more performance than IDC when performing individually. Moreover,
this ABTE combines the BTE and IDC branches by applying an element-wise
addition operation in the last layer.

Transpose

MatMul

Concat

DO +  
Conv1, C
+ ReLU

Q

Q K V

Reshape Reshape Reshape

Scale

Softmax

MatMul

Reshape

Bottleneck Multi-Head Attention Scaled Dot-Product Attention

Scaled Dot-Product Attention

Conv1, C/NumHead/r +
ReLU

K

Conv1, C/NumHead/r +
ReLU

V

Conv1, C/NumHead/r +
ReLU

Fig. 3. The detail design of the bottleneck multi-head attention [14].

3.3 The Classification Module

In the final phase, the features of the instance face coming from the backbone
phase are inputted into the classification module to calculate the probability
for individual group classes. This component assists in determining whether the
instance input belongs to which class individual. It consists of two multi-layer
perceptron layers, following the classification module from [15].

4 Implementation Settings

Following the previous setting [15], the proposed architecture undergoes train-
ing on UTKFace and FG-NET datasets with an initial learning rate of 1× 10−3
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Fig. 4. The inception depthwise convolution (IDC) and squeeze and excitation (SE)
modules.

with a batch size of 256 trained over 300 epochs and Adam optimizer. In this
configuration, the reduce learning rate mechanism is implemented to modulate
the learning rate based on changes in validation accuracy. The rate is decreased
by a factor of 0.75 after 20 epochs of stagnant accuracy, contributing to adap-
tive learning in the training process. It utilizes an Nvidia GeForce GTX 1080Ti
featuring GPUs with 11GB of memory through the Tensorflow and Keras frame-
work. An Intel Core i7-9750H CPU running at 2.6 GHz with 20GB of RAM is
employed to evaluate the FPS for both the proposed architecture and the rec-
ognizer.

5 Experiments and Results

5.1 Evaluation on Datasets

UTKFace. This dataset is a widely utilized resource in the field of computer vi-
sion, particularly for research on age and gender estimation. It comprises 23,708
facial images annotated with valuable information such as age, gender, and eth-
nicity. Notably, the age range covered by the dataset spans from 0 to 116 years,
and it incorporates diverse images with variations in pose, illumination, expres-
sion, and other factors. This work applies two configurations for the dataset
as an evaluation. Following the prior studies [4,3], this dataset is divided into
training (80%) and testing (20%) sets for the first configuration, denoted as
Setting I. The evaluation of the offered architecture’s performance involves the
calculation of the mean absolute error (MAE) on the testing set within this
configuration. The proposed architecture, comprising only around 450,000 pa-
rameters, achieves the second-best performance with the mean absolute error
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Table 1. The results of the assessment on the UTKFace dataset under Setting I.

Architectures
Params
(M)

Mean Absolute
Error ↓

CORAL [4] 21.11 5.47

Savchenko [18] 3.50 5.44

LRTI [1] 21.11 4.55

Berg et al. [3] 23.60 5.14

FCRN [5] 23.60 4.47

2PDG [16] 0.46 4.44

AggerCPU [15] 0.49 4.38

MWR (based on VGG16) [20] 39.79 4.37

MSL (based on ResNet34) [25] 21.11 4.31

Proposed (L = 2) 0.45 4.37

Table 2. The results of the assessment on the UTKFace dataset under Setting II.

Architectures
Params
(M)

Validation Accuracy ↑
(%)

ResNet50 [8] 23.60 88.43

InceptionNeXt-N16 [28] 0.36 90.08

2PDG [16] 0.46 90.12

VGG16 [21] 39.79 90.34

InceptionNeXt-N24 [28] 0.80 90.81

AggerCPU [15] 0.46 90.90

Proposed (L = 2) 0.45 91.33

(MAE) of 4.37, as shown in Table 1. The result is marginally lower by only 0.06
compared to the top-performing model [25]. The proposed architecture proves
significantly more efficient than [25] considering the number of parameters.

Similarly, following the methodology of a prior study [15], we divided the
dataset into training (90%) and testing (10%) sets for the second configuration,
identified as Setting II. The class target comprises four age groups: children,
teens, adults, and old. Validation accuracy (VA) is utilized in evaluating the
proposed architecture in this setting. The offered architecture achieves the VA
of 91.33%, surpassing the state-of-the-art, as shown in Table 2. This experiment
also compares our proposed model with InceptionNeXt [28] model, -N16 and
-N24, which means applied 16 and 24 as initial embedding dimensions, respec-
tively, of InceptionNeXt T model configuration, to generate the InceptionNeXt
[28] variant that has a comparable number of parameters with our proposed
model.

FG-NET. This dataset comprises 1,002 facial images collected from 82 sub-
jects, featuring variations in pose, expression, and illumination. Following estab-
lished settings [19,12], the dataset employs k-fold cross-validation and leave-one-



Human Facial Age Group Recognizer using Assisted Bottleneck Transformer 9

Table 3. The results of the assessment on the FG-NET dataset.

Architectures
Params
(M)

Mean Absolute
Error ↓

DRF based on VGG16 [19] 14.00 3.41

DAG-VGG16 [23] 24.00 3.08

ADPF [26] 14.00 2.86

2PDG [16] 0.46 2.75

MSFCL [27] 15.00 2.71

AggerCPU [15] 0.49 2.71

BridgeNet [11] 120.00 2.56

MWR based on VGG16 [20] 40.00 2.23

Proposed (L = 2) 0.45 2.67

person-out (LOPO) methodologies. In each fold, facial images from one subject
are reserved for testing, while the images of the remaining subjects are used
for training. This process is repeated 82 times, with each subject applied as
a training set, corresponding to the 82 subjects in the dataset. Given the di-
verse distribution of instances among individuals in the dataset, the number
of instances for both training and testing sets exhibits variability across each
fold. It is important to note that this evaluation process computes results based
on average values using the mean absolute error (MAE) metric. The proposed
architecture achieves the MAE of 2,67, attaining the third-best performance,
deviating by 0.44 and 0.11 from the best [20] and second-best [11], respectively,
as shown in Table 3. However, the parameters of the proposed CNN model are
significantly lower than both.

5.2 Model Analysis

This section investigates the contribution of each component of the proposed
module to the recognition performance on the UTKFace dataset. Firstly, we
perform an ablation study by removing each module from the proposed model
and then comparing its performance to reveal the influence of the existence of
each module. Secondly, channel reduction analysis examines the optimal channel
reduction value on the BTE. Lastly, we analyzed how many times the ABTE
(the number of L) should be applied to produce the best performance.

Ablation Study. Table 4 shows the reported results of the ablation study
based on validation accuracy metrics. The report shows that using IDC and BTE
modules individually can escalate performance based on accuracy by 0.35% and
0.48%, respectively, from the baseline based on accuracy. Combining IDC and
BTE modules can upgrade performance by 0.74% from the baseline. Moreover,
combining IDC and BTE modules with a connection can enhance performance
by 1.08% from the baseline. These results confirm that the IDC module can
assist the BTE in providing higher performance.
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Table 4. Ablation study of the proposed architecture with L = 2 on the UTKFace
dataset under Setting II.

Baseline
IDC

Branch
BTE

Branch

Connection
between

IDC and BTE
MFLOPs Params

Validation
Accuracy

(%)

✓ 22.15 426,084 90.25

✓ ✓ 22.33 428,452 90.60

✓ ✓ 23.95 443,844 90.73

✓ ✓ ✓ 24.13 446,212 90.99

✓ ✓ ✓ ✓ 24.18 446,468 91.33

Table 5. Channel reduction analysis of the proposed ABTE with L = 2 on the UTK-
Face dataset under Setting II.

Value of
Reduction r

MFLOPs Params
Validation Accuracy

(%)

1 27.38 471,332 90.94

2 25.15 454,756 91.12

4 24.18 446,468 91.33

8 23.74 442,324 90.86

Channel Reduction Analysis. This study explores the impact of different
channel reduction values on the performance of the proposed ABTE in facial
recognition. The findings, as presented in Table 5, suggest that channel reduction
values of one or eight do not yield significant performance improvements. The
optimal recognition performance is achieved by the proposed ABTE when em-
ploying a channel reduction value of four. In this configuration, the model attains
the highest validation accuracy, reaching 91.33%, while maintaining a moderate
parameter count of 446,468 and a computational load of 24.18 MFLOPs.

Number of Transformer Encoder Analysis. This part analyzes the most ef-
fective number of L (how many times applying ABTE) on the proposed model re-
garding recognition performance. Table 6 reveals that using ABTE one time can
make the model run faster. However, the proposed model with two times ABTE
achieves the highest validation accuracy in this study. This setting can deliver
a validation accuracy of 91.33% with 446,468 parameters and 24.18 MFLOPs
at a sufficient speed based on FPS. Age (FPS) denotes the speed of age group
recognition, and Face + Age (FPS) indicates the speed of age group recognition
integrated with face detection [17].

5.3 Runtime Efficiency

The practical implementation prioritizes a recognizer capable of real-time per-
formance on cost-effective devices, ideally on a CPU setup, to reduce expenses
during system procurement. The offered architecture, featuring two times of
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Table 6. Number of L analysis on the UTKFace dataset under Setting II.

Number
of L

MFLOPs Params
Validation Accuracy

(%)
Age

(FPS)
Face + Age

(FPS)

1 23.17 436,276 91.07 335.99 147.53

2 24.18 446,468 91.33 285.67 135.48

3 25.20 456,660 90.85 250.43 127.52

Table 7. The efficiency of runtime, as measured on the UTKFace dataset with the
same CPU configuration, is specifically evaluated under Setting II.

Architectures MFLOPs Params
Validation
Accuracy

(%)

Age
(FPS)

Face + Age
(FPS)

VGG16 [21] 2,290 39,782,722 90.34 42.40 36.28

ResNet50 [8] 633 23,595,908 88.43 54.21 44.54

InceptionNeXt-N24 [28] 1,391 796,564 90.81 57.44 46.87

InceptionNeXt-N16 [28] 625 359,012 90.08 89.09 65.99

Proposed (L = 2) 24 446,468 91.33 285.67 135.48

AggerCPU [15] 41 486,822 90.90 330.66 144.49

Proposed (L = 1) 23 436,276 91.07 335.99 147.53

ABTE (L = 2), demonstrates real-time efficiency on a CPU with a modest pa-
rameter count of 446,468 and a computational load of 24.18 MFLOPs. It excels
in classification tasks, achieving a speed of 286 and 135 frames per second for
age group recognition and integrated with face detection [17] (Face + Age),
respectively, as detailed in Table 7.

This work also presents a recognizer that performs ABTE only once (L = 1)
utilizing 436,276 parameters and 23.17 MFLOPs to provide faster recognition
with a performance that still surpasses the current state-of-the-art models. The
proposed recognizer, leveraging a single ABTE operation, emerges as the fastest
among competitors, achieving a remarkable speed of 336 frames per second for
age group recognition (Age) and 148 frames per second for age group recognition
integrated with face detection [17] (Face + Age). The recognition outcomes of
the proposed model are illustrated in Fig. 5, where green, yellow, blue, and red
bounding boxes signify the faces of children, teens, adults, and old, respectively.

6 Conclusion

Addressing the need for improved feature extraction in age group recognition
from human faces, this work introduces the concept of ABTE. By incorporating
a bottleneck mechanism and employing inception depthwise convolution (IDC)
in parallel structure, the proposed encoder efficiently enhances the transformer
encoder’s capabilities while maintaining a minimal parameter count and low
computational requirements. Demonstrating competitive performance on UTK-
Face and FG-NET datasets, the proposed architecture doubles as a recognizer,
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Fig. 5. The example of the recognition results of the proposed recognizer.

achieving real-time speeds of 147 and 136 FPS with a single and double uti-
lization of the assisted bottleneck transformer encoder, respectively. As part of
future endeavors, the proposed facial age group recognizer will be extended to
operate on more cost-effective devices, further supporting applications in Robot
Vision.
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