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Abstract—This paper proposes a vehicle state classification
model utilizing drones for achieving highly reliable autonomous
driving vehicles. The model offers a wide field of view, providing
improved data for the autonomous driving assistance system
by considering the relationships with existing vehicles in the
video. The object detection model, based on Convolutional Neural
Networks, is trained using image data collected by drones.
The YOLOv5 model is employed for detecting vehicles on the
road. Detected vehicles are cropped into five candidate regions
based on proximity, which serve as input data for the vehicle
state classification model. The proposed model introduces a
depthwise CSP block to effectively learn high-density layers
and facilitate efficient weight learning. Additionally, a method
that leverages deformable residual block to set receptive fields
relying on features extracted from the fixed receptive field of the
conventional convolutional kernel is proposed, enabling faster
identification of critical features. Experiments are conducted
using directly collected drone data to evaluate the performance
of the trained model and compare it with a model based on dense
layers. The approach aims to provide a more reliable and efficient
vehicle state model for a robust autonomous driving system.

Index Terms—Traffic analysis, drone flight image, efficient
model, classification, object detection

I. INTRODUCTION

The development of Autonomous vehicle technology has
garnered significant interest worldwide. This technology re-
quires the integration of various environmental information on
the road, such as vehicle position, speed, obstacles, and traffic
data, for seamless analysis. Furthermore, the integration with
various next-generation mobility systems offers a promising
approach to progressively advance reliable autonomous driving
systems. Recently, image data collected through cameras in-
stalled in vehicles has gained attention for its high performance
in developing algorithms for image classification, object detec-
tion, perception, and decision-making based on Convolutional
Neural Networks (CNNs).

Popular models such as VGG [1], GoogLeNet [2], ResNet
[3], DenseNet [4], SENet [5], and CSPNet [6] are widely
used as backbone models to effectively extract features. Object
detection, which involves locating and classifying objects in an
image, is tackled by object detectors. Region-based detectors,
such as R-CNN [7], Fast R-CNN [8], Faster R-CNN [9], and
Mask R-CNN [10], are known for their high accuracy but are
relatively slower due to the two-stage detection process. For
real-time applications, single-stage object detectors like SSD
[11], YOLO series [12]–[16] have been utilized in various

applications. In particular, the You Only Look Once (YOLO)
series overcomes the speed limitation and achieves perfor-
mance comparable to two-stage models, making it widely
adopted in commercial technologies.

By integrating these classification and decision-making
algorithms, enhanced vehicle assistance systems have been
developed to judge the state of the road. Previous research
has proposed Long Short-Term Memory (LSTM)-based ap-
proaches that predict future vehicle positions using consecutive
vehicle location information to determine the vehicle state
[17]. Another study [18] proposes a classification model using
drone aerial footage data to detect vehicles on the road
and determine the current vehicle state taking into account
the relationships between the target vehicle and surrounding
vehicles.

This research is a continuation of the study presented in
[18]. It focuses on designing an efficient model for vehicle
state classification to improve reliability. The proposed ap-
proach consists of three components: 1) data generation; 2)
object detection; and 3) vehicle state classification. Addition-
ally, the study contributes to improving the accuracy of the
classification model by modifying CSPNet [6].

II. PROPOSED METHOD

A. Vehicle Detection with YOLOv5

This research introduces a methodology for vehicle detec-
tion utilizing YOLOv5 [16], a sophisticated object detection
model that has demonstrated superior performance across
numerous visual recognition challenges. YOLOv5, an acronym
for ”You Only Look Once version 5”, is an enhancement
of the original YOLO framework, boasting improvements in
computational speed and prediction accuracy. It employs a
deep neural network structure that effectively extracts image
features and concurrently predicts object bounding boxes and
class probabilities in a single processing pass.

The backbone of YOLOv5, known as CSPDarknet53, is
based on the Cross-Stage Partial (CSP) [6] network, enhanc-
ing the efficiency of feature extraction. It consists of two
main components: CSPNet and Residual block. The CSPNet
efficiently exchanges information between divided parts of
the network, leading to faster and more accurate feature
extraction compared to traditional architectures. The Residual
block addresses the gradient vanishing problem, maintaining
performance even with deeper networks. The head of YOLOv5
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Fig. 1: Based on Algorithm 1, three figures illustrate cropped
image, Inputj from original image, I .

is responsible for object detection, generating predicted bound-
ing boxes, and class probabilities based on the predictions of
network. It consists of three YOLO layers, each designed to
detect objects of different sizes, ensuring effective detection
of small and large objects. Each YOLO layer comprises con-
volutional operations for predicting bounding box coordinates
and class probabilities, with dense layers performing the final
transformation. By utilizing features at different scales, the
head accurately detects objects of various sizes, making it a
powerful and accurate object detection model.

B. Data Generation

Algorithm 1: Input Image for DE-VSNet
Data: Original Image: I , Vehicles: V , target bbox: tv
Result: Train Image for Classification: Inputj

1 begin
2 for vj ∈ V do
3 tv = vj
4 List of the distances between the target and

others: LD
5 for vi ∈ V do
6 LD.append(d(tv, vi))
7 end
8 Ascending order(LD)
9 List of the shortest five distances: [v1, . . . , v5]

10 List of target and five vehicles:
SV = [tv, v1, . . . , v5]

11 List of the x and y coordinate: X, Y
12 for vk ∈ SV do
13 cxk, cyk, wk, hk = vk
14 ltxk = cxk − wk/2, rbxk = cxk + wk/2
15 ltyk = cyk − hk/2, rbyk = cyk + hk/2
16 X.append(ltxk), Y.append(ltyk)
17 X.append(rbxk), Y.append(rbyk)
18 end
19 min x = Min(X), min y = Min(Y )
20 max x = Max(X), max y = Max(Y )
21 Inputj = I[min x:max x, min y:max y]
22 end
23 end

In Algorithm 1, data generation is a process for creating
input images to train the vehicle state classification model. The

input images are generated based on the detected vehicles from
the vehicle detector. The Euclidean distance is calculated for
all vehicles, V , surrounding the target vehicle, tv. The inter-
vehicle distances with respect to the target vehicle are included
in the LD list. LD is sorted in ascending order, and the five
shortest distances are selected. The five selected vehicles and
tv form the SV list. Each vehicle, vk, in SV represents the
location information of the vehicle. cxk and cyk are the x
and y coordinates of the center of the vehicle, and wk and
hk represent the width and height of the vehicle, respectively.
Using this information, the upper left x, y coordinates, and
the lower right x, y coordinates of the vehicle are generated
and stored in the X and Y lists, respectively. X and Y lists are
used to extract the minimum and maximum x, y coordinates,
respectively, in order to crop the region encompassing the
target vehicle and the surrounding five vehicles. Finally, as
depicted in Fig. 1, an input image, Inputj , for the classification
model is generated from the original image I .

C. Proposed DE-VSNet

The paper introduces Dense efficient vehicle state classifica-
tion (DE-VSNet), a model comprising two modules: 1) Depth-
wise Cross-Stage Partial; 2) Deformable Residual. The overall
structure of the proposed model is depicted in Fig. 2. By
incorporating these two modules, DE-VSNet can effectively
classify the motion state of detected vehicles, allowing the use
of drone images for safe and autonomous driving assistance
information.

1) Depthwise Cross-Stage Partial: The Depthwise Cross-
Stage Partial is an improved block based on the Cross-Stage
Partial Network (CSP) [6]. Instead of using 3× 3 conv layers
as employed in CSPNet, 3×3 depthwise layers are adopted to
effectively construct the feature map. To address the issue of
repetitive gradient learning, CSP Network proposes a method
to increase the gradient path by dividing the feature map of the
base layer into two parts, as illustrated in Fig. 3 (b). The input
feature map of CSPNet, denoted as x0 = [x0′ , x0′′ ], is divided
into two parts. The output of the first dense layer is represented
as [x0′′ , x1, . . . , xk], while the output of the transition layer
is xT , which is concatenated with x0′′ . Subsequently, x0′ is
connected with the transition layer, and x0′′ is connected with
the transition layer, forming the final output xU .

xk = wk ∗ [x0′′ ,x1, . . . ,xk−1]

xT = wT ∗ [x0′′ ,x1, . . . ,xk]

xU = wU ∗ [x0′ ,xT]

(1)

For the update of the weights (wk′ , wT ′ , wU ′) using backprop-
agation, Eq. (1) is utilized, where f denotes the weight update
function and gi represents the gradient of the i-th layer. By
inspecting the gradients of the Cross-Stage Partial Network,
we can observe that the proposed method avoids the repetitive
update of gradients in the dense layers of DenseNet. This
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Fig. 2: This illustrates the overall architecture of DE-VSNet. The first component adopts the Depthwise Cross-Stage Partial
(DWCSP) block, which is based on the Depthwise convolution and CSP block. The second component consists of Deformable
Residual blocks, which are built on deformable convolutional operations.

Fig. 3: A comparison of model structures for models con-
structed using Dense layers is shown in the figure. (a), (b),
and (c) represent the Dense layer techniques used in DenseNet,
CSPNet, and the proposed DWCSPNet, respectively.

reduces computational overhead and significantly contributes
to computational efficiency.

wk′ = f(wk,g0′′ ,g1, . . . ,gk−1)

wT′ = f(wT,g0′′ ,g1, . . . ,gk)

wU′ = f(wU,g0′ ,gT)

(2)

To incorporate the computation reduction of CSP Network
approach while effectively including additional filters to en-
hance the feature extraction block of the classification model,
this work proposes the Depthwise Cross-Stage Partial Module.
This module replaces the 1×1 conv layer used in the original
CSP with a 3 × 3 depthwise conv layer. By applying the
computation reduction method of CSP and simultaneously

Fig. 4: (a) Represents the positions of kernel values in a
conventional convolutional layer, (b) the positions of kernel
values in a deformable convolutional layer.

incorporating effective filters, this module contributes to im-
proving the performance of the classification model. Fig. 3 (c)
illustrates the representation of the proposed Depthwise Cross-
Stage Partial Module.

2) Deformable Residual: The features extracted from the
DWCSPNet are further refined using the deformable residual
module proposed in [18]. This module employs deformable
convolutional layers, as introduced in [19], to flexibly search
for features within the image and effectively extract discrim-
inative feature maps. The deformable convolutional layers in
the deformable residual part of Fig. 2 significantly enhance
the capability of model to adapt to object deformations and
spatial transformations, thus contributing to more accurate
vehicle state classification results. Fig. 4 (a) demonstrates
that the traditional 3 × 3 convolutional layer possesses a
fixed receptive field over the image area, depicted by the red
and blue dots. However, when dealing with image data for
vehicle detection, vehicles are often distributed with spatial
gaps between them. Consequently, using a fixed receptive field
could lead to the extraction of feature information that includes
unnecessary background details. In order to overcome this lim-
itation and conduct more effective convolutional operations,
the deformable convolution technique is adopted. As depicted
in Fig. 4 (b), deformable convolution introduces an offset to
the convolutional layer, enabling convolution operations based
on the offset information. In this approach, the deformable
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convolutional layer incorporates learnable offsets for each
spatial location within the input feature map. These offsets
instruct the sampling grid to adapt at each location during the
convolution process. By incorporating these learnable offsets,
the deformable convolutional layer dynamically adjusts its
receptive field to the local context of each spatial location.
This adaptability allows the network to effectively capture
contextually relevant information, such as vehicle positions
and spatial relationships, which results in the extraction of
more informative and discriminative features for improved
vehicle state classification within the proposed DE-VSNet
model.

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn +△pn) (3)

Eq. (3) defines the offset used in deformable convolution
[19], which determines the position of the kernel during the
convolution process. The output feature map is denoted as y.
The kernel grid, R, represents the receptive field and is defined
as R = (−1,−1), (−1, 0), . . . , (0, 1), (1, 1). The convolution
occurs at the pixel position of the input image x, denoted as
p0, and at the individual positions in R, represented by pn,
with corresponding offsets △pn. Importantly, the offset value
△pn is generated based on the convolutional layer’s value and
is updated in each iteration during training. Consequently, the
position of the input value is determined by p0 +pn +△pn,
and the convolution operation is performed by multiplying this
position with the convolution kernel weight, w(pn), at that
particular location.

To enhance both channel-wise and spatial-wise information,
the Convolutional Block Attention Module (CBAM) [20] is
employed through three deformable convolutional layer op-
erations. Subsequently, the fully connected layer receives the
feature map that has been calculated by these two deformable
convolutional layers.

III. EXPERIMENT

This research focuses on determining the state of vehicles
using drone aerial footage data. The image data was collected
through drones at a resolution of 3840 × 2160 (4K). For
object detection, 9,776 training images and 2,200 test images
were used from the collected dataset. The dataset contains
labeled data for sedans and trucks, with a total of 309,470
objects. Object detection was performed using the PyTorch
[21] framework, utilizing four NVIDIA A100 GPUs.

A. Object Detection

Table 1 presents the achieved object detection performance
on the drone dataset. The YOLOv5 [16] framework was used
for the object detection task. The overall training performance
reaches 95.75% mAP@50 and 83.8% mAP@50:95. For test-
ing, the performance achieved is 91.8% mAP@50 and 80.3%
mAP@50:95. Using this object detection model, vehicles on
the road are detected, and the detected vehicles serve as input
images for the DE-VSNet.

TABLE 1: Result of object detection with drone dataset

Class Images Instance mAP@50 mAP@50:95
all train 9,776 309,470 95.75 83.8

car vehicle 9,776 277,263 97.2 86.0
truck vehicle 9,776 32,207 94.3 81.6

all test 2,200 85,398 91.8 80.3
car vehicle 2,200 78,765 96.1 85.3

truck vehicle 2,200 6,633 87.5 75.4

B. DE-VSNet

The collected data for the vehicle state classification model
is presented in Table 2. The dataset consists of a total of
5,854 images, categorized into three classes: lane change,
safe, and stop. This dataset was collected and classified using
Algorithm 1, resulting in the creation of the classification
model dataset.

TABLE 2: Train and test dataset for Drone flight image

Class train test Total
lane change 1,350 214 1,564

safe 2,293 310 2,603
stop 1,382 305 1,687
Total 5,025 829 5,854

This paper proposes a Dense efficient Vehicle State Clas-
sification model compared to dense layer-based models.
DenseNet121 [4] achieves 92.4% accuracy with 7.98 mil-
lion parameters, 15.21 GFlops, and 121 connected layers.
DenseNet169 satisfies 92.04% accuracy but has a two-fold
increase in parameters and more about 30% GFlops. Dark-
Net53, with 53 convolutional layers used for feature extraction
in YOLOv3 [14], performs at 81.18% accuracy. YOLOv4
[15], using CSPNet for feature extraction, improves speed
through gradient dispersion but achieves 79.97% accuracy
with a two-fold reduction in parameters and GFlops compared
to DarkNet53. Our proposed model combines the enhanced
DWCSPDarkNet and deformable residual network. The block
value in Table 3 represents the number of DWCSP iterations.
For b=[2,2,2], the model achieves 2.49 million parameters,
13.28 GFlops, and an accuracy of 88.54%. By varying the
value of b experimentally, we find that b=[2,4,4] yields approx-
imately 3.1 times fewer parameters than DenseNet121 with
similar GFlops and 0.36% higher accuracy. This demonstrates
the efficient reduction of parameters in models with dense
layers while maintaining high performance. On the other hand,
proposing a higher number of iterations with b=[4,8,8] results
in 3.86% lower accuracy, indicating the negative impact of
excessive iterations of efficient layers.

IV. CONCLUSION

This paper proposes efficiently high-density layers for the
vehicle state classification model. The overall process is di-
vided into vehicle detection, data generation, and vehicle state
classification. YOLOv5 is used to detect vehicles, and based
on the detection, target vehicles are selected. Candidate vehi-
cles are then identified by calculating the distances between
neighboring vehicles. This approach is used to generate input
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TABLE 3: Comparison of dense layer kinds of models and
proposed model, DE-VSNet

Method Block Params GFlops ACC(%)
DenseNet121 - 7.98M 15.21 92.4
DenseNet169 - 14.15M 18.04 92.04
DarkNet53 - 40.59M 37.38 81.18

CSPDarkNet53 - 18.03M 17.27 79.97

DWCSPDarkNet+DR b=[2,2,2] 2.49M 13.28 88.54

DWCSPDarkNet+DR b=[2,3,2] 2.51M 14.06 88.30

DWCSPDarkNet+DR b=[2,4,4] 2.56M 15.52 92.76

DWCSPDarkNet+DR b=[4,8,8] 2.70M 20.72 88.90

images for the vehicle state classification model. The proposed
DE-VSNet is based on CSPNet and incorporates Depthwise
convolutional layers to facilitate efficient gradient learning and
effective feature extraction. Compared to the DenseNet121 and
DenseNet169 models, which learn high-density layers, DE-
VSNet achieves an improved accuracy of 0.36% and 0.72%,
respectively. Additionally, efficient management of parameters
and GFlops is presented. In conclusion, the proposed DE-
VSNet demonstrates an efficient and superior performance for
the vehicle state classification model by effectively transform-
ing high-density layers.
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