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ABSTRACT Fire is one of the worst disasters for human life. Fire can happen anywhere and the leading
cause can be natural or man. Over the last century, scientists have invented sensor-basedmethods tominimize
damage and provide early warning of fires. However, these applications are only applied in a limited space
and distance. For the purpose of fire remote warning and deploying on low-computing devices, this paper
proposes a vision-based method using a lightweight convolutional neural network architecture combined
with the inception and attention mechanisms. This proposed network includes two main modules: a feature
extractor and a classifier. The feature extractor exploits convolution layers, depthwise separable convolution
layers, inception module, and attention mechanism to extract high-level feature maps. Next, the classifier
applies the global average pooling layer to quickly reduce the feature map dimensions and uses the softmax
function to calculate the probability of each class. The experiments performed the training and evaluation on
six datasets with an accuracy of over 96%. The fire surveillance system was implemented with simulation
videos on GPU, CPU, and Jetson Nano devices, with the highest speeds of 200.95 FPS, 31.08 FPS, and
14.27 FPS, respectively. A set of demonstration videos, source code, and proposed dataset are provided
here: https://bit.ly/3Wlpycf.

INDEX TERMS Convolutional neural network (CNN), fire classification, fire surveillance system, inception
module, squeeze and excitation attention module.

I. INTRODUCTION
Disasters caused by fire are still one of the major threats to
humans [1]. According to an analysis from The Center for
Research on the Epidemiology of Disasters (CRED), there
have been 19 severe wildfires worldwide, claiming the lives
of 90 people, and causing about 3.3millionUSDof damage in
the year 2021 [2]. Also in that year, another report [3] told that
forest fires in Europe occurred in 39 countries with 1,113,464
hectares damaged. In addition, there are many large and small
fires that are occurring every day in factories, companies,
apartment buildings, amusement parks, and people’s houses.
The main causes of fires are natural factors such as thunder,
earthquakes, volcanoes, and global warming, or carelessness
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in people’s activities such as burning forests for farming,
burning garbage, short-circuiting electric devices, and traf-
fic accidents. This above observation shows that fires can
appear easily and it has extreme effects on human lives
and economic losses. In the last centuries, researchers have
focused on developing fire warning devices to reduce the
risks. These methods are mainly based on the performance
and operation of sensors like heat sensors, smoke sensors,
and flame sensors [4]. The sensor-based methods are usu-
ally simple to install but they can give false alarms due
to their situational discrimination in narrow spaces. Later,
the vision-based methods were widely applied to overcome
the above disadvantages [5] and used in combination with
sensor-based methods to improve fire warning efficiency in
intelligent systems with larger warning spaces [6]. Following
the development trend of vision-based methods and the CNN
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application on low-computing devices, this paper proposes a
fire surveillance system based on a lightweight convolutional
neural network (CNN). The proposed network is a com-
bination of convolution (Conv) layers, depthwise separable
convolution (DWConv) layers, an inception module, and a
squeeze and excitation attention mechanism (SE) in a feature
extractor and it is finished with a classifier using a global
average pooling layer and a softmax function. To diversify
the context for fire classification, this work also proposes a
fire classification dataset consisting of fire thermal images
collected from various data sources. The entire network is
trained and evaluated on six fire datasets (five available fire
datasets and one proposed dataset). In addition, this work
also conducts testing with simulated fire videos operating in
real-time without high latency. The main contributions of this
paper are shown as follows:

1) Proposes a lightweight and efficient CNN network
architecture for fire classification. It consists of two
main modules, a feature extractor and a classifier.

2) Exploits the advantages of the DWConv layers in the
baseline stem and inception module design, replacing
all fully connected layers in the traditional classifier
with just one global average pooling layer to minimize
network parameters.

3) Proposes a thermal imaging dataset for fire classifica-
tion with all fire thermal images, named ThermalFire.

4) Deploys a fire surveillance system on low-computing
devices such as CPU and embedded devices with
high accuracy and negligible latency. This sys-
tem can be applied to both indoor and outdoor
environments.

The rest of the paper is organized as follows: Section II
reviews the related approaches to fire classification and their
advantages and disadvantages. Section III describes the pro-
posed method in detail. Section IV analyzes the experiments
and results. The last section contains the conclusion of the
paper and future work.

II. RELATED WORKS
A. TRADITIONAL METHODS
The traditional fire detectionmethods aremainly based on the
analysis of fire color features, fire motions and shapes, and
combined techniques. Fire color characteristics were distin-
guished through the primary color channels such as RGB [7],
YCbCr [8], YUV [9], and YUC [10], [11]. These methods
were simple to implement and can achieve fire classification
accuracy of 71.43% to 98.89%, but they required careful
preprocessing to enhance relevant features and reduce noise.
Regarding fire motions and shapes, the wavelet analysis and
disorder characteristics method was used in [12] to detect fire
and smoke. The combination of both analytic methods helped
the fire and smoke detection system to optimize the mini-
mum alarm ability for the indoor and outdoor systems. Other
work in [13] proposed a method based on the Lucas-Kanade
optical flow algorithm for building a fire detection system in

the monocular video. Experimental results showed that this
approach could achieve accuracy from 74.19% to 100% on
monocular videos. To overcome several disadvantages of the
optical flow algorithm, [14] designed two novel optical flow
estimators: OptimalMass Transport (OMT) andNon-Smooth
Data (NSD) which are used for fire detection. The pro-
posed method was evaluated on a large video database to
demonstrate its superiority over related methods. In addition,
studies in [15] and [16] combined fire color information
and fire motion and shape analysis to improve fire detection
accuracy. The experimental results achieved accuracies of
92.59% and 99.65% on the collected datasets, respectively.
In general, traditional methods were easy to implement with
low-computation devices and common sensors. However,
accuracy in detecting large or tiny flames was a big chal-
lenge. In addition, they also required careful manual feature
extraction.

B. CNN-BASED METHODS
In the computer vision field, fire detection has also been
studied with many different CNN network architectures.
Exploiting basic classification network architectures, [17]
used pre-trained VGG16, ResNet50, and fine-tuning based
on a fully connected layer to detect fire with a small dataset
and low accuracy. Other classification network architectures
such as AlexNet, SqueezeNet, and GoogleNet are also tuned
for fire detection in surveillance systems [18], [19], [20].
These three techniques had quite high accuracy (from 94.3%
to 94.5%), but they contained a large number of network
parameters. The work in [21] proposed a fire detection net-
work named Fire Detection for Jetson Nano and compares
the performance with AlexNet and SqueezeNet architec-
tures. This proposed network achieved the best accuracy of
84% and 79.66% on two datasets with very small model
scale. Reference [22] designed a lightweight and efficient
octave convolutional neural network for fire recognition
in visual scenes. This study evaluated the performance by
using cross-dataset validation and obtained an accuracy from
77.88% to 100%.Based on an analysis of experimental results
of popular classification networks, [23] proposed an efficient
CNN for fire detection in uncertain surveillance scenarios.
This work conducted experiments with bigger fire datasets
with quite high accuracy up to 100% but still maintains a
large number of network parameters. These methods limited
the deployment on low-computing devices for real-time sys-
tem applications. Besides, the fire thermal imaging dataset
is limited and unavailable, and its applications are not yet
widely deployed [24]. These are major obstacles to the devel-
opment of real-time fire detection and warning applications
on low-computing devices in CNN-based methods.

III. PROPOSED METHODOLOGY
The proposed network is designed based on two main mod-
ules: a feature extractor and a classifier. The overall proposed
network is shown in Figure 1.
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FIGURE 1. Architecture of the proposed fire classification network.

A. FEATURE EXTRACTOR
The feature extractor is a combination of Conv layers,
DWConv layers [25], average pooling layers, inception mod-
ule [26], SE attention modules [27], and proposed connection
modules for high-level feature extraction. More specifically,
this module consists of five main blocks. These blocks have
the same structure except for the first and last blocks. In the
first block, two 7 × 7 Conv layers are sequentially arranged
followed by batch normalization (BN) and rectified linear
unit (ReLU) activation function. The next ones are an average
pooling layer and an SE attention module. In this case, Conv
layers are used with a large kernel size to increase the recep-
tive field to capture the basic information of the objects in
the input image. Besides, the SE attention module guides the
network to learn salient features at low-level feature maps.
The original image size will be halved from 224 × 224 to
112 × 112 with 32 channels when passing through this first
block.

The intermediate stage is organized with three identical
blocks. Each block contains a 3 × 3 Conv layer, a 3 ×

3 DWConv layer, an average pooling layer, an inception
module, and an SE attention module. The feature map that
goes through each block is reduced in size by two times
and the number of channels is also increased by two times.
Specifically, 112 × 112 × 32 feature map will become 14 ×

14 × 128 feature map in these stages. The final block in the
feature extractor is the stack of a DWConv layer, an inception
module, an SE attention module, and then another DWConv
layer. This block further enriches the informative feature map
and guides the network to capture the salient features at a
high level. After going through the final block, the feature
map dimension remains 14 × 14 but the number of channels
is reduced to two corresponding to the two class labels in the
dataset.

Besides mentioned layers, the connections play a very
important role in the feature extractor. They merge the

previous feature map and the current feature map by an
addition operator to generate the output feature map. This
technique enhances the useful information in the feature
map at different feature levels. Combining ideas from Resid-
ual [28] and Inception [26] networks, this paper proposes
two versions of the connection as shown in Figure 2. Each
connection consists of two branches: the main branch and
the sub-branch. The sub-branch in connection 1 uses a 3 × 3
DWConv layer, an average pooling layer, and a 1×1DWConv
layer followed by a BN layer. The sub-branch in connection 2
has a similar structure to connection 1 without an average
pooling layer. Both connections perform the task of extracting
the low-level feature map and merging it with the current
feature map via the addition operator. This technique aims
to mix information between different feature map levels to
further increase useful information for feature extraction.
In this work, connection 1 links the 1st and 3rd blocks while
connecting 2 links the 4th and last block. The calculation
formula of the connection is described as follows:

yi = Ii(x) + I ′
i (x), (1)

where i is the version of connection (i = 1 or 2) and x
and y are the input and output feature maps, respectively.
Ii(x) ∈ RW×H×C is the output feature map of the main
branch. I ′

i (x) ∈ RW×H×C is the output feature map of
the sub-branch. Details for each sub-branch version are as
follows:

I ′

1(x) = BN (DWConv1×1(A3×3(DWConv3×3(x)))),

I ′

2(x) = BN (DWConv1×1(DWConv3×3(x))), (2)

where BN is the batch normalization layer. DWConv1×1 and
DWConv3×3 are 1× 1 and 3× 3 depthwise separable convo-
lution layers, respectively.A3×3 is the 3× 3 average pooling
layer.

The inception modules are designed based on the original
architecture in [25] with the complete replacement of the
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FIGURE 2. Architecture of the connection modules. The connections help
to merge the feature maps at different levels but insignificantly increase
the network parameters. On the other hand, the use of different
architectures also aims to adapt to each feature map level.

FIGURE 3. Architecture of the inception module.

Conv layers by the DWConv layers. The structure of each
inception module is shown in Figure 3 which consists of four
branches with different numbers and types of layers. From
left to right, the first branch is a combination of a 1 × 1
DWConv layer and a 5 × 5 DWConv layer, the second is a
combination of a 1× 1 DWConv layer and a 3× 3 DWConv
layer, the third is a combination of a 3× 3 max pooling layer
and 1 × 1 DWConv layer, and the final branch uses only
one 1 × 1 DWConv layer. The output feature maps from
four branches are then combined using the concatenation
operation to create the refined feature map. The combined
use of DWConv layers with different kernel sizes and an
average pooling layer allows the inception module to capture
information across multiple receptive fields. Therefore, these
modules enrich the feature map information before moving
on to the next module. In addition, the replacement of the
Conv layers by the DWConv layers has significantly reduced
the network parameters but still ensures information for the
feature extraction process.

The SE attention module is composed of three opera-
tions: squeeze (Fsq), excitation (Fex), and scaling (Fscale).
The architecture of the SE attention module is presented in
Figure 4. Assume the input feature map is X ∈ RH ′

×W ′
×C ′

with dimensionsH ′ height,W ′ width, andC ′ channels. Apply
the transformation Ftr (such as convolutional operator) to

FIGURE 4. Architecture of the squeeze-and-excitation attention module.
Different colors in the feature maps depict different attention levels per
channel.

obtain the feature map U ∈ RH×W×C . In the squeeze opera-
tor, a global average pooling is used to generate channel-wise
attention. To do that, it shrinks the feature map U through its
H ×W spatial dimensions. Therefore, each c channel of the
feature map U is calculated as follows:

xc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j), (3)

The excitation operator aims to capture channel-wise depen-
dencies. This operator gets the output of the squeeze stage
to generate an activation vector. The process is calculated
based on two fully connected layers with a bottleneck with
ratio r (ratio of the network node of the current layer to the
input layer) and a sigmoid activation function. The formula
for calculating the y activation vector is:

y = Fex(x,W ) = σ (W2ReLU (W1x), (4)

where σ is the sigmoid activation function, ReLU is the rec-
tified linear activation function, W1 ∈ R

C
r ×C , W2 ∈ RC×

C
r ,

and x = [x1, x2, . . . , xc].
Finally, the scale operator modifies the U feature map and

the y activation vector by the channel-wise multiplication
operator (⊗). The calculation formula is shown below:

zc = Fscale(uc, yc) = uc ⊗ yc. (5)

The stack of refined feature maps zc to form an output
feature map z = [z1, z2, . . . , zc] which is the same dimension
as the original feature map U .

B. CLASSIFIER
In common classification network architectures, the fully
connected layers are used at the end of the feature extractor.
With this technique, the number of connections between
network nodes increases significantly. It is also the agent
that increases the amount of computation on the network that
hinders implementation in real-time systems. To solve this
problem, this paper proposes to replace all fully connected
layers with only one average pooling layer. Therefore, the
spatial features are extracted per channel using the average
operation. Specifically, from the last feature map of the fea-
ture extractor with a 14 × 14 × 2 dimension, it will quickly
reduce to 1 × 1 × 2. Then, a softmax function is applied to
calculate the probability of each class (Fire and NoFire).

VOLUME 11, 2023 101607



D.-L. Nguyen et al.: Lightweight CNN for Fire Classification in Surveillance System

TABLE 1. Datasets and the ratio of training and evaluation sets.

C. LOSS FUNCTION
During training, this work uses a categorical cross-entropy
loss function [29] to evaluate the difference between the
predicted value and the target value. This function is applied
to two classes and is defined as follows:

Lcls = −

1∑
i=0

P∗
i log(Pi), (6)

where i represents the index of each class in the dataset (0 to
1).P∗

i is the target indicator (0 or 1).Pi denotes the prediction
probability from the network and log is a natural logarithm
function.

D. FIRE VIDEO TESTING SYSTEM
The overall fire video testing system is described in detail in
Figure 5 with the training phase and the testing phase. Focus-
ing on the testing phase, it includes the input, classification
process, and output. The input is a set of videos with different
resolutions including VGA, HD, FHD, and thermal video.
The classification is performed by the trained model on the
FireNet dataset. The output is the signals displayed on the
screen consisting of the class to be classified, the accuracy
of that class, and the speed measured in frames per second
(FPS). In fact, the system can replace the input with a camera
and the output can integrate an additional speaker to broadcast
an alarm when a fire is detected. This is also the structure of
the real-time fire warning system.

IV. EXPERIMENTS
A. DATASETS
This experiment trains and evaluates the proposed fire classi-
fication network on six datasets: FireNet [6], FireSense [16],
CairFire [17], FireSmoke [30], FireDetection [23], and pro-
posed ThermalFire dataset. To enrich the training set and
avoid overfitting issues, this experiment applies several data
augmentation techniques: random zoom, random brightness,
and random shift. The details of each dataset are described in
Table 1.

1) FireNet DATASET
FireNet was a diverse dataset captured from fire and non-fire
videos in a challenging environment and collected from var-
ious internet sources (Google and Flickr). To increase the
richness of the dataset, the authors also applied data aug-
mented techniques in the image sets. The result was a dataset
containing 1,124 fire images and 1,301 non-fire images.

To compare fairly with other experiments, this paper divides
the FireNet dataset into 70% for the training set and 30% for
the evaluation set.

2) FireSense DATASET
FireSense dataset was a video dataset containing twenty-
seven videos for fire detection and twenty-two videos for
smoke detection. The video set for fire detection has eleven
videos with the appearance of fire and sixteen videos with-
out fire. This experiment extracts frames from fire detection
videos with 329 fire frames and 577 non-fire frames. All
images are separated into 80% for the training set and 20%
for the evaluation set.

3) CairFire DATASET
The CairFire dataset consists of 110 fire images and 541 non-
fire images. These images were collected from the internet
with many different fire situations, indoor and outdoor envi-
ronments, and different lighting conditions similar to fire
color. This experiment selects 541 images for training and
110 images for evaluation.

4) FireSmoke DATASET
The FireSmoke dataset contains 3,000 images divided into
three classes: fire, neutral, and smoke. Each class consists
of 1,000 images including 900 images for training and
100 images for evaluation. In this work, only images from two
classes, fire and neutral (corresponding to ‘‘no fire’’ class) are
used to train and evaluate the proposed network.

5) FireDetection DATASET
The FireDetection dataset was created mainly from two other
datasets consisting of two classes, fire and non-fire, with
30,776 images. Following the settings in [23], this experiment
selects 8,032 images for training and 22,518 images to eval-
uate the proposed network.

6) ThermalFire DATASET
The ThermalFire dataset is proposed by the authors in this
paper. This dataset is built based on fire thermal videos [31],
[32] and other thermal images collected from the inter-
net [33], [34]. It contains 3,204 fire thermal images with
1,535 fire images and 1,669 no-fire images. This work divides
the dataset into 70% for the training phase and 30% for the
evaluation phase.

B. EXPERIMENTAL SETTING
The proposed fire classification network is built in the Python
programming language with the Keras framework. This net-
work is trained and evaluated on a Tesla-V100 GPU. Another
GPU (GeForce GTX 1080Ti, 32GB of RAM), one CPU (Intel
Core I7-4770 CPU @ 3.40 GHz, 32GB of RAM) and one
Jetson Nano (Nvidia Maxwell GPU, 4GB of RAM) are used
to test the real-time video system with different resolutions:
VGA (640× 480 pixels), HD (1280× 720 pixels), and FHD
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FIGURE 5. Fire video testing system.

TABLE 2. The comparison accuracy (%) with different methods on six datasets. The red colored numbers represent the best competitors. The † symbol
denotes the finetuned classification networks. The N/A symbol denotes the no available values.

(1920×1080 pixels) and thermal video. The training process
goes through 300 epochs with a batch size of 32. The learning
rate is initialized at 10−3 and decremented by a factor of
0.65 times after 10 epochs if the accuracy is not improved.
The Adam optimization method [35] is applied to update the
weight during training. Several data augmentation methods

are used such as random clipping, rotation, and flipping to
contribute to reducing overfitting.

C. RESULT ANALYSIS
The proposed fire classifier network is trained and evaluated
on the six datasets described in Section IV-A. On the other
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FIGURE 6. The qualitative fire classification on six datasets.

hand, it is also tested with different video resolutions (VGA,
HD, FHD) and thermal video on one GPU, one CPU, and one
Jetson Nano device. The results are reported through accu-
racy (%) and network parameters. As a result, the proposed
network achieved accuracies of 96.08%, 100%, 97.27%,
98.50%, 100%, and 100% on the FireNet, FireSense, Cair-
Fire, Firesmoke, FireDetection, and ThermalFire datasets
respectively. In common, the network parameter is the sum of
the weight and bias of Conv, DWConv, and fully connected
layers used in the network. This study restricts the use of the
Conv layers, encourages the use of the DWConv layer both in
the baseline and other modules, and replaces the entire fully
connected layer with a single global average pooling layer.
This technique helps to optimize network parameters sig-
nificantly. Therefore, the whole proposed network contains
only 579,986 parameters but is still computationally complex

enough with 2,981 GFLOPS to ensure feature extraction at
different levels. To evaluate the performance of the proposed
network, the experiment is compared with other network
architectures in the same datasets. In addition, this work
also refined, retrained and evaluated the typical classification
network architectures across all six datasets. The comparison
of the proposed network and different methods on six datasets
are shown in Table 2. For the FireNet dataset, the proposed
network outperforms the refined networks and the CNN
in [22]. Specifically, it achieves an accuracy equal to the best
competitor (VGG19) of 96.08% but its network parameter
is 35.45 times less. For the FireSense dataset, the proposed
network achieves absolute accuracy along with the refined
networks (SqueezeNet, MobilleNetV2, DenseNet, VGG16,
VGG19, Xception, and LeNet) and the CNN in [22] and
outperforms other methods. Compared to the best competitor
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FIGURE 7. The confusion matrices on six datasets.

FIGURE 8. The GRAD-CAM visualization on the FireSmoke dataset. The above images are the original images and the below ones are GRAD-CAM
visualization images.

(SqueezeNet), it has more than twice the network param-
eters. For the CairFire dataset, the proposed network also
outperforms the other refined networks and classification
networks in [21] and [22]. It achieves an accuracy of 3.1%
better than the best competitor (MobilleNetV1) while its
network parameter is 7.39 times less. Similar to the FireNet
dataset, the accuracy of the proposed network tends to be
similar. It also outperforms the refined networks and the CNN
proposed in [21]. When compared with the best competitor
(DenseNet), it reaches the same accuracy, but the network
parameter is 13.96 times less. The proposed network again
achieves absolute accuracy in the FireDetection dataset with

network architectures such as the VGG network family and
the Xception network. In addition, it also outperformed the
networks in [7], [8], [10], [11], [12], [14], [18], [19], [20], and
[23] with an accuracy from 4.14% to 16.13% better. When
compared with the best competitor (VGG13), its network
parameter is 9.0 times less. For the ThermalFire dataset,
this network also achieves absolute accuracy along with
MobileNetV1, Exception, and LeNet networks. Compared
with the best competitor (MobileNetV1), its network param-
eters have 7.39 times fewer. Figure 6 presents the qualitative
results of the proposed network on six datasets. Figure 7
shows confusion matrices on six datasets and demonstrates
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FIGURE 9. The results of the video testing system with VGA, HD, FHD, and VGA thermal video on Jetson Nano device
(Nvidia Maxwell GPU, 4GB of RAM).

FIGURE 10. The speed of the video testing system with VGA, HD, and FHD
on the FireNet dataset and three devices: GPU (GeForce GTX 1080Ti, 32GB
of RAM), CPU (Intel Core I7-4770 CPU @ 3.40 GHz, 32GB of RAM), and
Jetson Nano (Nvidia Maxwell GPU, 4GB of RAM).

that the proposed network can achieve balanced accuracy
between two classes of Fire andNoFire (on FireNet, CairFire,
and FireSmoke datasets) or absolute accuracy (on FireSense,
FireDetection, and ThermalFire datasets). The proposed net-
work is also capable to distinguish the fire and background
feature in order to focus on learning fire-related properties as
shown in Figure 8 based on the GRAD-CAM technique [36].
This functionality is obtained by the operating mechanism of
the SE attention modules embedded in the feature extraction
process. To test the speed of the proposed network in a

real-time system, the experiment is conducted with a set of
videos and a pre-trained model on the FireNet dataset as the
system described in Section III-D. This system is subject to
changing the videos with a camera to deploy experiments in
real-time. For safety reasons, the experiment was performed
only on a set of fire simulation videos recorded from actual
fires. Several experimental results with videos on the Jet-
son Nano device are shown in Figure 9. The results from
Figure 10 demonstrate that the proposed network achieves
maximum speeds of 200.95 FPS, 31.08 FPS, and 14.27 FPS
on the GPU, CPU, and Jetson Nano devices, respectively.
This speed will gradually decrease according to the resolu-
tion from VGA to HD to FHD with a minimum speed of
185.2 FPS, 30.55 FPS, and 12.37 FPS, respectively. With this
minimum speed, the system can perfectly work in real-time
with low-computing devices and embedded devices. This
encourages the use of VGA resolution video when imple-
menting the system in practice because it ensures the alarm
signal display requirements and the operating speed of the
system. During the testing on video, it was shown that the
proposed network works stably in small indoor spaces, but
also reveals several disadvantages when deployed to moni-
tor the outdoor environment. Sometimes the network cannot
distinguish the fire color and lights similar to street lights,
car lights, etc. Even small fires are difficult to detect because
the fire shape can change continuously. Besides, the occlu-
sion issue is also a challenge for the proposed system when
detecting remote fire sources. The speed of cameramovement
also greatly affects the accuracy of the network. Therefore,
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TABLE 3. Ablation study 1 on the FireNet dataset. The red number represents the best network.

establishing the appropriate scene range and placement cam-
era angle that allows the network to achieve the required
accuracy is a challenge to design a fire surveillance system.

D. ABLATION STUDIES
This research evaluates the impact of each proposed module
on the entire network through four ablation studies. Ablation
study 1 examines the influence of the Inception, Connection,
and SE attention modules and their combinations. Ablation
study 2 inspects the advantages of the SE attention module
compared to other attention mechanisms such as BAM and
CBAM. Ablation study 3 compares the efficiency of the GAP
and fully connected (FC) layer. Ablation study 4 focuses on
comparing Conv and DWConv layers when used to design
the inception module.

1) ABLATION STUDY 1
In this ablation study, a baseline network is designed that
also includes two main modules. However, the feature extrac-
tor is only based on the basic elements in a CNN network
such as Conv, DWCon, and average pooling layers to extract
features at different levels. The baseline network is trained
and evaluated on the FireNet dataset for comparison. In the
next step, other modules are also integrated into the baseline
network to form a new CNN and then this work conducts
training and evaluation. The results in Table 3 show that
integrating just one or two modules into the baseline network
only slightly increases the accuracy (from 0.06% to 0.34%) or
even reduces the accuracy significantly by about 26.13% (the
case of the inception module). The integration of all proposed
modules into the baseline network helps the network achieve
the highest accuracy of 96.08%. However, it is also a trade-off
with increasing network parameters of 2.69 times and com-
putational complexity of 0.612 GFLOPS when compared to
the baseline network.

2) ABLATION STUDY 2
To choose the appropriate attention mechanism for the pro-
posed network, this work also evaluates the influence of
eachmodule. Specifically, each attentionmodule is integrated
with the connection, and inception modules into the baseline
network, and then proceed with training and evaluation. The
results in Table 4 show that when using the BAM and CBAM,
the network parameters and accuracy are similar. In con-
trast, when replacing them with the SE attention module,
the network contains of nearly two thousand fewer network

TABLE 4. Ablation study 2 with different attention mechanisms on the
FireNet dataset. The red colored number represents the best network.

TABLE 5. The Ablation 3 study compares FC and GAP usage in a network
on the FireNet dataset. The red-colored number denotes the best network,
FC-128 is the fully connected layer with one hidden layer of 128 notes.

TABLE 6. Ablation study 4 with different inception modules on the
FireNet dataset. The red-colored number represents the best network.

parameters, and the accuracy increases by more than 0.5%
while the computational complexity is also reduced. This is
the reason why the proposed network uses the SE attention
module as the main attention mechanism.

3) ABLATION STUDY 3
As mentioned above, this work completely replaces the fully
connected layers in the traditional classification network
with only one GAP layer. Table 5 shows the compari-
son results between using FC and GAP. In this case, the
classification network uses only one hidden layer with
128 network notes. The results show that using GAP dra-
matically reduces the network parameter (50,562 parameters)
and increases the classification accuracy by a large margin
(3.92%) while the computational complexity is the same.

4) ABLATION STUDY 4
The final ablation study focuses on evaluating the archi-
tecture of the inception module used in the proposed
network. As mentioned above, the inception module uses
the original architecture but replaces all Conv layers with

VOLUME 11, 2023 101613



D.-L. Nguyen et al.: Lightweight CNN for Fire Classification in Surveillance System

DWConv layers to optimize network parameters. Table 6
shows that this replacement can save 93,120 parameters,
0.152 GFLOPS computational complexity, and increase the
accuracy to 0.69%.

V. CONCLUSION
This paper proposes a lightweight convolutional neural net-
work for fire classification. This network exploits the basic
components of a CNN network such as Conv, DWCon, aver-
age pooling layers combined with proposed connections, and
inception modules to extract feature maps. In addition, the
integration of SE attention modules at the end of each block
aims to guide the network to focus on learning salient features
at each level. Finally, the classifier module performs context
classification in two classes, Fire and NoFire. The experi-
ments were conducted on the image datasets and real-time
simulated videos. This work also designs a fire surveillance
system that works on low-computing devices with high accu-
racy and negligible latency. In the future, the system will
be combined with a fire detector to solve the problem of
small-scale fire classification and at night conditions with
infrared cameras. On the other hand, the system will be
integrated to send messages to users via mobile networks to
alert anytime and anywhere.

REFERENCES
[1] M. Cavallini, M. Papagni, and F. W. B. Preis, ‘‘Fire disasters in the twenti-

eth century,’’ Ann. Burns Fire Disasters, vol. 20, pp. 101–103, Jun. 2007.
[2] 2021 Disasters in Numbers. Accessed: Apr. 20, 2023. [Online]. Available:

https://cred.be/sites/default/files/2021_EMDAT_report.pdf
[3] J. San-Miguel-Ayanz et al., ‘‘Advance report on wildfires in Europe,

Middle East and North Africa 2021,’’ Publications Office Eur. Union,
Luxembourg, Tech. Rep. EUR 31028 EN, JRC128678, 2022, doi:
10.2760/039729.

[4] F. Khan, Z. Xu, J. Sun, F. M. Khan, A. Ahmed, and Y. Zhao, ‘‘Recent
advances in sensors for fire detection,’’ Sensors, vol. 22, no. 9, p. 3310,
Apr. 2022.

[5] A. Filonenko, D. C. Hernández, and K.-H. Jo, ‘‘Fast smoke detection for
video surveillance using CUDA,’’ IEEE Trans. Ind. Informat., vol. 14,
no. 2, pp. 725–733, Feb. 2018.

[6] A. Jadon,M.Omama, A. Varshney,M. S. Ansari, and R. Sharma, ‘‘FireNet:
A specialized lightweight fire & smoke detection model for real-time IoT
applications,’’ 2019, arXiv:1905.11922.

[7] T.-H. Chen, P.-H. Wu, and Y.-C. Chiou, ‘‘An early fire-detection method
based on image processing,’’ in Proc. Int. Conf. Image Process. (ICIP),
vol. 3, 2004, pp. 1707–1710.

[8] T. Çelik andH. Demirel, ‘‘Fire detection in video sequences using a generic
color model,’’ Fire Saf. J., vol. 44, no. 2, pp. 147–158, Feb. 2009.

[9] G. Marbach, M. Loepfe, and T. Brupbacher, ‘‘An image processing tech-
nique for fire detection in video images,’’ Fire Saf. J., vol. 41, no. 4,
pp. 285–289, Jun. 2006.

[10] P. Foggia, A. Saggese, and M. Vento, ‘‘Real-time fire detection for video-
surveillance applications using a combination of experts based on color,
shape, and motion,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 25,
no. 9, pp. 1545–1556, Sep. 2015.

[11] Y. Habiboglu, O. Günay, and A. Cetin, ‘‘Covariance matrix-based fire and
flame detection method in video,’’ Mach. Vis. Appl., vol. 23, pp. 1–11,
Nov. 2011.

[12] A. Rafiee, R. Dianat, M. Jamshidi, R. Tavakoli, and S. Abbaspour, ‘‘Fire
and smoke detection using wavelet analysis and disorder characteris-
tics,’’ in Proc. 3rd Int. Conf. Comput. Res. Develop., vol. 3, Mar. 2011,
pp. 262–265.

[13] S. Rinsurongkawong, M. Ekpanyapong, and M. N. Dailey, ‘‘Fire detection
for early fire alarm based on optical flow video processing,’’ in Proc.
9th Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol.,
May 2012, pp. 1–4.

[14] M. Mueller, P. Karasev, I. Kolesov, and A. Tannenbaum, ‘‘Optical flow
estimation for flame detection in videos,’’ IEEE Trans. Image Process.,
vol. 22, no. 7, pp. 2786–2797, Jul. 2013.

[15] R. Di Lascio, A. Greco, A. Saggese, and M. Vento, ‘‘Improving fire detec-
tion reliability by a combination of videoanalytics,’’ in Image Analysis
and Recognition, A. Campilho and M. Kamel, Eds. Cham, Switzerland:
Springer, 2014, pp. 477–484.

[16] K. Dimitropoulos, P. Barmpoutis, and N. Grammalidis, ‘‘Spatio-temporal
flame modeling and dynamic texture analysis for automatic video-based
fire detection,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 2,
pp. 339–351, Feb. 2015.

[17] J. Sharma, O.-C. Granmo, M. Goodwin, and J. Fidje, ‘‘Deep convolutional
neural networks for fire detection in images,’’ in Proc. Int. Conf. Eng. Appl.
Neural Netw., Aug. 2017, pp. 183–193.

[18] K. Muhammad, J. Ahmad, and S. W. Baik, ‘‘Early fire detection
using convolutional neural networks during surveillance for effec-
tive disaster management,’’ Neurocomputing, vol. 288, pp. 30–42,
May 2018.

[19] K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P. Yang, and S. W. Baik,
‘‘Efficient deep CNN-based fire detection and localization in video surveil-
lance applications,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 7,
pp. 1419–1434, Jul. 2019.

[20] K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, ‘‘Convo-
lutional neural networks based fire detection in surveillance videos,’’ IEEE
Access, vol. 6, pp. 18174–18183, 2018.

[21] J. Gotthans, T. Gotthans, and R. Marsalek, ‘‘Deep convolutional neural
network for fire detection,’’ in Proc. 30th Int. Conf. Radioelektronika
(RADIOELEKTRONIKA), Apr. 2020, pp. 1–6.

[22] A. Ayala, E. Lima, B. Fernandes, B. L. D. Bezerra, and F. Cruz,
‘‘Lightweight and efficient octave convolutional neural network for fire
recognition,’’ in Proc. IEEE Latin Amer. Conf. Comput. Intell. (LA-CCI),
Nov. 2019, pp. 1–6.

[23] K. Muhammad, S. Khan, M. Elhoseny, S. H. Ahmed, and S. W. Baik,
‘‘Efficient fire detection for uncertain surveillance environment,’’
IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 3113–3122,
May 2019.

[24] S. Li, Y.Wang, C. Feng, D. Zhang, H. Li,W. Huang, and L. Shi, ‘‘A thermal
imaging flame-detection model for firefighting robot based on YOLOv4-F
model,’’ Fire, vol. 5, no. 5, p. 172, Oct. 2022.

[25] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1800–1807.

[26] C. Szegedy,W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
2014, arXiv:1409.4842.

[27] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ 2015, arXiv:1512.03385.

[29] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation, and
Machine Learning, vol. 133. New York, NY, USA: Springer, 2004.

[30] Fire Smoke Dataset. Accessed: Jul. 20, 2022. [Online]. Available:
https://github.com/DeepQuestAI/Fire-Smoke-Dataset

[31] Pwhoazin—Youtube. Accessed: Dec. 14, 2022. [Online]. Available:
https://www.youtube.com/@PWHoazin

[32] A. Shamsoshoara, F. Afghah, A. Razi, L. Zheng, P. Z. Fulé, and E. Blasch,
‘‘Aerial imagery pile burn detection using deep learning: The FLAME
dataset,’’ Comput. Netw., vol. 193, Jul. 2021, Art. no. 108001.

[33] Q. Ashfaq, U. Akram, and R. Zafar. Thermal Image Dataset for
Object Classification. Accessed: Dec. 14, 2022. [Online]. Available:
https://data.mendeley.com/datasets/btmrycjpbj/1

[34] J. Nelson. Thermal Dogs and People Object Detection Dataset. Accessed:
Dec. 14, 2022. [Online]. Available: https://public.roboflow.com/object-
detection/thermal-dogs-and-people

[35] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ in Proc. Int. Conf. Learn. Represent., Dec. 2014, doi:
10.48550/arXiv.1412.6980.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-cam: Visual explanations from deep networks via
gradient-based localization,’’ Int. J. Comput. Vis., vol. 128, no. 2,
pp. 336–359, Oct. 2019.

101614 VOLUME 11, 2023

http://dx.doi.org/10.2760/039729
http://dx.doi.org/10.48550/arXiv.1412.6980


D.-L. Nguyen et al.: Lightweight CNN for Fire Classification in Surveillance System

DUY-LINH NGUYEN (Member, IEEE) received
the B.Eng. degree in applied informatics from
the Vinh University of Technology Education,
Vietnam, in 2010, and the master’s degree in
computer science from The University of Da
Nang, Vietnam, in 2014. He is currently pur-
suing the Ph.D. degree in electrical engineering
with the Department of Electrical, Electronic,
and Computer Engineering, University of Ulsan,
South Korea. After the B.Eng. degree, he joined

the Information Technology and Electrical Engineering Department, Quang
Binh University, Vietnam, as a Lecturer. He was with the Intelligent System
Laboratory (ISLab), Department of Electrical, Electronic, and Computer
Engineering, University of Ulsan. His current research interests include
object detection and recognition in computer vision based on machine
learning.

MUHAMAD DWISNANTO PUTRO (Member,
IEEE) received the B.Eng. (S.T.) degree in elec-
trical engineering from Sam Ratulangi University,
Manado, Indonesia, in 2010, the M.Eng. degree
from the Department of Electrical Engineering,
Gadjah Mada University, Yogyakarta, Indonesia,
in 2012, and the Ph.D. degree from the Department
of Electrical, Electronic, and Computer Engineer-
ing, University of Ulsan, South Korea, in 2022. His
current research interests include computer vision

and deep learning, which focuses on robotic vision and perception.

KANG-HYUN JO (Senior Member, IEEE)
received the Ph.D. degree in computer-controlled
machinery from Osaka University, Osaka, Japan,
in 1997. After a year of experience with ETRI
as a Postdoctoral Research Fellow, he joined the
School of Electrical Engineering, University of
Ulsan, Ulsan, South Korea, where he is currently
the Faculty Dean of the School of Electrical
Engineering. His current research interests include
computer vision, robotics, autonomous vehicles,

and ambient intelligence. He was the Director or an AdCom Member of the
Institute of Control, Robotics and Systems and the Society of Instrument
and Control Engineers, the IEEE IES Technical Committee on Human
Factors Chair, an AdCom Member, and the Secretary, until 2019. He has
also been involved in organizing many international conferences, such as the
International Workshop on Frontiers of Computer Vision, the International
Conference on Intelligent Computation, the International Conference on
Industrial Technology, the International Conference on Human System
Interactions, and the Annual Conference of the IEEE Industrial Electronics
Society. He is currently an Editorial BoardMember for international journals,
such as the International Journal of Control, Automation and Systems and
Transactions on Computational Collective Intelligence.

VOLUME 11, 2023 101615


