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Abstract—In the last decade, Convolutional Neural Networks
(CNNs) have become a dominant algorithm in solving various
domains such as computer vision, self-driving cars, medical
imaging, and natural language processing. The core operation of
the CNNs is convolution layer that can aggregate input features
around local windows in a short-range manner and learn relative
positions inside each window. For long-range modeling, common
CNNs stack a bunch of convolutional layers that result in high
computational costs to enlarge receptive field. Recently, Vision
Transformers (ViTs) and its improvements have outperformed
CNNs in the rankings of language, vision, and audio research.
The main goal of the ViTs is that the model can extract short-
range and long-range features in one layer. With this strategy, the
network structure of the ViTs is simpler than CNNs. However,
ViTs have quadratic complexity with the spatial length of the
input feature. In the last year, many methods are proposed to
relax the cost of ViTs and bring complicated designs of CNNs
into ViT-based models. Inspired by the insightful properties
of the ViTs and CNNs, this paper introduces a Local and
Global Fourier Network (LGFNet) that jointly learns local and
global receptive fields in the frequency domain rather than the
spatial or time domain in conventional CNNs and ViTs. The
input features, local, and global kernels are transformed to the
frequency domain through Fast Fourier Transform. The local
features are learned by a convolution between the input feature
and local kernels. Concurrently, matrix multiplication between
the input feature and global kernels is performed to extract low
frequencies from the input Fourier feature. Since local and global
Fourier features are complementary, the LGFNet efficiently fuses
these information by summation operation based on the similarity
degrees of the input signals. Therefore, our LGFNet performs
unified representation from the input feature. To evaluate the
effectiveness of the proposed method, we conduct experiments
on the large-scale dataset ImageNet1k and the small dataset
CIFAR100. As a result, the LGFNet surpasses the ViT-based
models by a clear margin under similar parameters and GFLOPs.

Index Terms—Fourier features, Fast Fourier Transform, Vision
Transformer, Image classification

I. INTRODUCTION

With the fast development of parallel computing, in 2012s,
AlexNet [1] successfully trained CNNs-based huge models on
large-scale datasets and achieved outstanding results compared
to classical machine learning algorithms. Based on this mile-
stone, many CNNs-based methods are introduced to improve
feature extractions from different perspectives such as plain
network VGG [2], residual connection [3], dense connection
[4], and inception decomposition [5], and deformable convolu-
tion [6]. Based on the designs of the CNN-based model, many

works have been introduced to face detection [7], instance
segmentation [8], person re-identification [9] and achieved
great performance in both accuracy and network efficiency.

As a spirit of the CNNs, convolution operation gathers
features from the input around the local neighborhood win-
dows and shares learnable weights across the spatial di-
mensions. Generally speaking, relative positions and content
interactions inside local windows are filled by convolution
layers. This creates local connectivity, relative geometry, and
translation equivalent of CNN-based models. Because of the
physical design of convolution kernels, the receptive field of
the convolution operation is limited to the local window. In
another word, in one layer, the model only captures short-
range dependencies in the input data. To enlarge the view of
kernels, a large amount of convolution layers is stacked up to
50 or 100 layers. This way produces high computational costs
and optimization problems due to supervised signals far from
the input image. For compensation with local connectivity of
convolution operation, attention mechanisms are developed in
a way that can integrate into CNN models and model long-
range relations in one layer. The relation is interpreted through
channel interactions [10], and spatial interactions [11]–[14].

Compared with CNNs, ViT-based models perform general
relations, such as pixel-to-pixel relations, object-to-pixel rela-
tions, and object-to-object relations, through Transformer [14].
Originally, Transformer was developed for machine transla-
tion, processing word-to-word (token-to-token) relations in a
global way. With the success of the Transformer, ViT [15]
considers an image patch as a word and models interactions
between patches via Transformer. This strategy results in long-
range dependencies and reasons about the uniform representa-
tion of visual recognition tasks. There are two main drawbacks
of the Transformer when solving visual data. Firstly, Trans-
former models require 2D flattened input from 3D input data.
This requirement lost the order of pixels from the original
input because there is no geometric modeling in Transformer.
That means Transformer has a weak inductive bias. Secondly,
at the heart of the Transformer, the self-attention operation
computes similarity maps by the dot product between query
and key matrices. As a result, this computation has quadratic
complexity with the number of patches O(N(logN)), where
N is the number of patches. To overcome these drawbacks,
many lines of research are conducted such as modeling posi-
tional information, enlarging training data, improving training



mechanisms and settings, reducing the computational cost, and
inheriting CNNs’ designs.

One main line of the research is to build hybrid networks
that combine the strengths of the CNNs and ViT models.
Hierarchical representation of the CNNs is performed by
inserting convolution layers in earlier stages and Transformer
layers in later stages. Since low-level and high-level features
are extracted in the earlier and later stages respectively, hybrid
networks can inherit the hierarchical property of the CNNs
and the general modeling capability of ViT. Another benefit
of the combination is that the hybrid network can be deployed
on edge devices since Transformer layers are applied to the
later stages with a low spatial dimension. Another work is
to embed convolution operation into self-attention operation
because both operations can help each other in terms of local-
and-global learning, and supplemented relative bias.

Inspired by the designs of hybrid networks, this paper learns
Local-and-Global Fourier (LGF) features in one layer and
reduces the cost of the self-attention operation from O(N2) to
O(Nlog(N)). The LGF layer contains four main processes:

1) The input features in the spatial domain are transformed
to Fourier feature in the frequency domain through Fast
Fourier Transform. Local and global kernels are values
in the complex domain.

2) Both local and global features are learned simultane-
ously. High frequencies are extracted by performing
convolution between Fourier features and local complex
features. Matrix multiplication between Fourier features
and global complex kernels is performed to learn low
frequencies.

3) The fusion operation is to gather similarity patterns
between local and global Fourier features.

4) The fused local-and-global Fourier features are trans-
formed back to the spatial domain by inverse Fast
Fourier Transform.

Both convolution and matrix multiplication in the frequency
domain are efficient since all the operations are separable. To
verify the novel designs of the LGFNet, we replace all Trans-
former blocks in the ViT model with our LGFNet blocks and
keep the training settings similar to the baseline. We train the
proposed model on large-scale ImageNet1k and small dataset
CIFAR-100. On ImageNet1k, the LGFNet achieves 75.4%
Top-1 and 92.6% Top-5 accuracy with 7.5M parameters and
1.2 GFLOPs. On the small dataset CIFAR-100, the finetuned
LGFNet gets 86.1% Top-1 and 96.5% Top-5 accuracy.

II. RELATED WORKS

In this section, we briefly introduce CNN-based models,
Attention and ViT-based models, and Hybrid networks.

A. CNN-based models

The common networks of the CNN-based models have
hierarchical representation that each stage extracts specific
features from the input with a specific spatial dimension. VGG
[2] introduces plain 3×3 convolution for image classification.

ResNet [3] pointed out that the VGG network becomes satu-
rated when stacking plain blocks up to 19 layers. From this
analysis, ResNet proposes a residual block that can avoid van-
ishing gradient when stacking more layers. With the effective
residual connection, ResNet is set as a baseline for many works
related to visual analysis. DenseNet [4] enlarges residual to
dense connections that can improve feature learning. Inception
[5] split the input feature along channel dimension and apply
various operations on each branch. Deformable ConvNets [6]
samples and learning offsets to enlarge the receptive field of
the kernels via bilinear operation.

B. Attention and ViT-based models

To complement with short-range dependencies of the CNN-
based models, some methods [10]–[13] integrate the attention
mechanism into stages of the CNN networks. SENet [10]
proposes channel attention that can emphasize which channels
are important during training through the simple network.
Non-local network [11] aggregates features from all positions
by classical non-local mean. The works in [12], [13] simplify
the structure of the Non-local network and realize that the
attention map at one query position that gathers features from
all positions has a similar response.

ViT [15] was the first method that successfully apply Trans-
former for vision tasks. This method views the image as a set
of patches and uses self-attention operations to model patch-
to-patch relations. With the simple structure, in the last year,
many researchers focus on the improvements of the ViT. PVT
[16] develops a hierarchical network instead of the uniform
network in ViT and reduces the cost of the Transformer
through subsampling key and value matrices. Swin [17] splits
the input feature into the windows and local self-attention
operation is proposed to model relations within windows. TNT
[18] learns token-to-tokens interactions with different scales.

C. Hybrid networks

Next-ViT [19] investigates efficient combinations of group
convolution and multi-head self-attention to build lightweight
models deployed on mobile devices. EfficientFormer [20]
adopts MetaBlock [21] and neural architecture search the
model can reach real-time speed on mobile devices. Based
on the MobileNetv2 [22], a series of MobileViT [23]–[25] is
presented by inserting Transformer blocks to later stages of
the network. EdgeViT [26] adopts subsampling, self-attention,
and upsampling operations into the MobileNetv2 network.

In other research, several methods try to attempt Fast
Fourier Transform [27] into CNNs and ViTs networks. FFC
[27] separately performs conventional convolution layers on
real and imaginary parts of the Fourier features. Inspired
by the MLP mixer, AFNO [28] uses linear transformations
to mix Fourier features along the channel axis. GFNet [29]
replaces Transformer blocks with global filter blocks in which
global Gaussian filters are learned by mixing with Fourier
features. Differently, this paper separately learns low and high
frequencies based on spatial mixings of the global and local
complex filters with Fourier features.
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Fig. 1. The overall architecture of the LGFNet. Patch embedding separates the input image into a sequence of patches and linear projection projects the
channels of the embedded features into channel model M . Local and Global Block (LGBlock) extracts local and global information via local kernels and
global kernels. Classify Head includes one fully-connected layer to map the channel model to the number of the class. M,H,W indicate the number of
channels, height and width of the Fourier feature. γ denotes the channel reduction ratio for local kernel k×k. S is a similarity matrix computed by summation
of global and local Fourier features. N is the number of the stacked LGBlocks.

III. THE PROPOSED METHOD

In this section, the overall architecture of the LGFNet is
shown in Fig. 1(a) and analyzed in subsection III-A. The
detailed LGBlock is illustrated in Fig. 1(b) and discusses in
subsection III-B.

A. Overall architecture

We adopt the common architecture of the ViT [15] as
the baseline and replace self-attention blocks with Local and
Global Blocks (LGBlock). All other operations are kept the
same as the baseline, as follows:

1) Patch Embedding: Given the input image I ∈
R3×HI×WI , Patch Embedding splits I into embedded
feature X with spatial dimension {H = HI/PH ,W =
WI/PW } and channel dimension C = 3 ∗ PH ∗ PW .
PH , PW indicate patch size along height and width axes.
Following common implementation, we use patch size
16× 16.

2) Linear Projection: The role of the linear projection is
to map X to latent feature with dimension RM×H×W ,
where M is the number of the channel model.

3) Feed Forward Network (FFN): The FFN contains two
fully-connected layers that mix tokens across the channel
dimension. The first fully-connected layer transforms
the input feature into a higher space so that the model
can effectively extract information. The second fully-
connected layer maps the feature in higher space to low
space. The design of the FFN is similar to the inverted
bottleneck in MobileNetv2 [22].

4) Classify Head: The classifier head includes global av-
erage pooling and one fully-connected layer that outputs
classification scores.

In the ViT, the cls tokens are supplemented with embedded
features and served as the final representation for the classi-
fication task. However, in this work, LGBlock still preserves
the 2D structure of the input images. Hence, the cls tokens
are not important to the proposed model.

B. LGBlock

Like the Transformer block, our LGBlock showed in Fig.
1(b) includes Norm1, spatial mixing, Norm2, and channel
mixing. Two residual connections are inserted between two
mixings. The main components of the spatial mixing layer



contain four operators: 2D Discrete Fast Fourier Transform
(2D DFFT), Local-and-Global learning, similarity map com-
putation S, and 2D Inverse Discrete Fast Fourier Transform
(2D IDFFT).

1) 2D DFFT: Instead of learning features in the spatial
domain, this work tries to extract the spectrum of the helpful
frequencies through Fast Fourier Transform and learnable
complex filters. Given the real input X ∈ RM×H×W , the
LGBlock transforms this feature to the Fourier feature as
follows:

F [:, u, v] =

H−1∑
m

W−1∑
n

X[:,m, n]e−j2π(um
H + vn

W ), (1)

where u, v are the index of the Fourier feature F and m,n
are the index of the real feature X . This operation is efficient
since the DFFT is separable. The content and geometry of the
real feature when transforming are still preserved. As seen in
the equation 1, the Fourier feature contains a spectrum of the
frequencies. The amplitude of the Fourier feature is the main
information of this transform and a function of the frequencies.
The goal is to extract helpful frequencies from the Fourier
feature that can increase representation ability.

One of the main properties of the FFT is that the con-
jugate symmetry of the Fourier features is revealed because
F [:, u, v] = F∗[:, H−u,W −v]. Therefore, we only calculate
a haft of Fourier feature F [:, :,W/2 + 1], and the cost of the
next computations is reduced.

2) Local-and-Global learning: The aim of this process is
to extract low and high frequencies separately. In the Fourier
theory, the low frequencies contain high-level features and the
high frequencies contain low-level features. To properly get
full information from the Fourier feature, local and global
complex kernels are defined as L ∈ CM×γM×k×k and
G ∈ CM×H×W/2. The high frequencies are learned by the
convolution between local kernel L and Fourier feature F ,
stored in local Fourier feature FL,

FL = F ⋆ L, (2)

where ⋆ indicate convolution operation. γ denotes channel
reduction ratios and we set γ = 1/M same as in depth-
wise separable convolution. k × k is the kernel size of the
convolution operation. In the FFC [27] and AFNO [28],
linear transformations are performed in real and imaginary
parts individually. Otherwise, in this design, the convolution
operation is computed in the frequency domain. It means that
there is interaction learning between real and imaginary parts
of the Fourier feature.

The complementary with the local Fourier feature is the
global Fourier feature the model can extract low frequencies
from this process. The computation of the global complex
kernel G ∈ CM×H×W/2 and Fourier feature F ∈ CM×H×W/2

is shown as,

FG = F ⋆ G, (3)

Both local and global Fourier features are learned simulta-
neously. There is a way the model can efficiently fuse two
features together.

3) Similarity map: Following the superposition property of
the complex number, both local and global Fourier features are
aggregated through summation operation. The superposition of
the two features is computed as follows:

S = FL + FG. (4)

Because local and global information is complementary, the
summation operation can measure which tokens are similar.
In another word, the fused features that can be enhanced or
weakened depend on their similarity. If a position in FL has
the same phase as a position in FG, the output feature is
enhanced by each other and otherwise.

real

imag

real

imag

real

imag

(a) (b) (c)

Fig. 2. Superposition of the local and global Fourier features in complex
domain. (a) two tokens have the same phase, (b) two tokens have the opposite
phase, and (c) general case. Sij is the fused Fourier token from a pair of local-
and-global tokens. θij is the phase between a local and global token. imag,
real indicates imaginary and real axes, respectively.

Fig. 2 illustrates different cases of the token superposition.
Case (a) shows two feature tokens have the same phase
and the fused feature is enhanced. Case (b) describes two
tokens that have the opposite phase and the fused feature
is weakened. The general case is shown in Fig. 2(c) where
the amplitude of the fused feature relies on the phase of two
tokens. Mathematically, the amplitude of the fused result |Sij |
is calculated as,

|Sij | =
√

|FL,ij |2 + |FG,ij |2 + 2|FL,ij ||FG,ij |cos(θij), (5)

As shown in Equation 5, the phase θij directly affects to
amplitude of the fused tokens.

4) 2D IDFFT: The fused local-and-global Fourier feature
S is inverted back from complex domain to spatial domain
through 2D inverse discrete fast Fourier transform defined as
follows,

Y [:,m, n] =
1√

H ∗W

H−1∑
u

W−1∑
v

S[:, u, v]ej2π(um
H + vn

W ). (6)

Similarly, the 2D IDFFT operation still preserves the informa-
tion from the Fourier domain.

Since, in the 2D DFFT and 2D IDFFT, the accumulation
phenomenon is revealed, the normalization term 1/

√
H ∗W is

added after the forward or inverse process. This normalization
makes Fourier features orthonormal.



IV. EXPERIMENTS AND RESULTS

A. Experiments

The proposed LGFNet is conducted and evaluated on the
large-scale dataset ImageNet1k [30] and small dataset CIFAR-
100 [31]. The ImageNet1k contains 1.2M training images
and 50k validation images. The CIFAR-100 includes 50k
training and 10k testing images. The number of classes of
the ImageNet and CIFAR-100 is 1000 and 100, respectively.

The Pytorch framework is used for all implementations.
Numerical computation of the 2D DFFT, 2D IDFFT, and local-
and-global complex values is well supported by the cuFFT
library. Flowing common methods, the codebase Timm [32] is
utilized. All the implementation settings are kept the same as
the baseline ViT [15] for fair comparisons. Specifically, the
LGFNet is trained for 300 epochs, on two GPU Tesla V100-
32GB. We set a batch size of 512 per GPU and the total
batch size is 1024 for one-time updating network parameters.
For computing loss, the Cross-Entropy algorithm is adopted.
The AdamW optimizer with a momentum of 0.9 and a weight
decay of 0.05 is used along with the learning rate of 5× e−4.
The cosine learning schedule is to manage the learning rate
with the warmup epochs of 5. The input image of the model
is resized to 224× 224.

B. Results

1) Results on the large-scale dataset ImageNet: The com-
parison between the proposed LGFNet and state-of-the-art
ViT-based models on the ImageNet validation set is shown
in Table I. Size indicates the input image size resized to
224 × 224. P (M) and G are the number of parameters with
the unit Millions and GFLOPs. Top-1 and Top-5 denote Top-1
Accuracy (%) and Top-5 Accuracy (%).

TABLE I
RESULTS OF THE LGFNET AND RECENT VIT-BASED MODELS ON THE

IMAGENET DATASET

Method Size P (M) G Top-1 (%) Top-5 (%)
T2T-ViT [33] 224 4.3 1.2 71.7 -
DeiT-T [34] 224 5.7 1.3 72.2 91.1
PiT-Ti [35] 224 4.9 0.7 72.9 -

ConViT-Ti [36] 224 5.7 1.4 73.1 91.7
CrossViT-Ti [37] 224 6.9 1.6 73.4 -

GFNet-Ti [29] 224 7.5 1.3 74.6 92.2
LocalViT-T [38] 224 5.9 1.3 74.8 92.6
LGFNet (ours) 224 7.5 1.2 75.4 92.6

As described in Table I, our LGFNet achieves 75.4% Top-
1 and 92.6% Top-5 accuracy with the tiny model setting
around 7.5 M parameters and 1.2 GFLOPs. This performance
surpasses the recent ViT-based models such as T2T-ViT [33]
with 71.7% Top-1 accuracy, DeiT-T [34] with 72.2% Top-1
accuracy, PiT-Ti [35] with 72.9% Top-1 accuracy, ConViT-
Ti [36] with 73.1% Top-1 accuracy, CrossViT-Ti [37] [37]
with 73.4% Top-1 accuracy, GFNet-Ti [29] with 74.6% Top-
1 accuracy, and LocalViT-T [38] with 74.8% Top-1 accuracy.
This comparison clarifies the effectiveness of the local-and-
global Fourier feature learning.

TABLE II
RESULTS OF THE LGFNET AND RECENT VIT-BASED MODELS ON THE

CIFAR-100 DATASET

Method #Params (M) GFLOPs Top-1 Acc (%)
DeiT-T [34] 5.4 0.4 67.59
DeiT-S [34] 21.4 1.4 66.55
PVT-T [16] 15.8 0.6 69.62
PVT-S [16] 27 1.4 69.79
Swin-T [17] 27.5 1.4 78.07
CvT-13 [39] 19.6 4.5 81.81

DHVT-T [40] 5.8 1.4 83.57
DHVT-S [40] 22.8 5.6 85.68

LGFNet (ours) 7.5 1.2 86.10

2) Results on the small dataset CIFAR-100: Table II shows
the performance of the LGFNet and ViT-based models on the
small dataset CIFAR-100.

As a result, the LGFNet with only 7.5M parameters and 1.2
GFLOPs outperforms other methods by a clear margin. While
scaling the ViT-based models from the tiny to large version,
the improvement is minor such as 0.2% gain in PVT [16],
2% gain in DHVT [40]. It demonstrates the generalization
capability of the proposed method on both small and large
datasets.

TABLE III
THE INVESTIGATION ON THE LOCAL FOURIER KERNEL L

Kernel size k #Params (M) GFLOPs Top-1 (%) Top-5 (%)
1× 1 7.5 1.2 75.1 92.2
3× 3 7.5 1.2 75.4 92.6
5× 5 7.6 1.3 75.5 92.7

3) Ablation study: We investigate the effect of the kernel
size k in local Fourier learning on the performance of the
model shown in Table III.

When changing the kernel size from 1 → 5, the performance
is improved from 75.1% to 75.5% Top-1 accuracy and the
increases in the cost are acceptable. For balancing accuracy
and computational cost, we set k = 3 in all experiments and
comparisons.

4) Kernel visualization: We visualize the amplitude spec-
trum of the global and local complex kernel illustrated in Fig.
3 and 4. In this experiment, the learnable weights over 12
stacked LGF layers are shown, and in each layer, 24 channels
of global and local Fourier kernels are analyzed.

As seen in Fig. 3, over 12 layers, the amplitude spectrum of
the global kernel is diverse and has symmetry demonstrated
in subsection III-B. This information means that, in different
layers, the model captures the different frequencies, a wide
spectrum of the frequencies.

Otherwise, in Fig. 4, local kernel values are changing along
axes. It means that the local Fourier kernels focus on low-
level information (edge information) and only extract high
frequencies.

From two visualizations, we verify that local and global
kernels are complementary, and leveraging these cues into the
model learning can capture full information from the input
image.



Fig. 3. The visualization of the global complex kernel G across 12 layers of the LGFNet. 24 channels in the global complex kernel are used to compute the
amplitude spectrum of the learnable kernels.

Fig. 4. The visualization of the local complex kernel L across 12 layers of the LGFNet.

V. CONCLUSION

This paper inspects local and global extraction of the ViT-
based model in the frequency domain via the Fast Fourier
Transformer algorithm. Local and global complex kernels cap-
ture different information from the input. The local features are
presented by high-frequency representation and global features
bring information about the low frequencies. Both signals
are complementary and fusing these terms into one layer

can enhance model learning. Numerical and visualized results
demonstrate the effectiveness of the LGFNet and its theoretical
analysis. On two kinds of datasets, our LGFNet outperforms
recent ViT-based methods under the same settings.
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