
Depth Learner : An Advanced Learning Method
with Edge Map for Monodepth2

Minseung Kim, Seongmin Kim, Junmyeong Kim, Kanghyun Jo
Dept. of Electrical, Electronic and Computer Engineering

University of Ulsan, Ulsan, Korea
{kmsoiio, asdfhdsa1234}@mail.ulsan.ac.kr, kjm7029@islab.ulsan.ac.kr, acejo@ulsan.ac.kr

Abstract—When creating a deep learning model for estimating
the depth of images, constructing a training dataset using stereo
images presents a significant challenge. Therefore, using monoc-
ular images for depth estimation provides numerous benefits in
terms of dataset acquisition. Monodepth2 is one of the prominent
techniques for monocular depth estimation. By employing a
self-supervised approach, Monodepth2 eliminates the need for
ground truth, making the acquisition of the training dataset
much easier. Nonetheless, a challenge faced by Monodepth2 is
the issue of blurred boundaries in the output depth maps. To
address this concern, the paper proposes a modified architecture
of Monodepth2, resulting in enhanced accuracy and sharper
boundaries in the output depth maps.

Index Terms—Deep Learning, Depth Estimation, Edge Detec-
tor

I. INTRODUCTION

Depth estimation is one of the main tasks in computer
vision. The goal of this task is to estimate the depth per
pixel in images. In recent years, there are many studies about
estimating depth. Monodepth2 [1] is represented as one of
them. Monodepth2 employs Depth network and Pose network
to estimate depth by analyzing the changes in sequential
monocular images. This method has the advantage of making it
easy to configure the training data set because it uses the Self-
supervise method that does not require ground truth. However,
in this method, the depth estimation using a monocular image
leads to reduced accuracy and blurred object boundaries,
as shown Fig.1(b). This problem can make it difficult to
distinguish objects. This paper conducted research to solve
this problem. The contribution to solving this problem is

• Edge map multiplying during the generation of the depth
map to apply weights to the edges.

• Edge maps used for inter-feature comparison in comput-
ing Auto-masking loss.

In the process of creating depth, the boundary can be improved
by incorporating an edge representation that denotes the object
boundaries. This results in a corrected image, as shown in
Fig.1(c).

II. RELATED WORK

These days, the primary methods for depth estimation using
deep learning consist of utilizing either stereo images or
monocular images. This paper investigates the use of monocu-
lar images, which can be applied in various environments. The
method of using a Monocular image is divided into a method

of generating a virtual stereo image or estimating depth by
predicting and learning changes in the current image based on
the previous frame.

Fig. 1: The input images were sourced from the BIPEDv2 [2]
dataset. In the original Monodepth2 image (b), there is a slight
blurring of the boundaries of car, whereas in the proposed
method image (c), the car’s boundaries are more distinct and
clear.

A. Depth estimation using Stereo image

Estimating depth from stereo images requires obtaining the
disparity information. Disparity refers to the difference in the
horizontal position of the same object between the left and
right images. In Fig. 2. z represents the depth value for the
3D point (x, y, z) in three dimensions. To calculate the depth
value, a proportional equation is
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Since b(baseline) and f(focal length) are fixed, the disparity
becomes crucial for depth estimation.

B. Depth estimation using monocular image

Two popular approaches for estimating depth from monocu-
lar images are the virtual stereo image creation method used in
Monodepth1 [3] and the use of consecutive images employed
in Monodepth2 [1]. In this paper, the focus of the study was
on monodepth2, which is known for its superior performance
in depth estimation compared to other methods. To estimate
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Fig. 2: This illustration depicts the depth estimation of stereo
vision. The point (x, y, z) in 3D space is projected onto the
left and right image planes through the camera lenses. The
horizontal and vertical distances from each camera axis to the
projected points are represented by (xl, yl) for the left image
plane and (xr, yr) for the right image plane, respectively. Focal
length is distance between image plane and camera lens. Base
line is stereo camera interval.

depth from consecutive images, Monodepth2 measures pose
changes and uses the measured values to train the model for
depth estimation. It is more challenging compared to stereo
image-based depth estimation. But it offers the advantage of
acquiring a large training dataset more easily.

C. Self-supervised Monocular Training

The main learning methods of deep learning include su-
pervision learning and self-supervision learning. Supervised
learning is highly accurate because learning proceeds with
ground truth. But data sets for depth estimation are difficult to
construct an accurate ground truth, using self-supervised learn-
ing that does not require ground truth is very advantageous to
secure data sets.

III. PROPOSED METHOD

A. Edge Generator

Fig. 3: Structure of Edge Generator. The Encoder compresses
the input image using convolution and max-pooling layers
and the Decoder restores the compressed image using two
transposed convolution layers with ReLU activation. Output
channel is set to 1.

The architecture of Edge Generator(EG) is depicted in
Fig. 3. The model is structured with an encoder-decoder de-
sign. The encoder compresses the input RGB images using 3x3
convolutions and 2x2 max-poolings. Conversely, the decoder
decompresses the images using 2x2 transposed convolutions
and ReLU activation. During this process, the model output
channel was set to 1 to match the channel of the ground truth.
For training, the Binary Cross Entropy(BCE) loss function
was used. The reason for using edge images is that edges
represent the boundaries of objects in an image. Therefore,
by incorporating edges into the decoder part of the Depth
network, it becomes possible to assign weights to the boundary
regions during the upsampling process, enabling the correction
and refinement of the boundaries.boundaries in the generated
depth map. Furthermore, when using edges for calculating the
reprojection error, it enables feature point matching, which
helps to find errors more effectively between corresponding
points.

B. Modified Architecture of Monodepth2

Monodepth2 network consists of a Pose Network shown in
Fig. 4.(b). that calculates image variations, and an encoder-
decoder architecture illustrated in Fig. 4.(c). that generates the
depth map. The Pose Network employs a pre-trained ResNet-
18 [4] to output transformation matrices for input images,
while the depth network utilizes ResNet-18 as the encoder
and a depth decoder to produce depth maps for the input
images. Generated output of It depth map is transformed into
3D points using the K−1(Inverse Intrinsic matrix), and the
transformation matrices from the Pose Network are applied to
convert the 3D points into 3D points of It′ . Afterward, the
3D points are transformed back into 2D using the K(Intrinsic
matrix), and then the Grid sampling technique is applied to
create the It′→t image. The learning process aims to minimize
the Lp error from Eq. (4).

Lp =
∑
t′

pe(It, It′→t) (4)

In Eq. (4), Lp represents the photometric reprojection error,
while pe denotes the photometric reconstruction error. The
pe is computed using the L1 loss, which involves comparing
It and It′→t and summing up the errors to obtain Lp.
Since the boundary of the depth map output as a learning
result is blurry, this paper proposes the Fig. 4.(a) model.
To enhance the boundaries of the depth map, the Proposed
Depth Network(Fig. 4.(c)) was employed in this paper. The
Proposed Depth Network compresses the Edge map generated
by the EG using 3x3 convolution layer and 2x2 max-pooling
layers. Then, it performs element-wise multiplication with the
feature map from the decoder of the Depth Network. This
approach enhances the clarity of the depth map boundaries by
applying weights to the edges.And to improve performance,
edge maps were applied to the images used in the Auto-
masking loss function. This incorporation allowed for more
effective detection of changes between corresponding pixels
through feature matching. The Auto-masking loss(Eq. 5.)
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Fig. 4: Structure of Edge Generator. Figure (a) represents the overall approach of the Proposed method, while (b) depicts the
structure of the Pose Network, (c) illustrates the Depth Network utilized in Monodepth2, and (d) displays the Proposed Depth
Network.

implies that only pixels with a smaller minimum value when
comparing the It′→t and It are taken into account for learning,
compared to the minimum value when comparing the It and
It′ . This means that the learning process only considers the
parts of the consecutive input images that exhibit changes, i.e.,
the regions corresponding to object movements.

LA = min
t′

pe(It, It′→t) < min
t′

pe(It, It′) (5)

prevents the training of datasets that lack changes between im-
ages, which could otherwise reduce the accuracy of disparity
estimation.

IV. EXPERIMENT

A. Dataset

1) KITTI2015: The Modified monodepth2 model was
trained using the KITTI2015 [5] dataset, the same dataset uti-
lized by the original monodepth2. The training process utilized
39,810 data samples of image size resolution 640 × 192 for
training and 4,424 samples for validation. The KITTI dataset
contains diverse sensor information related to autonomous
driving and is widely used for object recognition, tracking,
and outdoor depth estimation tasks.

2) BIPEDv2: The Edge Generator employed the
BIPEDv2 [2] dataset, comprising 200 training images
and 50 test images, all of size 1024 × 1024. The BIPED
dataset contains road images from Barcelona paired with
corresponding edge images, both at a resolution of 1280×720.
This dataset is widely utilized for edge-related research and
serves as a valuable resource for various edge detection tasks.

B. Experiment Detail

1) Edge Generator: The detailed training environment is
as follows.

• CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
• Graphic Card: NVIDEA-A100 40GB * 4EA

• Batch size: 8
• Epoch: 3000
• Loss function: BCELoss
• Optimizer: Adam [6]
• Learning rate: initial learning rate 0.001 with StepLR

scheduler
The output results of the test dataset are shown in Fig. 5,
indicating that the edge map is well generated.

Fig. 5: This is the test result image of the Edge Generator.
When comparing the result images with the Ground Truth,
it is evident that the Edge Generator accurately produces the
edges.

2) Modified monodepth2 model: The detailed training en-
vironment is as follows.

• CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
• Graphic Card: NVIDEA-A100 40GB * 4EA
• Batch size: 12
• Epoch: 14
• Loss function: novel appearance matching loss, auto-

masking loss, multi-scale appearance matching loss
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Error Accuracy
Method Abs Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.121 4.888 0.198 0.862 0.956 0.981
Proposed method 0.122 4.946 0.194 0.863 0.957 0.982

TABLE 1: The results of comparing Monodepth2 and the
Proposed method.

Error Accuracy
Method Abs Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.121 4.888 0.198 0.862 0.956 0.981
Proposed method

(w/o Edge map to LA) 0.121 4.993 0.197 0.867 0.957 0.981

Proposed method
(+Edge map to every loss) 0.122 4.96 0.202 0.858 0.953 0.98

Proposed method 0.122 4.946 0.194 0.863 0.957 0.982

TABLE 2: The numerical results of the ablation study

• Optimizer: Adam [6]
• Learning rate: initial learning rate 0.0001 with StepLR

scheduler
The experimental results [7] are presented in Table 1. A
comparison between the Proposed method and the original
monodepth2 revealed an increase in RMSE log and Accuracy.
Furthermore, as depicted in Fig. 6, it is evident that the
generated depth maps’ boundaries became more distinct.

Fig. 6: This is the output depth images of Monodepth2 and
the Proposed method. When comparing the Proposed method’s
images with Monodepth2, it is evident that the boundaries of
objects are more distinct.

C. Ablation Study

An ablation study was conducted to assess the optimal
results. Table. 2 represents the numerical results of the ablation
study. In the Proposed method, it can be observed that when
the Edge map is not applied to LA, the Error increases. On the
other hand, using the Edge map in all loss functions reduces
the Error, but it leads to lower accuracy. Despite certain
increases in Error, the Proposed method exhibits improved
accuracy, as evident in Fig. 7, where the depth map boundaries
are notably clearer. This indicates that the performance of
Monodepth2 has been improved.

V. CONCLUSION

In this paper, the issue of blurred boundaries in the depth
maps generated by the original Monodepth2 model is iden-

Fig. 7: This image represents the results of the Ablation Study.
It can be observed that the depth map with the sharpest
boundaries is generated in the Proposed method image.

tified. To address this problem, a Modified Architecture of
Monodepth2 is proposed. The Proposed Depth Network within
the Modified Architecture assigns weights to the edges of
the generated depth maps, resulting in sharper boundaries in
the output depth maps. And the use of edge images in LA

enhances the accuracy 0.1% of the results.
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