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Abstract—The use of drone views helps to create a safe
transportation system by providing various traffic information.
This paper aims to identify changes in ground vehicle movements,
such as stopping, lane changing, and safety, by tracking vehicles
on the road. The vehicle condition is determined in two ways.
First, the collected drone images are refined, and the data is
augmented using the mixup method to identify the state of
the vehicle. Second, a proposed learning model, the Wide Area
Feature Extraction (WAFE), and Deformable Residual Module
(DRM) are used. WAFE generates features by extracting objects
across a wide area. DRM utilizes a deformable convolutional layer
to extract features, incorporating information from the previous
layer to create a feature map with receptive field flexibility.
The experimental results indicate an 88.6% accuracy for the
vehicle state classification, with the model containing a total of
1.27M parameters. This represents a significant improvement
over DRN C 26, with a decrease 95% in the total number of
parameters and a difference of 1.06% in accuracy.

Index Terms—Drone image, transportation system, vehicle
state, classification, object detection

I. INTRODUCTION

As the use of drones increases, research in various trans-
portation fields is exploring new ways to collect and analyze
traffic-related information. Traffic information encompasses
a range of data, including vehicle speeds collected through
sensors, traffic card systems, bus management systems, and
information on the volume and types of traffic, such as bus,
taxi, bicycle, pedestrian, etc. In traditional traffic information
systems, cameras installed in limited areas captured traffic
information. However, drones offer the advantage of being able
to move to different locations and capture aerial views of large
areas. Recently, several drone aerial image datasets, such as
VisDrone [1], highD [2], inD [3], roundD [4], etc., have been
developed to collect information on the movement of vehicles
on the road to support the safe operation of autonomous
vehicles. These datasets provide a bird’s-eye view of vehicle
distribution, making it possible to quickly understand the state
of vehicles on the road and support efficient traffic flow and
safe autonomous driving research.

Recent research in convolutional neural networks analyzes
the features of objects within images and continues to develop
performance in the fields of object detection [5], [6], [7],
re-identification [8], [9], [10], motion prediction [11], [12],
and classification [13], [14]. Safe autonomous vehicle research
requires the detection and prediction of dynamic changes in
the movement of surrounding vehicles. It also requires the
response of the road view of the target vehicle or the sensor
installed in the vehicle. This paper proposes a study to classify

the state of the target vehicle using the region of interest of
the detected vehicle. The paper presents a novel classification
model along with data augmentation techniques. The results
show that the classification learning model increases the diver-
sity of limited data while also ensuring real-time performance.
The dataset was produced for the purpose of vehicle state
classification. It was created by extracting images collected
by drones during flight.

The analysis of the state of a vehicle on the road through
drone images requires the interaction of classification and
detection algorithms. Vehicle detection is the first necessary
step in determining the condition of a vehicle, which can
achieve high performance through the use of various object
detection algorithms. Ongoing research in real-time applica-
tions is actively occurring. The YOLO series [7], [15] of algo-
rithms produce both object classification and localization in a
single-stage, with YOLOv8 [16] (2023) representing the latest
performance advances. Additionally, the Re-Identification (Re-
Id) method plays a critical role in identifying and tracking
vehicles across multiple continuous images. Re-Id is a popular
research topic in intelligent surveillance systems for tracking
people [9], [10] and vehicles [8], and numerous studies are
underway. With the growing demand for autonomous driving
technology, the area of vehicle motion detection is rapidly
evolving. Several studies have investigated real-time vehicle
and lane detection for vehicle movement detection [17], as
well as vehicle motion estimation based on CCTV data [18],
[19]. Furthermore, a growing body of research is focused
on self-driving vehicle technology using AI [20]. This paper
proposes a convolutional neural network for vehicle motion
classification using images collected by drones, exploring data
augmentation techniques, and proposed vehicle state classifi-
cation models.

II. PROPOSED ALGORITHM

A. Object Detection

Vehicle detection is a key factor in evaluating the safety and
condition of the vehicle. This study employs YOLOv5 [15]
for vehicle detection. The model was trained using a combi-
nation of self-processed drone flight images and the VisDrone
[1] dataset. The YOLOv5 detector, which has demonstrated
outstanding performance in real-time object detection, will be
utilized by the vehicle status classifier for real-time vehicle
detection in future applications.



Fig. 1: The framework of the proposed method. Object detection generates bounding boxes of vehicles. Then, the condition
module re-identifies and matches the vehicle ID in sequential images. In the condition module, the moving distance between
the current and the next frame of each vehicle is computed, and the direction of each vehicle is computed. Subsequently, the
selection module decides to remove or keep the detection result by considering the position of each vehicle.

B. Data Generation and Augmentation

1) Data Generation: The object detector generates image
data based on the detected vehicle for classification. One of
the detected vehicles is randomly chosen and selected as a
target vehicle. The method for extracting a cropped image area
for vehicle state classification is referred to as Algorithm 1.
A vehicle Vt,i is selected as the target vehicle by randomly
selecting one of the detected vehicles, Vd,j . The Euclidean
distance, Di(Vt,i, Vd,j) is calculated between the target vehicle
and the surrounding vehicles. Top5(ListDi

) is selected as a
short distance of Top5. The minimum values of xi and yi,
as well as the maximum values of xi and yi, are selected
from the list. The cropped area of the original image is then
selected, as illustrated in Fig 2(b). The goal is to understand

Algorithm 1 cropped area for classification
Data: detected vehicle bbox: Vd,j , target vehicle bbox: Vt,i

Result: I[xd,i,min : xd,i,max, yd,i,min : yd,i,max]
for Vt,i do

for Vd,j do
ListDi

= Di(Vt,i, Vd,j)
end

end
Top5(ListDi

) = Top5Di

→ min(Top5Di
) = (xd,i,min, yd,i,min)

→ max(Top5Di
) = (xd,i,max, yd,i,max)

points = [(xd,i,min, yd,i,min), (xd,i,max, yd,i,max)]
cropped I = I[xd,i,min : xd,i,max, yd,i,min : yd,i,max]

the state of the vehicle by analyzing the characteristics of the
surrounding vehicles within a specific, cropped area. Fig 2(c)
shows the linear distance between the target vehicle and
the surrounding vehicles. Fig 2(d) generates a heatmap to
represent the positions of the five surrounding vehicles.

2) Data Augmentation: Data augmentation techniques are
utilized on the image data used for vehicle state classification,
resulting in a weighted generalization of the learned model

Fig. 2: Data Generation: (a)Detection result by YOLOv5,
(b)crop area, (c)euclidean distance for line, (d)heatmap for
bbox location

Fig. 3: mixup: (a)crop area + heatmap, (b)crop area + line,
(c)crop area + heatmap + line

by increasing the diversity of the data. Fig 2 demonstrates the
application of three data combinations through the mixup[7],
[21] technique. The mixup process works as follows: a value
for αi = rand(N) is randomly selected from a range of 0 to 1.
The number of αi values is determined based on the number
of input images.

pi =
eαi∑k
j=1 e

αi

for i = 1, 2, . . . , N (1)

In Eq 1, the overall probability of αi and pi values is
determined using the softmax function, which serves as the



weight for the pixel values of the image. The following steps
are taken to generate the input image Ii as described in Eq 2:

Ii =

N∑
k=1

Ik ∗ pk (2)

N is 3 that are cropped image, linear distance, heatmap. k is
the index of kinds of images.

C. Proposed architecture

The proposed architecture in this paper is designed for Ve-
hicle State Classification, as illustrated in Fig 1. The classifier
consists of a Wide Area Feature Extraction (WAFE) backbone
and a Deformable Residual Module (DRM), and has a total
of 1,265,022 parameters. Detailed information is shown in
Table 1.

TABLE 1: Vehicle State Classification Network Convolutional
layer configurations. c: channel, k: kernel size, s: stride, d:
dilated ratio, p: padding

No Contents size c k s d p
0 Input image 512× 512 3 - - - -
1 Initial Block 128× 128 64 3 4 3 6
2 Initial Block 128× 128 128 1 1 1 0

3-1 Dilated conv3 128× 128 32 3 1 1 1
3-2 Dilated conv3 128× 128 32 3 1 3 3
3-3 Dilated conv3 128× 128 32 3 1 5 5
3-4 Dilated conv3 128× 128 32 3 1 7 7
4 conv1 128× 128 128 1 1 1 0
5 maxpool 64× 64 - - - - -
6 Deformable conv3 64× 64 128 3 1 1 1
7 Deformable conv3 64× 64 128 3 1 1 1
8 Deformable conv3 64× 64 128 3 1 1 1
9 maxpool 32× 32 - - - - -

10 conv3+dropout 32× 32 128 3 1 1 1
11 conv1 32× 32 256 1 1 1 0
12 CBAM 32× 32 256 reduction ratio=16
13 maxpool 16× 16 - - - - -
14 conv1 16× 16 128 1 1 1 0
15 Deformable conv3 16× 16 128 3 2 1 1
16 Deformable conv3 8× 8 128 3 1 1 1
17 conv1 8× 8 256 1 1 1 0
18 fc 16,384

Total Parameters: 1,265,022

1) WAFE Backbone: The input image classifies the state
of the target vehicle based on the position and state of the
vehicles surrounding it. As shown in Fig 2(b), the objects
in the image are mainly separated. To exclude information
from unnecessary areas, the initial convolutional layer uses
a 5 × 5 kernel size with 64 filters, a stride 4, and a dilated
ratio 3. The number of channels is increased from 64 to 128
through a 1×1 kernel, allowing for the sharing of information
between channels about the reduced feature map size. The
activation function used in this proposed network is Gaussian
Error Linear Units (GELU) [22]. Batch normalization (BN) is
performed after all convolutional layers to stabilize the learn-
ing progress on the feature map. Maxpooling downsamples the
feature map by half. The channels are divided into four groups
and a 3× 3 convolutional layer with dilated ratios of [1,3,5,7]
is applied respectively. The four groups are concatenated
and a 1 × 1 kernel is applied. This architecture generates a

Fig. 4: (a)standard convolution, (b)deformable convolution
In deformable convolution, deep red and dark blue dots are

flexible to compute the pixels in the input image.

feature map by extracting features from flexible regions, rather
than using three times 3× 3 deformable convolutional layers
on existing fixed responsive fields. Additionally, the feature
map incorporates previous information before the maxpooling
operation, using a residual block.

2) Deformable Residual Module: The deformable convo-
lutional layer [23] is informed to generate flexible spatial
information through features from WAFE. As demonstrated in
Fig 4(a), the traditional 3× 3 convolutional layer has a fixed
3×3 receptive field in the image area. In contrast, Fig 4(b) gen-
erates an offset as the convolutional layer and performs convo-
lution operations through the offset information. Vehicle fea-
tures in the image data are distributed over a wide area, making
it more effective to extract features from a flexible area rather
than a fixed receptive field. As indicated in Eq 3, sampling us-
ing a regular grid, R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}
for the input feature map x, location in the pixel, p0, and
offset, △pn are added to the pixel multiplication position
p0 + pn +△pn of the traditional convolution.

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn +△pn) (3)

The Convolutional Block Attention Module (CBAM) [24]
allows for complementary attention of both channel-wise and
spatial-wise information and is applied through the output
of three deformable convolutional layer operations. The fully
connected layer receives the feature map that has been calcu-
lated by two deformable convolutional layers.

III. EXPERIMENT

Drone Image Dataset: The drone image dataset is cap-
tured from a bird’s eye view perspective. Using the collected
images and a YOLOv5 large model, the data is able to
detect vehicles. Subsequently, the image is cropped from the
original image based on the five vehicles surrounding the
target vehicle using Algorithm 1. The dataset comprises three
classes: lane change, safe, and stop, with the total number of
training and test data shown in Table 2 below.

Configuration Details: The images used in the learning



Fig. 5: (a)original image, (b)cropped area in drone image.

TABLE 2: Drone train and test dataset for vehicle state
classification

Class train test Total
lane change 860 214 1,074

safe 1,241 310 1,551
stop 1,222 305 1,525
Total 3,323 829 4,152

process were resized to 512×512. A learning rate of 0.001 is
utilized, and the optimizer employed is Adam [25]. Focal loss
[26] is chosen as the loss function. Four NVIDIA A100 GPUs,
each with 40GB of memory, are used, with a batch size of 32.

Object Detection: This paper utilizes YOLOv5 [15] as
the object detection algorithm. The training and testing of
this work focuses on two classes: car and truck. The object
detection performance of the training and testing datasets is
shown in Table 3. The results obtained from the 9,776 training
images are 95.75 mAP(AP50) and 83.8 mAP(AP50:95). Sim-
ilarly, the results obtained from the 2,200 testing images are
91.8 mAP(AP50) and 80.3 mAP(AP50:95). Using this detector,
other video clips of traffic on roads are analyzed to detect
vehicles and extract information such as position and class.

TABLE 3: The mAP performance of YOLOv5 on drone train
and test dataset

Class Images Instance mAP@50 mAP@50:95
all train 9,776 309,470 95.75 83.8

car vehicle 9,776 277,263 97.2 86.0
truck vehicle 9,776 32,207 94.3 81.6

all test 2,200 85,398 91.8 80.3
car vehicle 2,200 78,765 96.1 85.3

truck vehicle 2,200 6,633 87.5 75.4

The vehicle state classification architecture incorporates two
residual blocks before maxpooling. Table 4 presents the perfor-
mance of the network based on each residual module. ✓is used
to indicate whether the residual is True or False. It shows the
order of listing according to performance. The first achieved
77.6% accuracy when the second residual block was used.
The accuracy improved by 3.0% when the two residual blocks
were not used. Using all residual blocks showed a performance
improvement of 4.9%. However, using only the first residual
block resulted in the highest performance improvement of

8.0%. The feature map added through the second residual
block caused a performance reduction of approximately 3%
on the overall performance. Additionally, the feature map used
in the network contributed to a performance improvement of
approximately 5%.

TABLE 4: Comparison of accuracy with the residual module
in proposed network.

Method Residual module Acc(%)First residual Second residual

Proposed

80.6(+3.0)
✓ 85.6(+8.0)

✓ 77.6
✓ ✓ 82.5(+4.9)

TABLE 5: Comparison of accuracy with various data augmen-
tation methods.

Method Residual Data augmentation #para Acc(%)1st 2nd Color Geo Mixup
DRN B 22 - - - - - 16.39M 87.69
DRN B 38 - - - - - 26.50M 86.49
DRN B 54 - - - - - 35.80M 89.26
DRN C 26 - - - - - 21.13M 89.62
DRN C 42 - - - - - 32.23M 81.78

Proposed

✓ ✓ 1.27M 81.9
✓ ✓ ✓ 1.27M 88.6
✓ ✓ ✓ 1.27M 75.8
✓ ✓ ✓ ✓ 1.27M 85.6
✓ 1.27M 72.8
✓ ✓ 1.27M 79.7
✓ ✓ 1.27M 81.3
✓ ✓ ✓ 1.27M 81.1
✓ ✓ ✓ 1.27M 73.5
✓ ✓ ✓ ✓ 1.27M 86.0
✓ ✓ ✓ ✓ 1.27M 84.4
✓ ✓ ✓ ✓ ✓ 1.27M 82.8
✓ ✓ 1.27M 67.0
✓ ✓ ✓ 1.27M 82.2
✓ ✓ ✓ 1.27M 66.3
✓ ✓ ✓ ✓ 1.27M 76.8

As a classification model of an adapting flexible receptive
field, Dilated residual networks (DRN) [27] has a total of
21.13M parameters(DRN C 26). The proposed model has ap-
proximately 95% fewer parameters. Table 5 describes the per-
formance comparison between DRN and the proposed model
using various data augmentation techniques. Image transfor-
mations with brightness=0.5, contrast=0.5, saturation=0.5, and
hue=0.5 are applied. Geo transform refers to the geometrical
transformation of an image, applying random rotation of -10
to +10 degrees. Mixup refers to an image synthesized with
the original for heatmap and line plotting images. DRN C 26
achieves the highest accuracy, 89.62%. Two residual condi-
tions from the proposed model are taken to compare the
performance of applying data augmentation. The first proposed
model (1st=True, 2nd=False) using color Transform and mixup
shows the highest performance, with an accuracy of 88.6%.
Similarly, the second proposed model (1st=True, 2nd=True)
achieves 86.0%. Compared to the DRN C 26 model, the
performance is 1.02% different. However, the proposed model



has 95% fewer parameters than the comparative model. It
is a lightweight improved model through effective feature
extraction. During data augmentation, color and mixup play an
important role in improving performance. From the first pro-
posed model (1st=True, 2nd=False, Color=True, Geo=False,
Mixup=True), the color conversion shows a 6.7% performance
difference, and mixup has an 8.9% difference in performance.

IV. CONCLUSION

The paper presents a novel approach to classifying the state
of a target vehicle using aerial images captured over a wide
road area. The collected drone image data serves as the input
image, and a portion of the image is cropped based on the
target vehicle, thereby increasing data diversity through the
mixup method. The proposed vehicle state model comprises
a WAFE and a DRM, which extract far-flung information
between vehicles in a wide area and select features in any
area using a deformable convolutional layer, respectively. The
entire learning model contains 1.27M parameters and achieves
a detection performance of 88.6% in the experiment. In the
future, a vehicle state classification model that combines
vehicle tracking will be developed.
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