
Vehicle Tracking System in Drone Imagery with YOLOv5 and Histogram

Jehwan Choi1†, Seongbo Ha2, Youlkyeong Lee3 and Kanghyun Jo4

1,2,3,4Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, Korea
1(Tel: +82-52-259-1664; E-mail: jhchoi@islab.ulsan.ac.kr)
2(Tel: +82-52-259-1664; E-mail: sbha@islab.ulsan.ac.kr)
3(Tel: +82-52-259-1664; E-mail: yklee@islab.ulsan.ac.kr)

4(Tel: +82-52-259-2208; E-mail: acejo@ulsan.ac.kr)

Abstract: In this study, we propose a vehicle tracking system targeting drone footage. The proposed system utilizes
the real-time object detection network, YOLOv5, to acquire vehicle location information and segment the vehicle regions
based on it. The system analyzes the histogram of the segmented regions, compares them with past frames, and determines
whether the objects are identical to perform tracking. To enhance the efficiency of histogram comparison, the algorithm
is designed to compare objects only within a certain radius using coordinate information and past frame object data.
The MOTA, a representative tracking evaluation metric, showed 90%. However, it is important to consider the limited
environment of data usage and experiments. The results of this study suggest that the real-time performance of the vehicle
tracking system can be utilized in various fields such as traffic control, vehicle management, and accident response.
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1. INTRODUCTION

The Vehicle Tracking System (VTS) is a technology
that identifies and tracks the location of vehicles in real-
time, and is used in areas such as Intelligent Transporta-
tion Systems (ITS) and autonomous vehicles. Up until
now, vehicle tracking has primarily been done using the
Global Positioning System (GPS). However, with the re-
cent advancement of deep learning technologies, research
on camera-based VTS technology is being actively con-
ducted [1–4]. In addition, as interest in drones has in-
creased due to their lesser susceptibility to weather con-
ditions and terrain, as well as their fast movement, which
makes them more effective for real-time analysis sys-
tems, many researchers have introduced computer vision
technology to videos captured by drones to conduct VTS
research. Examples include research on object tracking
under extreme conditions [5], which uses visual informa-
tion such as the appearance or shape of the target, along
with motion-related information like the target’s speed
and direction, and studies on real-time traffic monitoring
systems using OpenCV-based UAVs [6], which conduct
experiments and evaluate them in comparison with high-
precision GPS benchmarks. There are also studies on
UAV detection and tracking benchmarking research [7]
utilizing the latest deep learning networks [8–11], and pa-
pers proposing effective multi-object tracking algorithms
by introducing an ID update module to address issues
such as irregular camera movements and visual changes
[12]. In this paper, we also conduct research on a VTS
algorithm utilizing the real-time object detection network
YOLOv5 [13].

According to [14], object tracking algorithms are clas-
sified into three main parts: object detection, object clas-
sification, and object tracking, which are carried out se-
quentially, with methods for each stage explained. The
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(a) Urban traffic congestion road scene

(b) classifying vehicles with similar colors and features

Fig. 1: The challenge of object tracking in drone videos

core of the tracking algorithm is described as finding an
approximation of the object’s path in a moving scene. In
other words, by comparing how similar the path of the
moving object is to the previous frame, the algorithm can
recognize it as the same object and track it. In this paper,
using YOLOv5, we predict the location, class, and accu-
racy of vehicles (bike, motorcycle, car, bus, truck) in each
frame, then set the region of interest (ROI) based on these



Fig. 2: Overall framework of VTS using detection results and histogram of cropped images

results. We then determine the same object through his-
togram calculations. Histograms are important tools for
analyzing features such as color, brightness, and texture
in images. They represent the frequency of these features
in an image in the form of a bar graph. By quantifying and
comparing image characteristics through histograms, the
accuracy of identifying the same object can be improved.
Calculating and tracking an object’s coordinates is a com-
monly used method. Since most image processing tech-
niques convert videos into several frames per second for
computation, the difference in object movement between
consecutive frames is insignificant. However, due to the
unique characteristics of drone footage, histogram calcu-
lations are necessary within the ROI. As shown in Fig. 1,
unlike footage taken from the ground, drones can capture
and analyze a wide area. As a result, more objects are in-
cluded, and in particular, there is a high likelihood of ve-
hicles being densely distributed in congested urban areas.
Moreover, with a large number of vehicles with similar
colors present, it is crucial to properly utilize the detected
vehicle’s coordinates and image features.

In this paper, we propose an algorithm that utilizes
the coordinates of detected objects and histogram cal-
culations to effectively track objects detected in drone
footage. We use the real-time object detection model
YOLOv5 to obtain the object’s coordinates and utilize the
center point of the acquired coordinates (top-left, bottom-
right) as the representative position of the object. All de-
tected objects search for existing objects within a certain
range in the previous frame based on their representative
position and determine whether they are the same object
through histogram comparison. By changing the index of
the objects identified as the same object to the current
object’s label, a continuous VTS implementation is pos-
sible. The main contributions of this article are summa-
rized as follows:
• We propose an efficient vehicle tracking algorithm us-
ing coordinates of objects and histograms with drone im-
agery.
• We apply histogram operations only to objects that ex-
ist within a certain range based on their coordinates, in
order to increase the accuracy and reduce the time for
identifying the same object in consecutive frames.

2. PROPOSED WORK

2.1. Overall Framework

Object tracking is mainly used in videos. In this paper,
the VTS network also takes video as input. The overall
framework is illustrated in Fig. 2. The input video is con-
nected to the object detection network, YOLOv5. When
a video is input, the YOLOv5 network splits it into 30
FPS for processing. The object detection network out-
puts a vector V⃗ =(x1, y1, x2, y2, confidence, category)
representing the detected object’s position, accuracy, and
category. If 10 objects are detected in a single frame, 10
vectors are generated. However, since the order of ob-
ject prediction and the number of detected objects are not
constant, the results are compared between consecutive
frames. In this paper, we maintain the detection results of
the most recent 5 frames. To minimize calculations, we
consider the vehicle’s speed and only add vehicles within
a certain range in the recent 5 frames to the histogram
calculation list. As the probability of a wider movement
range increases for older frames, we gradually expand the
search range. Vehicles captured within the range are de-
termined to be the same object or not through HSV his-
togram calculations. Once the histogram and coordinate
comparison process is finished, ID updates occur. ID up-
dates are applied to all objects detected in each frame,
and when the input image displays the object detection
results and ID, the final result video is completed.

2.2. Object Matching

The process of verifying whether objects detected in
consecutive frames are the same object can be seen in
the content within the black dashed box in Fig. 2. In the
object list for the most recent 5 frames, not only the de-
tection results are stored, but also the continuously up-
dated ID, histogram, and location information. Once the
centroid calculation for all detected objects in the current
frame is completed, the candidate search is performed in
the most recent 5 frames for histogram calculation. The
detailed process of candidate search is shown in Fig 3.



Fig. 3: Schematic Image of Fixed Radius Exploration
Process for Utilizing Past Frames in Histogram Compar-
ison Candidate Search. Red color represents framet−1,
blue color represents framet−3, yellow color represents
framet−5.

2.2.1. Histogram Comparison Target Extraction
Object tracking requires identifying the same object in

consecutive frames and maintaining its assigned ID. It is
essential to determine which object in the current frame
was located where in the previous frame, and what value
it had as an ID. As mentioned earlier, drone footage con-
tains dozens of vehicles, and many vehicles with simi-
lar characteristics exist, making it more efficient to ex-
tract and compare candidate vehicles with a high prob-
ability of being the same object. The candidate extrac-
tion process consists of coordinate-based search followed
by histogram calculation. Fig. 3 shows the extraction of
histogram comparison candidates only within a certain
range after coordinate-based search.

The search is conducted within a certain radius from
the centroid of the current vehicle, which is the target
for ID update, starting from framet−1 to framet−5.
Through various experiments at different altitudes and
angles, it has been observed that the single-object move-
ment speed per frame is around 100 pixels. Therefore, as
we go back in time, we increase the radius by 100 pixels
for each past frame and add the vehicles within that range
to the comparison target list.

2.2.2. Histogram Similarity
In this paper, we use histograms, a fundamental con-

cept in computer vision, for calculating the similarity be-
tween objects. As previously mentioned, histograms use
color-related features of an image as the main parame-
ters and compute the frequency of these color features
as the result. The color spaces commonly used for cal-
culating image histograms are RGB(Red, Green, Blue)
and HSV(Hue, Saturation, Value). In this paper, we use
the HSV histogram. The HSV color space is suitable
for object tracking in drone footage, where the field of
view(FOV) can change drastically, as it processes color
information separately from saturation and brightness.
This allows the color information to remain consistent

even as the object gets closer or farther away.
The histogram similarity is calculated for each vehicle

in the comparison list obtained in Section 2.2.1 and the
vehicle targeted for ID update. After calculating the sim-
ilarity between the target vehicle’s histogram and the his-
tograms of the vehicles in the list, the past ID value with
the largest similarity is replaced with the current vehi-
cle’s index. The four representative histogram similarity
measurement methods are Correlation, Chi-Square, Inter-
section, and Bhattacharyya distance. In this paper, we use
the correlation method due to its robustness to noise. It is
suitable for measuring linear relationships of continuous
features such as color and texture. The formula for calcu-
lating the correlation histogram is defined as:

Histcorr =

∑
((H1(i)−H1) ∗ (H2(i)−H2))√∑
(H1(i)−H1)2 ∗

∑
(H2(i)−H2)2

(1)

Once the histogram calculation for all detected vehi-
cles in the current frame is completed, the ID update is
performed using the index of the object with the maxi-
mum value. The schematic image of the histogram simi-
larity result comparison is shown in Fig. 4.

2.2.3. Final Algorithm for VTS

Algorithm 1 Histogram Comparison Target Extraction
Require: A drone video sequence
Ensure: The matched objects Vm

1: Comparison list = []
2: for idxm, histm, coordinatem in framet do
3: idxm = -1
4: Get the Cm

5: for each frame in frame previous do
6: if distance(Cn,Cm)<200 at framet−1 then
7: Comparison list.append(Vm)
8: else if distance(Cn,Cm)<400 at framet−2 then
9: Comparison list.append(Vm)
10: else if distance(Cn,Cm)<600 at framet−3 then
11: Comparison list.append(Vm)
12: else if distance(Cn,Cm)<800 at framet−4 then
13: Comparison list.append(Vm)
14: else if distance(Cn,Cm)<1,000 at framet−5 then
15: Comparison list.append(Vm)
16: end if
17: end for
18: Highest result = 0
19: for each vehicle in Comparison list do
20: result = Calculation histogram()
21: if result > Highest result and result > 0.85 then
22: index match = index current
23: else if index match == -1 then
24: index match = New ID()
25: end if
26: end for
27: end for

In Section 2.2.1 and 2.2.2, most of the vehicles in each
frame are matched after going through the processes.
However, due to the characteristics of deep learning mod-
els, it is possible that an object may not be detected, or a
new vehicle may appear, making it impossible to match
with existing vehicles. In these cases, a new ID must be
created instead of updating the existing ID. New ID cre-
ation conditions include cases where detection has oc-
curred, but the centroid distance is far or the similarity



Fig. 4: Two representative examples of reduced accuracy when using Cosine similarity. Inconsistency in the creation of
top-left and bottom-right coordinate vectors due to irregular bounding box generation for each frame (left), and the process
where the vector direction of each vertex of the bounding box is reversed due to a rapid angle change of the drone (right).

does not exceed the threshold value. To distinguish be-
tween these cases, initialize all detection result indices
in the current frame to -1. Since the ID is updated when
matched with an object from a past frame, the current
index is not important. If both the centroid distance cal-
culation and histogram similarity are not satisfied, the in-
dex of the object remains -1. If this state persists until
the end of the comparison calculation process, the ob-
ject is considered as a new vehicle, and an ID is assigned
by adding 1 to the largest existing ID value. The overall
VTS algorithm can be summarized as Algorithm 1,where
framet is current frame, Vm is the matched vehicles in-
cluding IDm, histm, and coordinatem, C is the cen-
ter point of coordinate, m is the number of vehicles in
framet, n is the number of vehicles in frameprevious
and frameprevious is a set of framet−1 to framet−5.

3. EXPERIMENT
3.1. Dataset

The data used for the experiment are videos from the
autonomous flight drone dataset [15] built by the Univer-
sity of Ulsan in 2020. A total of four videos were used for
the experiment, and information about altitude and angle
can be found in Table 1.

Table 1: The information of drone data.

Region Altitude(m) Angle(°) Time(s)

Ulsan Samhogyo 90 60

12050 50

Ulsan Taehwagyo 60 45
40 30

3.2. Ablation Study
In this paper, we used the midpoint of the top-left and

bottom-right coordinates of the bounding box(bbox) to
determine the center of the vehicle for identifying the
same object. The directionality of the detected object
can also be a parameter for determining the same object.

Therefore, we measured the similarity of the vectors of
the two coordinates themselves instead of the midpoint
of the coordinates. However, the accuracy using cosine
similarity significantly decreased. There are two reasons
for this and Fig. 4. is helpful for your understanding.

Firstly, the inconsistent size and coordinates of the
bbox. Since object detection is based on a deep learn-
ing model, the size of the bbox generated in each frame
is not constant, and even if the size is the same, it does
not always fit the object precisely. This results in incon-
sistent vector direction and magnitude when converted to
vectors.

Secondly, the motion characteristics of the drone.
Drones are airborne vehicles, so their degrees of freedom
are higher than those of ground-based objects. They move
not only forward and backward but also up, down, left,
and right. Therefore, it is difficult to maintain consistent
directionality when calculating vectors. Consequently, it
is uncertain to determine the direction of movement us-
ing the similarity of the movement vectors of the bbox
coordinates when tracking objects in drone videos using
deep learning models.

3.3. Evaluation Metric
To evaluate the performance of a VTS, we utilize

evaluation metrics such as multiple object tracking ac-
curacy(MOTA), false negatives(FN), false positives(FP),
and ID switches(IDs). MOTA is a comprehensive metric
for evaluating object tracking performance, and its for-
mula is as follows:

MOTA = 1− FP + FN + IDs
GT

(2)

FN refers to cases where the object actually exists but
the system fails to detect it, while FP refers to cases where
the object does not actually exist but is incorrectly de-
tected as existing. IDs refer to cases where the same ID is
assigned to different objects or different IDs are assigned
to the same object.



Fig. 5: The result image of Ulsan Samhogyo area’a 90m 60°

Fig. 6: The result image of Ulsan Taehwagyo area’a 60m 45°

Fig. 7: The result image of Ulsan Samhogyo area’a 50m 50°

4. RESULT

In this study, the proposed VTS was tested using an
autonomous drone dataset that does not have ground
truth(GT) for tracking. The results of applying the pro-
posed VTS to real drone data are illustrated in Fig. 5, 6,
and 7. To calculate the accuracy, we extracted 5 seconds
of result images from the Ulsan Samhogyo area’s 50m
50° footage and applied the evaluation metrics. The ac-
curacy was measured to be higher than other state-of-the-
art models, however, it is essential to consider that the
learning and object detection, as well as tracking, were
applied in a limited situation using this dataset. The se-
lection of the radius for extracting histogram comparison
candidates based on the drone data’s various altitudes and
angles significantly impacts VTS accuracy. The evalua-
tion metrics for each case are shown in Table 2.

Table 2: The results of proposed VTS

GT MOTA FP FN IDs
4,306 90% 1 401 28

5. CONCLUSION

In this paper, we conducted research on methods to
detect and track vehicles in drone imagery. For vehicle
detection, we used the YOLOv5, a one-stage detection al-
gorithm. The YOLOv5 network provides the top-left and
bottom-right bbox coordinates of detected vehicles. We
determine the center of the vehicle by taking the midpoint
of the two coordinates, and search for vehicles within
a certain range from the center in the past five frames.
The vehicles found are then compared with the vehicles



detected in the current frame using the HSV histogram
similarity to determine whether they are the same object
in consecutive frames. After confirming the identity of
the same object, the vehicle tracking system is completed
through an ID updating process. Although there is no
ground truth for tracking in the drone dataset used in the
experiments, which may result in somewhat insufficient
accuracy calculations, it can be confirmed from Figures 5,
6, and 7 that tracking is working well for detected objects.
The remaining challenges include establishing a standard
for the range of vehicle movement between frames, as
the altitude and angle differ for each drone video. In ad-
dition, since the accuracy of the deep learning model’s
object detection is directly related to the performance of
the tracking algorithm, improving the performance of the
object detection model is also future work.
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