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Abstract—In modern cities, intelligent advertising platforms
have been widely engaged in public areas. A facial attribute
recognition technique is essential to assist these platforms in
delivering suitable adverts for each audience. These platforms
also require a recognition technology that can operate at least
suitably on a CPU device to reduce implementation costs.
This work proposed a lightweight multi-label CNN-Transformer
architecture with an efficient inception block (EIB) and squeeze
channel transformer encoder (SCTE) to perform facial attribute
recognition efficiently. EIB is used to extract face features in
multi-scale and levels supported by SCTE in improving its
feature map’s quality. The proposed architecture produces fewer
parameters with low operations and gains competitive accuracy
on the CelebA and LWFA datasets consisting of images with
multi-label. Moreover, the proposed architecture integrated with
face detection can perform sufficiently on a CPU configuration
in real-time with 21 frames per second (FPS) using 224× 224
input size of face area image.

Index Terms—Convolutional Neural Network (CNN), Fa-
cial Attribute Recognition, Multi-label CNN Transformer, Self-
Attention Module

I. INTRODUCTION

Advertising is an essential sector in accelerating economic
and social development. Advertising can increase sales, build
brand awareness, provide a competitive advantage, reach and
engage potential customers, and be a cost-effective marketing
channel for businesses. With the advancement of artificial
intelligence and information technology, intelligent advertis-
ing communication methods are constantly evolving. Digital
signage, as one of the advertising platform, has become
progressively across-the-board and appear in public areas in
modern cities [1], [2], including department store, airport,
tourism attraction, etc. This platform’s presence can boost

retail activity and elicit positive consumer responses [3]. As
a new advertising technique employing multimedia screens
board, digital signage can deliver the dynamic customiza-
tion of promotional content [4]. However, this platform still
suffers from presenting targeted advertising and promotion,
i.e., providing promotional content to audiences who may be
interested in the advertised products, leading to expending a
not optimal budget [5].

In recent years, facial attributes analysis has drawn much
interest from the computer vision community due to its
widespread applications, including face recognition [6], face
image synthesis [7], and face retrieval [8]. Moreover, this
technology can also be used to support an advertising task. For
example, the advertising platform can recognize the attributes
used by or attached to the audience facing the platform,
such as heavy makeup, bushy eyebrows, bald head, wearing
a hat, eyeglasses, lipstick, etc. Thus, the platform can provide
advertising related to these attributes. This mechanism can
make the advertising more targeted. Even though the facial
attributes recognition task is merely an image-level classifica-
tion problem, it is challenging because of the low speed of
the classification process and the variety of facial appearances
brought on by notable variations in viewpoint, illumination,
etc [9].

The majority of state-of-the-art facial attribute classification
techniques utilize Convolutional Neural Networks (CNNs) to
classify facial attributes due to CNNs’ exceptional effective-
ness. Liu et al. [10] applied a pair of CNNs (LNets+ANet)
for face localization and facial attribute recognition. Hand and
Chellappa [11] proposed a multi-task CNN used to divide
attribute classifiers into groups, integrated with an auxiliary
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Fig. 1. The proposed facial attribute recognition architecture.

network (MCNN-AUX) that utilized the relationships among
the facial attributes to improve classification performance.
Novel multi-task learning of cascaded CNN called MCFA [12]
was offered to predict numerous facial attributes.

A deep CNN-based method, SPLITFACE [13], was also
introduced to predict facial attributes, especially in partially
occluded face scenarios. Mao et al. [9] proposed a novel deep
multi-task multi-label CNN, dubbed DMM-CNN, used to op-
erate facial attribute classification. The multi-task mechanism
was designed to extract features for two groups of attributes,
objective and subjective. Recently, a multi-zone transformer
based on self-distillation (MZTS) [14] is also offered for
facial attribute classification. The last two mentioned works
provide the highest performance with 91.70% and 91.66%
in accuracy on the CelebA dataset, respectively. However,
they also bring heavy parameters and computation, leading
to unsuitable implementation on low-cost or CPU devices.
In the actual application of digital signage, facial attribute
recognition is required to run on low-cost devices to push
down implementation costs [15], [16]. This platform demands
an efficient recognition architecture suitable for operating on
low-cost or CPU devices in real-time while maintaining its
performance.

A lightweight multi-label CNN-Transformer architecture
with an efficient inception block (EIB) and squeeze channel
transformer encoder (SCTE) is proposed in this work. The
efficient inception block employs multi-kernel-size and multi-
level in an efficient manner to extract face features in high-
level feature maps. The squeeze spatial transformer encoder
is used to improve the feature map’s quality. As a result,
the architecture can perform facial attributes accurately and
efficiently. Here is a summary of the main contributions of
this work:

1) A lightweight multi-label CNN-Transformer architecture
with soft computation and generating low parameters is

offered to recognize facial attributes applied to support
intelligent advertising. This architecture gains very com-
petitive accuracy compared with other architectures on
two datasets, CelebA [17] and LFWA [18].

2) An efficient inception block (EIB) is proposed to es-
pouse the backbone extracting the facial features ef-
ficiently. The EIB applies multi-kernel-size and multi-
level convolution layers to capture different scale areas
and levels to enhance the variety of the feature map
efficiently.

3) A squeeze channel transformer encoder (SCTE) is also
presented as an enhancement module to acquire the spa-
tial relationship representations of the features map. It
efficiently stimulates the feature map quality, enhancing
the recognition performance.

The remains of this paper are systematized as follows.
Section II explains the architecture proposed in this work.
Section III describes the implementation setup for the training
and testing process. Section IV provides and discusses the
experiment and results. Finally, Section V concludes the paper.

II. PROPOSED ARCHITECTURE

The proposed lightweight multi-label CNN-Transformer ar-
chitecture for facial attribute recognition generates 2,111,292
parameters. This architecture consists of backbone and classi-
fication modules, as illustrated in Fig. 1.

A. The Backbone

The backbone module, used to extract facial features from
a face, engages nine of 3× 3 convolution layers sequentially,
which grows from 32 to 256. Batch Normalization (BN) [19] is
applied in every convolution layer, followed by Sigmoid Linear
Unit (SiLU) activation [20], to deal with the gradient issue.
This backbone also involves a shortcut connections technique
as a residual mapping [21] in the last two convolution layers
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Fig. 2. The proposed Efficient Inception Block (EIB).

of 128 and 256 channels to construct the output. Due to the
sequential convolution layers, this backbone applies four times
downsampling using 2×2 max-pooling operations with strides
2. Applying only nine convolution layers causes the architec-
ture is not deep enough to extract the facial features. Therefore,
we propose an efficient inception block (EIB) as an additional
extractor and a squeeze channel transformer encoder (SCTE)
to generate spatial relationship representations efficiently. Both
parts are placed and performed two times after the last max-
pooling layer and before the global average-pooling operation.

B. Efficient Inception Block (EIB)

Motivated from the inception block [22] to go deeper in ex-
tracting the image features, this module applies four branches
of the convolution layer shown in Fig. 2. Unlike the original
inception block that uses the same number of channels as an
input, the proposed efficient inception block splits the input
feature map X into four elements [X1,X2,X3,X4] based
on channel axes, then performs and combines convolution
operations with various kernel sizes and levels. To reduce the
number of parameters, we apply a depthwise convolution layer
in the 5 × 5 and second level of 3 × 3 branch formulated as
follows:

EIB(X) = X+ Concat[δ(BN(C1(DO(X1)))),

δ(BN(C3(DO(X2)))),

δ(BN(DWC3(DO(δ(BN(C3(DO(X3)))))))),

δ(BN(DWC5(DO(X4))))],

(1)

where C1, C3, DWC3, and DWC5 are convolution layers
with 1× 1, 3× 3 kernel sizes, depth-wise convolution layers
with 3× 3, and 5× 5 kernel sizes, respectively. BN and DO

indicate batch normalization and dropout operations, respec-
tively. δ is Scaled Sigmoid Linear Unit (SiLU) activation, and
Concat is the concatenate operation.

C. Squeeze Channel Transformer Encoder (SCTE)

Following the victorious use of the Vision Transformer
(ViT) technique [23] inspired by the Transformer model [24],
modern networks focus on enhancing the self-attention mech-
anism. However, the overhead of the transformer self-attention
approach cannot be applied optimally for vision tasks on low-
cost devices, since it results in greater multiplication and
addition operations. This work proposes a Squeeze Channel
Transformer Encoder (SCTE) to relieve the high operations
problem. This encoder first squeezes the feature map in spatial
axes by aggregating spatial information across the channel
using 1× 1 convolution operation with Rectified Linear Unit
(ReLU) activation to produce a thin query, key, and value, as
shown in Fig. 3. This operation will compute a tensor input
X of shape H × W × C into a query (Q), key (K), and
value (V) projections with shape H × W × 1, followed by
reshaping operation to produce a Q, K, and V matrix with
shape H × W . After that, we compute these matrices using
scaled dot-product attention (SDPA) represented as follows:

SDPA (Q,K,V) = softmax

(
QKT

√
dk

)
V, (2)

where T is a transpose matrix operation and dk is a scal-
ing factor to control the softmax temperature. The second
reshaping operation is also performed to restore the output
matrix shape into H × W × 1. In this encoder, the SDPA
will compute the relationship between each other of spatial
information rows. We also apply the multi-head attention
mechanism to perform Squeeze Channel Multi-Head Attention
(SCMHA). This mechanism linearly projects the Q, K, and V
head (h) times with distinct, learned linear projections using
1×1 convolution operation with Rectified Linear Unit (ReLU)
activation, followed by SDPA in a parallel process. All output
from all heads are concatenated and once again projected using
1×1 convolution operation with a dropout (DO) and Rectified
Linear Unit (ReLU) activation, resulting in the final tensor.
At the last stage, we perform a linear projection using 1 × 1
convolution operation with a Rectified Linear Unit (ReLU)
activation. We utilize a residual connection [21] around the
SCMHA and last convolution layer.

D. Classification Module

This classification module is employed to classify facial
features extracted by the backbone to compute the probability
of each facial attribute class. This module has two fully
connected (FC) layers with 128 and 40 units, respectively. The
first FC layer applies Batch Normalization (BN) and Rectified
Linear Unit (ReLU) activation, while the last FC layer uses
only Sigmoid activation. The Sigmoid activation will convert
the input into the independent probability score. Therefore,
multiple labels potentially have a great score independently,
which means the instances belonging to multiple labels or
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Fig. 3. The proposed Squeeze Channel Transformer Encoder (SCTE).

classes. Then, the Cosine Similarity loss is used to compare
the prediction result vector with the ground truth vector.

III. IMPLEMENTATION SETUP

The training process of the proposed architecture in this
work is performed on NVIDIA GTX1080Ti 11GB, using
CelebA and LFWA datasets implemented on Tensorflow and
Keras framework. It utilizes a data augmentation strategy,
applying rotation, rescaling, shifting, shearing, zooming, and
horizontal flipping to enhance knowledge and prevent overfit-
ting problems. The initial learning rate is set to 10−3 and will
decrease to 75% when there is no revision in 5 epochs. The
Adam optimizer is used to rectify the weight based on the
Cosine Similarity loss. The dk value in SCTE is empirically
set to be 2. The proposed architecture is trained with a batch
size of 32 in 30 and 60 epochs for CelebA and LFWA
datasets, respectively. Moreover, an Intel Core i7-9750H CPU
@ 2.60GHz with 20GB RAM is utilized to test the proposed
architecture in the real-time scenario.

IV. EXPERIMENTAL RESULTS

A. Evaluation on Datasets
1) CelebA: CelebFaces Attributes (CelebA) dataset consists

of 202,599 face images with multi-label covering high pose
variations and background clutter labeled with 40 binary at-
tributes. This dataset provides the aligned and cropped images
version. Following the previous works [9], [14], this dataset
is split into 162,770 for training, 19,867 for validation, and
19,962 for testing. By employing only 2,111,292 parameters,
the proposed architecture gains 91.50% in average accuracy
and placed third best, which differed by 0.2% and 0.16%
with the best and the second best, respectively, as seen in
Table I. Nevertheless, the proposed architecture has far fewer
parameters. The detailed accuracy for each facial attribute of
the CelebA dataset is shown in Fig. 4.

TABLE I
THE EVALUATION RESULTS ON CELEBA DATASET.

Architectures Input Size
(Pixel)

Data
Augmentation

Number of
Parameters

(Million)

Average
Accuracy

(%)
PANDA [25] 64× 64 No - 85.43
LNets+ANet [10] 227× 227 Yes 100 87.33
SPLITFACE [13] 196× 196 Yes 26.09 90.61
MOON [26] 178× 218 No 119.7 90.94
MCFA [12] 224× 224 No 260 91.23
SOP [27] 224× 224 No 4.99 91.26
MCN-AUX [11] 224× 224 No 16 91.29
MZTS [14] 224× 224 No 85.83 91.66
DMM-CNN [9] 224× 224 No 360 91.70
Proposed 224× 224 Yes 2.11 91.50

TABLE II
THE EVALUATION RESULTS ON LFWA DATASET.

Architectures Input Size
(Pixel)

Data
Augmentation

Number of
Parameters

(Million)

Average
Accuracy

(%)
PANDA [25] 64× 64 No - 81.03
LNets+ANet [10] 227× 227 Yes 100 83.85
MCFA [12] 224× 224 No 260 83.63
SPLITFACE [13] 196× 196 Yes 26.09 85.82
MCN-AUX [11] 224× 224 Yes 16 86.31
DMM-CNN [9] 224× 224 No 360 86.53
MZTS [14] 224× 224 No 85.83 86.73
Proposed 224× 224 Yes 2.11 86.45

2) LFWA: Labeled Faces in the Wild Attributes (LFWA)
dataset consists of 13,143 face images with multi-label cover-
ing different lighting, poses, ages, occlusions, and expressions.
This dataset is labeled with 73 binary attributes. Following
the previous works [9], [14], we select the same 40 attributes
from LFWA as CelebA. This dataset is split into 6,572 for
training and 6,571 for testing. The proposed architecture gains
86.45% in average accuracy, and placed third best, which
differed by 0.28% and 0.11% with the best and the second
best, respectively, as seen in Table II. Even so, the proposed
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Fig. 4. Detail accuracy for each facial attribute on CelebA and LFWA datasets.

TABLE III
THE MODEL ANALYSIS ON CELEBA DATASET.

Data
Augmentation EIB SCTE MFLOPs Number of

Parameters

Average
Validation
Accuracy

Average
Testing

Accuracy
(%)

6,123 1,944,488 91.92 79.93
✓ 6,123 1,944,488 91.96 91.37
✓ ✓ 6,186 2,107,688 91.98 91.42
✓ ✓ ✓ 6,188 2,111,292 91.96 91.50

architecture generates distant fewer parameters. The detailed
accuracy for each facial attribute of the LFWA dataset is also
shown in Fig. 4.

B. Ablation Study

1) Model Analysis: This ablation study is conducted on
the CelebA dataset by revoking the module and then com-
puting the average accuracy to investigate the effect of each
component in the proposed architecture. We also investigate
the impact of the data augmentation strategy on recognition

TABLE IV
NUMBER OF HEAD ANALYSIS ON CELEBA DATASET.

Number of
Heads

Number of
Parameters MFLOPs

Average
Accuracy

(%)
1 2,109,748 6,187 91.42
2 2,111,292 6,188 91.50
3 2,112,836 6,188 91.48
4 2,114,380 6,189 91.47
5 2,115,924 6,190 91.43

TABLE V
RUNTIME EFFICIENCY WITH DIFFERENT INPUT SIZE ON INTEL CORE

I7-9750H CPU @ 2.60GHZ WITH 20GB RAM.

Input Size
(Pixel)

Number of
Parameters MFLOPs

Average
Accuracy

(%)

FAR
(FPS)

FAR
+ FD
(FPS)

224× 224 2,111,292 6,188 91.50 23.14 21.16
112× 112 2,111,292 1,547 91.00 72.57 56.56
56× 56 2,111,292 386 90.08 143.37 92.61

FAR indicates the Facial Attribute Recognition
FAR + FD indicates the Facial Attribute Recognition integrated with Face Detection

performance. As can be seen in Table III, performing the data
augmentation strategy to overcome the overfitting problem
can increase the average accuracy significantly by 11.44%.
Moreover, the proposed EIB and SCTE, with only generating
more few parameters, can enhance the average accuracy by
0.05% and 0.08%, respectively.

2) Number of Head Analysis: This analysis is conducted
by setting the different numbers of heads on the SCTE and
then computing the average accuracy to investigate the optimal
number of attention heads. In the proposed architecture, using
a single head does not improve performance, as shown in Table
IV. On the other side, too many numbers of heads also do
not provide optimal average accuracy in this scenario. The
proposed SCTE with two heads provides the highest average
accuracy in this work.

C. Runtime Efficiency

The practical application of digital signage requires facial
attribute recognition, integrated with face detection, to run
on a CPU device in real-time to suppress implementation
costs. In this scenario, we investigate the runtime of the
proposed architecture in three different input sizes, 224×224,
112 × 112, and 56 × 56 pixel. Table V indicates that the
smaller input size will generate lower FLOPs, leading to
performing faster recognition. However, it will decrease the
average accuracy because a smaller size of input images will
acquire less information. We also integrate the proposed face
attribute recognition with an efficient face detector named
LWFCPU [28] that generates few parameters. The proposed
face attribute recognition architecture will use the Region of
Interest (ROI) of the face, which has been extended to cover
the entire head and neck area, which comes from the face
detection operation, as an input. It will be cropped and resized
to a specific size appropriate for the input size image of the
proposed face attribute recognition architecture. As a result,
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Fig. 5. Some examples of facial attribute recognition results from the proposed recognizer. It shows the top six facial attributes on the screen based on the
highest probability value of the label or class, sorted from the highest value from the bottom (the attribute that appears in the lowest position on the screen
has the highest probability value).

the proposed architecture can operate 23.14 frames per second
(FPS) in recognizing face attributes of the human face and
21.16 FPS when integrated with face detection using 224×224
input size of face area image. This result indicates that the
proposed architecture is sufficient to implement on a CPU
device to support intelligent advertising platforms, such as
digital signage.

D. Qualitative Results and Discussion

Fig. 5 displays the facial attribute recognition result of the
proposed architecture on the CelebA dataset, integrated with
face detection. This scenario only shows the top six facial
attributes on the screen based on the highest probability value
of the label or class, sorted from the highest value from the
bottom (the attribute that appears in the lowest position on
the screen has the highest probability value). The proposed
recognizer can recognize facial attributes from the face such as
eyeglasses, wearing a hat, smiling, young, straight hair, black
hair, high cheekbones, no beard, and even gender.

Even though the CelebA dataset only has a male gender
label and does not have a female gender label, it is possible
to recognize which face is female based on the probability
value of the male gender label. If the value of the male class
is extremely low or even close to zero, it reflects that the
detected face is the opposite of the male, which is female. In
Fig. 5, the green bounding box of the face represents a male,
while the yellow one indicates a female. The red bounding
box describes the face ROI derived from the face detection
operation.

V. CONCLUSION

This work proposes facial attribute recognition using a
lightweight multi-label CNN-Transformer architecture with
low operation. This work offers an efficient inception block
(EIB) and squeezes channel transformer encoder (SCTE) to
help the architecture rapidly extract various facial features
and enhance their quality. The proposed architecture gained
competitive performance compared to the state-of-the-art on
CelebA and LFWA datasets. Moreover, the proposed architec-
ture can perform sufficiently on a CPU configuration in real-
time with 23 FPS in recognizing face attributes of the human
face and 21 FPS when integrated with face detection using
224×224 input size of face area image. In future work, other
methods will be sought to make recognition architecture more
efficient and perform faster on a CPU device, especially with
224× 224 input size of face area image that provides higher
accuracy than using the smaller size of the input image.
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