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Abstract—Fire is a dangerous disaster that takes many lives
and human property. Fire happens everywhere, especially in
areas with high temperatures or hot sun. Fires can be caused
by humans or by nature. Therefore, an early warning of fire
is necessary to reduce the damage. Research in many different
fields has long been focused on fire alerts. This paper proposes
a fire alarm system based on a lightweight convolutional neural
network. The design takes the advantage of convolution layers,
depthwise separable convolution layers, inception module, and
softmax function to optimize network parameters while ensuring
feature extraction and classification. This network is trained and
evaluated on FireNet dataset with an accuracy of 97.14%. In
addition, this work also builds and implements the fire video
testing systems on low-computation devices such as CPU-Based
personal computer and embedded devices.

Index Terms—Convolutional neural network, fire classification,
inception network, fire warning system.

I. INTRODUCTION

Among natural and man-made disasters, fire is one of
the major disasters affecting human life [1]. Fires tend to
increase year by year, occurring everywhere, and in many areas
such as factories, warehouses, houses, apartment buildings,
amusement parks, and forests. The main cause of fires can be
natural disasters (earth warming, volcanoes, thunder) or human
causes (careless in daily life, electrical short, burning garbage,
burning forests for farming). In order to minimize accidental
damage from fire, many studies have focused on detecting
and early warning of the fire source. These methods mainly
rely on the operation of physical sensors such as temperature
sensors, smoke sensors, and flame sensors [2]. However, the
sensor-based methods can trigger false fire warning because
it is not capable of distinguishing between fire and smoke.
Besides, these methods have a certain delay when assessing the
fire level to make warning decisions. From that analysis, this
paper proposes a vision-based method for remote fire detection
based on a lightweight convolutional neural network (CNN).
This network is trained and evaluated on FireNet dataset, then
tested on a real-time warning system without high latency.
The main contributions of this paper are shown as:
1 - Proposes a lightweight CNN architecture for fire classi-
fication. It comprised of feature extraction and classification
modules.
2 - Applies the depthwise separable convolution layers in the
inception module to reduce greatly the number of parameters.
3 - Designs a simple real-time fire warning system that deploys
on the CPU and embedded device with high accuracy.

The remaining part of the paper is organized: Section II
reviews the related works to fire detection methods and their

strengths and weaknesses. Section III introduces the detail of
the proposed approach. Section IV presents the experiment and
analysis the results. Finally, Section V concludes the paper and
future works.

II. RELATED WORK

A. Traditional approach

Traditional machine learning approaches are greatly based
on the color and motion of fire. The study in [3] proposes an
RGB model based on chromatic and disorder measurement for
fire-pixels and smoke-pixels extraction. [4] uses two different
color models to distinguish between fire and smoke, then
replaces heuristic rules with a fuzzy logic method to speed
up the classifier’s processing. In fire motion analysis, [5] uses
wavelet analysis and disorder characteristics to detect fire and
smoke. The authors in [6] apply the method based on the
Lucas-Kanade optical flow algorithm to detect fire in the real-
time video stream from a monocular camera. Similarly, the
work in [7] proposes two novel optical flow estimators to
overcome the insufficiencies of classical optical flow models
when applied to fire detection. These approaches are easy to
deploy with low computational and sensor devices. However,
the similarity between the color and motion of the fire with the
background image is a major obstacle, making the accuracy
significantly less. On the other hand, it also requires careful
image preprocessing to ensure fire detection accuracy.

B. CNN-based approach

In the field of computer vision, object detection is a hot
topic of research with the popular application of convolutional
neural networks. Fire detection is one such topic with a variety
of proposed methods. The authors in [8] propose a method
of forest fire detection with a fine-tuned CNN network. [9]
apply two trained network models, VGG16 and Resnet50
to build a fire detection system in images. [10]–[13] refines
various variations of popular classification networks (AlexNet,
SqueezeNet, GoogleNet, and MobileNetV2) to build fire detec-
tion and surveillance systems. These approaches achieve high
performance but produce a large size of network parameters
and they are incompatible operate on CPU and embedded
devices.

III. PROPOSED METHODOLOGY

The proposed fire classification network is described in Fig.
1. The network consists of two sub-modules: feature extraction
and classification.



Fig. 1. The proposed fire classification network. This network consists of two sub-modules: feature extraction and classification.

A. Feature extraction module

Unlike traditional methods, CNNs are capable of extracting
feature maps from raw images without any preprocessing.
This makes it easier for later tasks to be applied including
classification tasks. The feature extraction module in this paper
focuses on exploiting the outstanding features of convolution
layers, depthwise separable convolution layers (DWConv)
[14], and inception mechanism [15] to optimize network
parameters. Therefore, it can be deployed in low computing
devices. Specifically, this module is designed based on five
main blocks that are sequentially stacked according to the
depth of the network. The blocks have similar structures except
for the first and the last block. The first block uses two 7× 7
convolution layers followed by batch normalization (BN), a
ReLU activation function, and ends with a 3 × 3 average
pooling layer. This block uses convolution layers with a large
kernel size to increase the receptive field during the original
raw image extraction. The input image after going through this
block will be halved in size from 224× 224 to 112× 112.

The next three similarly structured blocks include a convo-
lution layer, a DWConv layer, an average pooling layer, and an
inception module. These three blocks act as intermediate-level
feature extraction. The convolution layer in these blocks uses
kernels varying from 5× 5 to 3× 3 while the average pooling
layer keeps the same 3 × 3 kernel. The size kernels change
by decreasing in order to optimize the network parameters.
The inception module still follows the original architecture
as shown in Fig. 2. However, the convolution layers are
completely replaced by DWConv. Each inception module
consists of four branches, each with a different structure. From
bottom to top, the first branch uses only one 1×1×32 DWCon,
the second branch uses a combination of a 3 × 3 × 32 max
pooling layer and 1× 1× 32 DWCon layer, the third branch
uses a combination of two DWCon layers (1 × 1 × 24 and
3 × 3 × 32), and the last branch is a combination of two
DWCon (1 × 1 × 24 and 3 × 3 × 32). The outputs of all
branches are concatenated following the channel dimension

Fig. 2. The architecture of the inception module based on depthwise separable
convolution.

to produce a fine-tuned feature map. This technique aims to
enrich the amount of information on feature maps after fully
extracted by the previous convolution. With this proposal, a
large number of network parameters were reduced, but useful
information is still ensured in each feature map level. This
result is proved in the ablation study section. Through these
three modules, the feature map further reduces the dimension
to 14× 14 and increases the number of channels to 128.

The last block in the feature extraction module composed
of two DWConv layers interspersed is an inception module.
This module further enriches feature information and reduces
the dimension of the feature map to 14 × 14 with a channel
number of 2.



Fig. 3. The overall of fire video testing system. This system consists of camera, trained weight model, and speaker.

B. Classification module
In the popular classification networks so far, the fully con-

nected layers are still used to perform the classification task in
CNN. However, this technique increases a very large number
of network parameters leading to limited applicability in low
computing devices. To solve this problem, the classification
module in this paper replaces all fully connected layers with a
single global average pooling (GAP) layer. Accordingly, from
the feature map, the output of the feature extraction module
with size 14×14×2 will be processed by GAP and generate a
1×1×2 feature map. Then, a softmax function will be applied
on this feature map to calculate the probability of each object
appearing in the image corresponding to the classes in the
dataset (NoFire and Fire).

C. Loss function
The loss function is cross-entropy loss. It calculates the

difference between the predicted value and the target value
during training. This function is described in detail as follows:

Lclass = −
1∑

c=0

p∗c .log(pc), (1)

where c presents the index of a each class (0 to 1). ptc is
the target indicator (0 or 1). pc is the predicted probability
from the proposed network. log denotes a natural logarithm
function.

D. Fire video testing system
The overview of the fire video testing system is depicted in

Fig. 3. The system is simply designed with three sub-modules:
input, trained fire classification model, and output. The input
is a set of YouTube videos recorded indoors and outdoors. The
model was trained on the FireNet dataset. The output is the
red text signal displayed on the screen and the warning sound
to the speaker if the system detects any fire. This system is
completely similar to the real-time testing system.

IV. EXPERIMENT

A. Dataset
The dataset used for training and evaluation in this exper-

iment is a part of FireNet dataset [16]. This dataset contains

2,425 images including 1,124 fire images (Fire class) and
1,301 non-fire images (NoFire class). The images in the dataset
are collected from many sources on the internet (Google,
Flickr) and extracted from other datasets. The content of the
photos is taken from many different environments and different
contexts, it shows the diversity in fire disaster conditions. This
work divides the dataset into a training set with 1,940 images
(80%) and an evaluation set with 485 images (20%). To ensure
classification accuracy and avoid overfitting, this experiment
also applies several images augment techniques such as shift,
random zoom, and random brightness.

B. Experimental setup

The proposed network is implemented using the Python
programming language on the Keras framework. This network
uses a GeForce GTX 1080Ti GPU for training and evaluation.
For speed testing, it is also deployed on an Intel Core i7-4770
CPU @ 3.40 GH CPU (personal computer) and an Nvidia
Maxwell GPU (Jetson Nano device). The training goes through
200 epochs and the batch size is 16. Adam optimization
method is applied to the weight update process. The learning
rate is initialized with 10−3 and then decreases after 10 epochs
by a factor of 0.60 times if the accuracy is not improved.

C. Experimental results

The process of training and evaluating the proposed net-
work is performed on the mentioned dataset. Besides, for a
fair comparison with other popular classifier CNN networks,
these networks are refined, then trained and evaluated on
the same dataset. As a result in Table I, the proposed net-
work achieved an accuracy of 97.14% with just over 400K
network parameters. This result shows that it outperforms
mobile networks (SqueezeNet, MobileNet, NASNetMobile )
and even outperforms the best performing network VGG19
with 1.17% accuracy, but VGG19 is up to 50 times the
proposed network parameter. The qualitative results of fire
classification is presented in Fig. 4 and the ability to classify
each class of the proposed network is shown in Fig. 5.

For safety reasons, this experiment only performed real-
time system speed testing with fire simulation videos. In the
system built as described in section III-D, the experiment



Fig. 4. The qualitative results of fire classification on FireNet dataset.

Fig. 5. The confusion matrix of proposed network.

achieved 26.67 frames per second (FPS) and 17.17 FPS on
CPU-Based and Jetson Nano devices, respectively. Fig. 6
shows several sample results when experimenting on simu-
lation videos. Through this, the experiment also shows that
technical conditions such as image exposure, color similarity,
and camera quality and resolution are factors that directly
affect the accuracy and processing speed of the proposed
system.

D. Ablation study

To evaluate the effect of the inception mechanism on the
entire proposed network and DWConv on each inception mod-

TABLE I
COMPARISON RESULT OF FIRE CLASSIFICATION NETWORK WITH OTHER

POPULAR NETWORKS. THE RED COLOR INDICATES THE BEST
COMPETITOR.

Network Parameters Accuracy (%)
SqueezeNet 258,874 92.77
Proposed 409,176 97.14
MobilleNetV2 3,571,778 93.95
MobileNetV1 4,288,714 91.93
NASNetMobile 5,362,334 90.42
DenseNet 8,097,354 95.13
VGG16 15,250,250 95.46
VGG19 20,559,946 95.97
Xception 22,969,906 95.97
InceptionV3 23,911,210 92.10
LeNet 78,432,080 89.41
AlexNet 833,965,362 93.28

ule, this experiment also conducted several ablation studies. In
ablation study 1, this work increases and decreases the number
of inception modules according to the depth of the network
and then compares the results. As shown in Table II, when the
number of inception drops below four, the network parameters
are of course greatly reduced, but the accuracy also decreases.
The best accuracy reaches 96.30% with only one last inception
of the network. In contrast, when increasing the number of
inception to five, the network increased to 93,984 parameters
but the accuracy decreased by 0.84%.

In ablation study 2, the convolution layers in the origi-
nal inception module are replaced with depthwise separable
convolution layers. The results in Table III show that this
has improved the number of network parameters by 210,800
parameters and increased the accuracy by 1.17%. From the



Fig. 6. The result of the video testing system on CPU-Based personal computer.

TABLE II
ABLATION STUDY 1 ON DIFFERENT NUMBER OF INCEPTION MODULE. THE

RED COLOR INDICATES THE BEST ARCHITECTURE.

Inceptions Parameters Accuracy (%)
0 (Stem) 215,768 95.46
1 (Last) 246,584 96.30

2 263,960 95.96
3 347,640 96.13

4 (Proposed) 409,176 97.14
5 503,160 96.30

above experiments, this paper chooses the number of inception
modules to be four and replaces all convolution layers in
each inception module with depthwise separable convolution
layers to achieve the most balanced results in terms of network
parameters and accuracy.

TABLE III
ABLATION STUDY 2 ON EFFECT OF DWCONV ON TO INCEPTION MODULE.

THE RED COLOR INDICATES THE BEST ARCHITECTURE.

Inceptions Parameters Accuracy (%)
Conv 619,976 95.97

DWConv 409,176 97.14

V. CONCLUSION AND FUTURE WORK

This paper has proposed a compact convolutional neural
network for fire classification that includes feature extraction
and classification modules. The network is designed based on
the advantages of the convolution layers, depthwise separable
convolution layers, and inception network. The proposed net-
work is trained and evaluated on FireNet dataset with high
accuracy and negligible latency when tested in a video testing
system. In the future, this fire classification network will
be further developed to improve recognition even when the
context is mixed between fire and smoke.
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