
Dynamic Obstacle Avoidance in a Complex
Environment using Meta-heuristic Algorithms for

4-wheel Robot
Junmyeong Kim, Kwanho Kim and Kanghyun Jo

Dept. of Electrical, Electronic and Computer Engineering
School of Electronic Engineering
University of Ulsan, Ulsan, Korea

kjm7029@islab.ulsan.ac.kr, aarony12@naver.com, acejo@ulsan.ac.kr

Abstract—Dynamic obstacle avoidance is one of the most im-
portant tasks for autonomous navigation of robots. Accordingly,
several algorithms have been proposed to determine the velocity
at which the robot can drive while avoiding obstacles. Meta-
heuristic algorithms are a class of optimization methods that are
inspired by natural processes and social behavior. This paper uses
meta-heuristic algorithms such as Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) to determine the optimal
velocity. The algorithm contains formulas and methods that help
control the 4-wheel robot. Also, this work are experimented in
a dynamic and complex virtual environment. The experimental
environment is set up as dynamic 45 obstacles. The experiments
are consists of about two methods and six parameter sets for
considering various situation. When implementing to experiment
about obstacle avoidance with proposed methods, collision counts
and travel times are decreased 0.74 times and about 9.88 second
on average with PSO.

Index Terms—Obstacles avoidance, Meta-heuristic, Robotics

I. INTRODUCTION

In recent years, several studies about obstacle avoidance in
robots have been conducted. [1]–[3] Most obstacle avoidance
algorithms consider the position and velocity of obstacles to
determine a path for the robot to avoid obstacles and reach
its destination. However, to implement the obstacle avoidance
of robots in real-environments, it is essential to consider
the physical limitations of the robot and making decisions
regarding its velocity. For estimating a suitable velocity for
the robot in real environment, this work proposes methods
for initializing the solution set with considering previous
velocity and fitness evaluation stages of the Genetic Algorithm
(GA) process. Furthermore, when using the Velocity Obstacle
(VO) method, the paper expands the range of velocities by
considering time to crash and distance between obstacles and
robot. Furthermore, Particle Swarm Optimization (PSO), a
prominent meta-heuristic method, is employed instead of GA
to compare and analyze the proposed approach in more com-
plex experimental scenarios. All experiments are conducted
under the assumption that information of positions, velocities
of obstacles and robot is provided. The main contributions of
this paper are as follows:

• Proposing the modified VO method that considers time to
collision and the distance, thereby expanding the solution
space.

• Suggesting methods for generating the initial solution
set and fitness component for considering the robot’s
velocity.

II. BACKGROUND

A. Artificial Potential Field

Artificial Potential Field (APF) [4] is a simple obstacle
avoidance algorithm based on the principle of generating a
strong force as the distance decreases, similar to gravitational
or electromagnetic fields. When encountering obstacles that
the robot needs to avoid, it generates a repulsive field, creating
the force in the opposite direction of the obstacles. On the
other hand, for the goal that the robot needs to reach, an
attractive field is generated, creating a velocity toward the
destination. By summing up the repulsive velocities for mul-
tiple obstacles and the velocity toward the goal, the algorithm
determines.

B. Velocity Obstacle

VO [5] is a method for determining the velocity space
for avoiding colliding using information about the obstacle’s
velocity. It assumes that both the robot and the obstacles
have a circular shape. Then, the relative velocity between the
robot and each obstacle is calculated to predict whether the
robot will collide with the obstacle in the future. The set
of velocities that are anticipated to result in a collision in
the future is defined as the VO. Additionally, considering the
robot’s current velocity, it defines the set of velocities that the
robot can physically achieve in the next frame as Reachable
Velocity (RV). The area excluding the VO from the RV is
defined as the Reachable Avoidance Velocities (RAV). When
determining the robot’s velocity, the velocity within the RAV
ensures that the robot will avoid collisions with obstacles.

C. Genetic Algorithm

GA [6], a meta-heuristic technique inspired by evolutionary
biology, is used to solve optimization problems. It generates



a set of solutions based on random or predefined rules. Each
solution is called a chromosome, the values within a solution
are called genes, and the set of solutions is called a population.
Subsequently, the fitness of each chromosome is evaluated
for the given problem, and chromosomes with higher fitness
are selected as parents. Through crossover and recombination
using the selected parents, offspring are created by exchanging
portions of the existing chromosomes. Additionally, mutation
probabilistically modifies the values of the offspring to prevent
situations where the algorithm gets stuck in local minima.
This process gradually improves the quality of solutions,
approximating the optimal solution.

D. Particle Swarm Optimization

PSO [7] is a meta-heuristic algorithm that mimics swarm
intelligence in nature to solve optimization problems, similar
to GA. It forms a swarm consisting of multiple particles,
where each particle represents a candidate solution and has
its own position and velocity in the algorithm. The particles
utilize their current position, velocity, locally discovered the
best solution and globally discovered the best solution (swarm
best) within the swarm to update their velocities and their
positions.

III. PROPOSED METHODS

A. Filtering VO

When determining the optimal velocity, this work employed
the VO method to filter out the robot’s velocity. When calcu-
lating VO in a complex environment, the region of velocity
can be limited. However, because of numerous obstacles, the
VO also includes the area where the robot can safely navigate.
To reduce this area, this paper proposed two methods.

1) High collision-time elimination: In Fig. 1, the original
VO is represented by the dashed line, P denotes the positions
of the robot and obstacles, r represents the radius, and v
indicates the velocity. The subscript o corresponds to obstacles
and A represents the robot. If the relative velocity with respect
to an obstacle is vc during a certain time, it can be guaranteed
that there will be no collision with the obstacle within that
time. In other words,the set of velocities whose time until
collision is greater than Tmax is removed from VO. The
minimum distance at which the robot collides with the obstacle
is calculated as in Equation (1).

dmin = (Po − PA)(1−
ro + rA

∥Po − PA∥
) (1)

vc =
dmin

Tmax
(2)

By driving the robot with the velocity vc computed using
Equation (2), collisions before Tmax can be prevented. There-
fore, the blue region in Fig. 1 is used as the VO region that
the robot cannot navigate through.

Fig. 1: Filtering a part of VO. The blue area represents the
filtered-VO. An area of the dashed line represents the original
VO. vc is determined by high collision-time elimination and
the radius of the obstacle is decreased by the distance propor-
tional decrease method.

2) Distance proportional decrease: In the experimental
section of this paper, to compute only the necessary VO for
robot navigation, the VO is calculated for considering the
obstacles whose distance is shorter than a threshold. However,
among the obstacles whose distances are shorter than the
threshold, the VO of distant obstacles has less significance,
allowing for a reduction in the VO region. The scale factor λ
is calculated inversely proportional to the distance, as shown
in Equation (3).

λ =
1

∥Po − PA∥
(3)

B. Fitness Function

The fitness function is used to determine which velocity of
driving in an area other than VO allows the robot to reach
a destination while avoiding obstacles. In the [8], the sum
of two components is used as a fitness function to enhance
safety while achieving faster arrival at the goal. However, if
the optimal velocity is in the opposite direction to the robot’s
current velocity or in a direction where control is not possible,
the robot will not move as desired. In this paper, to address
this issue depicted in Fig. 2, an additional term is proposed
in the fitness function, utilizing three components as shown in
Equation (4).

f =

{
−∞ if vi ∈ V O

αS + βG+ γC otherwise
(4)

1) Safety Component: The component related to safety is
calculated as shown in Equations (5) and (6).

R =

N∑
j=1

PA − Poj

∥PA − Poj∥3
(5)

S(vi) = 1− ∥R− vi∥
vmax

(6)



Fig. 2: The problem of control. voptimal is an optimal velocity
of the situation while Vavailable is a set of velocities that can
be performed by a controller at the next frame.

Equation (5) represents the repulsive component of APF. R
is the velocity at which the robot moves away from the
obstacles. When the robot moves at a velocity similar to R, it
becomes safer from the collision with the obstacles. Equation
(6) calculates the similarity between R and the solution. S is
limited to the range [0, 1], and a higher value indicates safer
velocity.

2) Goal Component: Equation (7) is same with fitness
function in [8] proposed.

G(vi) =
∥vi∥ cos(∆θ)

vmax
(7)

G(vi) has a higher value when the direction is similar to the
goal and the magnitude is closer to vmax. That is, the higher
the velocity toward the destination, the higher the fitness.

3) Control Component: In a situation such as Fig. 2, the
optimal velocity for avoiding obstacles while reaching the
destination is voptimal. However, if the robot is unable to
control its motor torque and steering to achieve the optimal
velocity, it needs to find the optimal velocity within Vavailable.
In this paper, this work proposes a term C A component C
is introduced to ensure that the selected velocity is similar to
the current robot’s velocity.

C(vi) = 1− ∥vA − vi∥
vmax

(8)

As shown in Equation (6), the range of C is constrained to [0,
1], and this term increases the tendency for the robot to move
at a velocity similar to its current velocity.

C. Determining Velocity

To solve a problem such as Fig. 2, the robot’s next velocity
should be in the Vavailable area. However, the distribution of
population is following Fig. 3 (a) in the [8]. In other words,
when generating candidates of velocity, it does not consider
the current velocity of the robot. This paper suggested two
novel methods for initializing the solution set by considering
robot’s velocity vA.

The first method is using accelerations as a solution set
instead of velocities. The robot is unable to accelerate above
a specific value because of the motor’s maximum torque,
steering speed, slip, etc. Therefore, amax is defined as the
maximum acceleration that can be changed during one frame
by the control motion of the robot. If the solution set is
initialized to acceleration considering amax, the expected
velocity vi of the robot can be calculated through Equation
(9).

vi = vA + ai (9)

If the meta-heuristic algorithm is used with the solution set
initialized by Equation (9), the problem shown in Fig. 2 will
not occur.

The second method is to randomly select and filter the
velocities when initializing the solution set by Equation (8).
When the control component of the fitness function is mul-
tiplied by randomly initialized velocities, solutions with too
large a difference from the current velocities are filtered out,
as shown in Fig. 3-(c). By repeating the optimization algorithm
using the solution set, it is possible to select a velocity that is
easy to control.

1) Genetic Alogrithm: The first is generating the chro-
mosomes that have velocity using two initializing methods
proposed. After then, the fitness is calculated about three
components to decide the parent chromosomes with the high-
est fitness value. Offspring is generated with recombination
between two parents. In this paper, the intermediate coordinate
recombination method proposed in [8] is used. The v′ is the
offspring and their components follow Equation (10) and (11).
v1 and v2 represent the velocity of each parent chromosome.
kx and ky are randomly generated weights.

v′x = v1x + kx(v2x − v1x) (10)

v′y = v1y + ky(v2y − v1y) (11)

2) Particle Swarm Optimization: The method for setting
the particle’s initial position p0 is the same as the initial
population used in GA. Each particle’s initial velocity v0
is randomly generated with a constrained range. The next
particle’s position pt+1 is obtained by the sum of the current
position pt and vt that velocity of the particle. Equation (12)
represents this process. vt is calculated using Equation (13).
N means number of total steps, pl is local best position that
discovered by itself and pg is best position among of pl, and
w1, w2 are weight of local and global components. To control
the weight of the previous particle velocity, this work applies
the inertia rate IR. It is set to be the same value as N at
the first time step and decreased at each step. Because of this
process, the weights of the previous velocity are decreased.
Fig. 4 is shown the process of steps in PSO.

pt+1 = pt + vt (12)

vt+1 = (
IR

N
)vt + w1(pl − pt) + w2(pg − pt) (13)



Fig. 3: Comparison of solution sets. 3000 points are randomly selected in each condition. Search space of (b) and (c) is lower
than (a). Thus, it requires less convergence time as well as helping control.

Fig. 4: The process of steps in PSO. If the particle’s situation
is the same as to the left, the new position of the particle
is determined such as right. The blue,red and yellow, purple
mean current position of particle, the the global best position,
the local best position, and next position of particle. black
arrow represents component about vt.

D. Control Method

To control the robot with the desired velocity, a PID
controller is used. The input of the controller is optimal ve-
locity from meta-heuristic algorithms. PID controller outputs
a torque for the robot’s driving with optimal speed. PID
controller only controls torque, not steering. Because the Four
Wheel Steering (4WS) robot can steer their all wheels, the
steering process is easier than Two Wheel Steering (2WS)
robot. When controlling the steering, all wheels are rotated
to desired direction for driving that direction. However, the
stability of the robot will be problematic when the desired
steering angle is too large as shown in Fig. 2. To solve this
problem, the robot applies brake torque for unrealistic steering
angles.

IV. EXPERIMENTS

A. Environment

Experiments are conducted in a virtual environment as
shown in Fig. 5. Parameters of the robot and obstacles are
indicated in Table I and II. PID gains are experimentally
determined. Each obstacle shuttles between two points. When
moving once, the speed is randomly set in the range of
[0, 3]m/s. The size of the stage is (20× 40)m2.

Fig. 5: The environment of experiments. The line segment
from objects represents the velocity. (a) Top view of environ-
ment. (b) View from the robot.

TABLE I: Robot Configuration

Width(m) Height(m) vmax(m/s) amax(m/s2)
0.8 0.8 3 1

Mass(kg) KP KI KD

40 20 0.5 8

TABLE II: Obstacle Configuration

Radius(m) Number Velocity(m/s)
0.25 45 0 ∼ 3

B. Implementation Details

For safe driving, initially, the filtering VO method is not
used and only obstacles with a distance of 5m or less from
the robot are considered to calculate VO. However, it is found
that the best fitness of the algorithm equals 0 because all
the velocities that the robot can select are in the VO region.
Therefore, if the fitness of the determined velocity is 0, the
filtering VO method is used with Tmax = 2, and obstacles
whose distance is shorter than 2m are considered.

When using GA and PSO, the number of solution sets is
set to 100 and repeated 50 times. 20 solutions are exchanged



TABLE III: Results of Experiments

V elocity Acceleration CurrentMethod Set
TravelT ime(s) Collision(times) TravelT ime(s) Collision(times) TravelT ime(s) Collision(times)

1 24.58618 1.4 13.91011 0.5 18.97242 0.97
2 21.14997 2.21 13.14385 1.82 16.12843 0.94
3 20.50068 1.51 13.10333 1.39 15.49436 0.82
4 17.96307 2.03 12.75 1.76 15.50069 1.48
5 15.14577 1.56 12.55 1.51 15.17344 1.31

PSO

6 - - 29.25334 1.54 41.66845 1.51
1 16.75648 0.58 13.68867 1.84 17.83086 1.27
2 16.93558 0.85 12.63149 1.82 19.49191 0.94
3 15.78198 0.6 13.2018 1.67 18.73333 1.93
4 16.04467 1.95 12.74613 2.18 19.08667 2.19
5 15.693 1.84 12.27026 2.51 18.63655 1.93

GA

6 34.10442 0.86 28.16003 1.02 38.13097 1.28

by offspring in GA. Brake torque is applied when the required
steering angle per frame is over 10 ◦.

As shown in Table IV, every experiment is implemented
with 6 sets of parameters. To observe the effect of the control
component, γ is set up as 1 or 2 from Set1 to Set3, and set
to be 0 from Set4.

TABLE IV: Sets of Parameters

Set1 Set2 Set3 Set4 Set5 Set6
α 1 2 1 1 1 2
β 1 2 2 1 2 1
γ 1 1 2 0 0 0

C. Result

To evaluate the performance of methods and effect of pa-
rameters, all experiments are conducted 100 times at each pa-
rameter and method. In Table III, TravelT ime and Collision
represent the averages of the travel time and collision counts
during whole experiments V elocity refers to the method that
uses velocities as the solution sets, Acceleration means the
method that uses acceleration as the population, and Current
indicates the method that considering the previous velocity.

In all experiments of PSO and GA, the minimum collision
time occurs when the weight of γ is non-zero except GA with
acceleration solution set. When comparing the results between
Set1 and Set4, both the original method and the proposed
method showed fewer collision count in Set1. Especially,
when using PSO and acceleration as the solution sets, the
collision count in Set4 decreased by 1.26 compared to Set1.

When using the original populatio method in PSO, the
minimum collision time is 1.4. However, when setting the
population as acceleration and using the method of considering
current velocity, the collision counts are decreased by 0.9 and
0.58. Additionally, for both methods, Travel Time is decreased
by about 10.5 seconds and 10 seconds.

When α is set to be larger than β, it resulted in an increase
of Travel Time by more than double in all cases. Especially,
when using the original population method in PSO and setting
the fitness parameters with Set6, it showed the result where
the robot is unable to reach its destinations.

V. CONCLUSION

To make the controlling robot easier, this work suggested the
modified VO algorithm, novel fitness function, and methods
for initializing the solution set in meta-heuristic algorithms.
Experiments are implemented in the virtual environment with
45 dynamic obstacles. When applying the component for con-
sidering the previous velocity to the fitness function, collision
counts are decreased overall in the experiment. The travel time
and collision count are decreased by about 10 seconds and
0.9 times when using acceleration as the solution set instead
of velocity with the PSO method. The results of experiments
prove improvement in performance.

ACKNOWLEDGMENT

This result is supported by “Regional Innovation
Strategy (RIS)” through the National Research
Foundation of Korea(NRF) funded by the Ministry of
Education(MOE)(2021RIS-003)

REFERENCES

[1] X. Cheng, S. Zhang, S. Cheng, Q. Xia, and J. Zhang, “Path-following
and obstacle avoidance control of nonholonomic wheeled mobile robot
based on deep reinforcement learning,” Applied Sciences, vol. 12, no. 14,
p. 6874, 2022.

[2] M. Al-Mallah, M. Ali, and M. Al-Khawaldeh, “Obstacles avoidance for
mobile robot using type-2 fuzzy logic controller,” Robotics, vol. 11, no. 6,
p. 130, 2022.

[3] R. Singh, T. K. Bera, and N. Chatti, “A real-time obstacle avoidance
and path tracking strategy for a mobile robot using machine-learning and
vision-based approach,” Simulation, vol. 98, no. 9, pp. 789–805, 2022.

[4] Y. Koren, J. Borenstein et al., “Potential field methods and their inherent
limitations for mobile robot navigation.” in ICRA, vol. 2, no. 1991, 1991,
pp. 1398–1404.

[5] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[6] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,

pp. 66–73, 1992.
[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-

ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[8] Z. Gyenes, L. Bölöni, and E. G. Szádeczky-Kardoss, “Can genetic
algorithms be used for real-time obstacle avoidance for lidar-equipped
mobile robots?” Sensors, vol. 23, no. 6, p. 3039, 2023.


