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Abstract—Multiple object tracking involves multi-task learning
to handle object detection and data association tasks concur-
rently. Conventionally, object detection consists of object clas-
sification and object localization (e.g., object regression) tasks,
and data association is treated as a classification task. However,
various tasks can cause inconsistent learning due to that the
learning targets of object detection and data association tasks
are different. Object detection focuses on positional information
of objects while data association requires strong semantic in-
formation to identify same object target. Besides, advantageous
character of multi-task learning is the correlation between tasks,
and adopting such character in learning the networks can
result in better generalization performance. However, existing
multiple object tracking methods learn this information by
treating multi-task branches independently. To understand the
behaviours of multi-task networks in multiple object tracking, in
this paper, we explore task-dependent representations through
empirical experiments and observe that multi-task branches in
multiple object tracking are complementary. To better learn such
information, we introduce a novel Correlation Estimation (CE)
module to estimate the correlation between object classification
and bounding box regression based on statistical features of box
regression quality. Finally, extensive experiments are conducted
on the benchmark dataset MOT17. As a result, our method
outperforms state-of-the-art online trackers without requiring
additional training datasets.

Index Terms—Multiple object tracking, multi-task network,
multi-task learning

I. INTRODUCTION

Multi-task learning is a learning paradigm [1], which learns

the related information across multiple tasks to boost the gen-

eralization learning of all possible tasks. In the deep learning

generation, multi-task learning encodes the task relatedness in

two aspects: (i) network architectures with shared represen-

tation train multiple tasks simultaneously, (ii) task weighting

is to balance the joint learning of multiple tasks to prevent

an objective imbalance that one or more tasks can overwhelm

training. Being multi-task learning problem, multiple object

tracking (MOT) can be potentially improved from multi-task

learning methods. Inspired by such ability, this paper takes

two aspects of multi-task learning into account.

MOT is a basic yet challenging task in the computer vision

research, and has been widely used in many applications such

as object detection [2], video surveillance systems [3], human

behaviors, and facial landmark detection. The MOT requires

multi-task learning that learns the shared representation about:

(i) object detection detects the presence of objects in all

frames, (ii) data association associates these detections over

the time-domain based on object identities. By definition,

object detection task includes classification and regression sub-

tasks, and data association is solved by the classification task.

Accordingly, multi-task learning in MOT comprehends one

regression task and two classification tasks. If these tasks

are related, combining all tasks into a single tracking model

is to learn the complementary information across tasks by

using a shared layer mechanism. This strategy reduces the

computation cost and boosts the generalization performance.

Otherwise, if these tasks are unrelated, learning all tasks to-

gether without prior knowledge can degrade the performance.

However, in the existing MOT methods [4]–[17], when jointly

learning multiple tasks, they treat all tasks equally without

investigating which tasks are related. Specifically, in two

aspects of multi-task learning, these methods treat multi-task

branches independently and balance task losses equally.

In the multi-task network aspect, most MOT methods [4]–

[15], [17] design independent network branches for detection

and data association tasks, which weakly learn the common

features among tasks. These network designs increase model

complexity and do not fully leverage the benefits of multi-task

learning to the MOT task. To know how network branches

work, in this paper, a comprehensive comparison between

three tasks (two classifications and one regression) is con-

ducted to investigate which tasks in MOT are related. By

empirical experiments, we find the interesting fact that the

three tasks in MOT are complementary, and regression in

detection and classification in the data association can share

the common information during training. This means bounding

box regression is strongly correlated to the appearance features

supervised by object identities for data association. Based on

these insights, we propose a novel Correlation Estimation (CE)

module to better learn complementary information between

object classification and box regression according to quality

features of box predictions.

II. LITERATURE REVIEW

Multi-task learning. In recent years, many methods have

been proposed to improve the generalization performance of

multi-task learning in deep network architecture [19]–[24].

Cross-Stitch [19] learns related tasks by linearly combining
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Fig. 1. The overall architecture of the joint-detection-and-tracking method consists of three parts: backbone network, feature pyramid network (FPN), and
tracking head (multi-task branches). The video of this system is separated into a sequence of frames (at 30 frames per second) as the input images. The
backbone network extracts informative features from the images. The feature pyramid FPN [18] indicates multi-level feature maps with different scales. The
proposed multi-task branches with CE module (Correlation Estimation) include three branches in which classification and regression branches are sub-tasks
of object detection, and Re-ID branch is used to predict identification scores for data association procedure. The output of the system is the coordinates of
objects and identity numbers.

multi-task activation functions. MTAN [20] proposes a soft

attention mask attached to the task-specific branch to learn

task interactions. Fully-adaptive feature sharing [21] explores

dynamic multi-task networks from thin to wide fashion based

on the task grouping method. PAD-Net [22] assumes that

learning auxiliary tasks can help target tasks, and final predic-

tions are produced by gathering these auxiliary tasks via the

multi-modal distillation approach. PAP-Net [23] empirically

analyzes the multi-task network in PAD-Net and proposes the

affinity module to learn the task relationship. MTI-Net [24]

explores the task relatedness at different scales through three

new modules, multi-scale multi-model distillation, feature

propagation, and feature aggregation. Differently, this paper

investigates the multi-task networks in terms of statistical

features of box regression quality while existing methods

explore the benefits of learning related tasks in different views

such as multi-task activation functions [19], and attention

mechanisms [20]–[24].

MOT. MOT is grouped into the online and offline methods

according to the input frames. Online tracking methods use

past and current frames as input images, thus reducing high

computational costs. Offline tracking takes whole frames as

input for the network. Even though offline methods bring

significant improvements by combining motion features and

optical flow, they rely on high model complexity. The first

online tracking technique in [9], [25] consists detection and

Re-ID (data association), based on CNNs. As MOT dataset

[26] has object localization provided by detectors, for example,

DPM, and Faster R-CNN [27], most of the tracking methods

focus on data association procedure. Currently, several online

one-shot trackers [13], [14], [16] join detection and Re-

ID into a single end-to-end architecture to obtain a more

efficient tracker, leveraging re-localization to enhance the

data association step. This work uses the single end-to-end

network as the baseline. Generic object detections [27]–[29]

are applied for specific categories, such as human detections

[26], which achieves remarkable improvements. This paper

utilizes RetinaNet [28] for the detection step.

III. LEARNING MULTI-TASK BRANCHES IN MOT

In this section, we discuss the task relatedness of MOT and

propose efficient structures for learning multi-task branches.

The proposed joint-detection-and-tracking network is de-

scribed in Fig. 1. The used backbone network is ResNet-

50 pre-trained on ImageNet for feature extraction. Following

common methods, FPN [18] is used for constructing multi-

level feature maps. We defer to the supplementary material the

detailed dimensions of the backbone and FPN architectures.

The tracking head (multi-task branches) with the proposed CE

module learns the complementary information across tasks. In

this paper, Re-ID appearance features are used for the data

association task. The detailed architecture of the tracking head

is shown in Fig. 2(f).

In the following, a thorough comparison between the de-

tection and Re-ID network structures is performed to find the

shared representation of the tracking head, shown in Table I.

Each row in this table corresponds to each head structure in

Fig. 2. Based on this comparison and its analysis, we propose

the final multi-task branches with the CE module in Fig. 2(f).

TABLE I
COMPARISON OF DIFFERENT TYPES OF HEAD STRUCTURE ON THE MOT17

VALIDATION SET

Type GFLOPs #params (M) MOTA↑ IDF1↑ MOTP↑

(a) 64.73 38.62 74.9 66.6 85.3
(b) 64.73 38.61 75.5 66.6 85.0
(c) 38.96 33.89 75.4 67.5 85.7
(d) 51.84 36.25 75.2 67.8 85.6
(e) 51.84 36.25 75.6 66.2 85.5
(f) 51.85 36.25 76.1 67.3 85.6

Three parallel branches have been widely explored in Cen-

terTrack [13], JDE [14], and FairMOT [17] as shown in Fig.

2(a). This structure treats classification, regression, and Re-ID
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Fig. 2. Comparison between different types of tracking head: (a) Triple Branches used in CenterTrack, JDE, and FairMOT; (b) Joint Branches proposed
by CTracker; (c) Shared Branches, where parameters of three branches are shared; (d) Double Branch-cls, where classification and Re-ID branches shares
parameters; (e) Double Branch-reg, where regression and Re-ID branches shares parameters; and (f) Double Branch-reg with CE, which extends the double
branch-reg structure by adding a correlation estimation (CE) module. H ×W ×A denotes height, width, and the number of anchor boxes. 4A indicates four
regressed offsets.

⊗
is element-wise matrix multiplication.

tasks independently, which has a high computational cost but

inferior performance.

CTracker [16] utilizes the Joint Attention Module (JAM) to

focus on local semantic features of the combined classification

and Re-ID features, illustrated in Fig. 2(b). The regression

branch uses combined features to improve detection and track-

ing performance. This method states that classification and Re-

ID branches are complementary. Although this head structure

takes advantage of task-dependent learning, it utilizes more

stacked convolution layers causing computational overhead.

Specifically, JAM achieves a MOTA score of 75.5% at 64.73

GFLOPs (Giga Floating-point Operations Per Second).

Fig. 2(c) describes the simplified structure of the track-

ing head in which parameters of three branches are shared.

Interestingly, the performance is similar to type (b), while

reducing the model complexity to 38.96 GFLOPs (by half of

type (b)). It reveals that the three tasks are complementary.

Thus, leveraging the correlation learning of the three tasks

can improve tracking performance.

To consider how each task affects the others, the shared

convolution is shown in Fig. 2(d), (e). More specifically, the

classification and Re-ID branches have the same parameters to

investigate related tasks across these two tasks, shown in Fig.

2(d). Alternatively, shared regression and Re-ID branches are

performed in Fig. 2(e) to consider the collaborative learning

of these two tasks. As a result, the MOTA score of type (e) is

higher than type (d). It is understood that the classification task

learns semantic features to distinguish objects and background,

while the Re-ID task learns appearance features to identify two

objects. Therefore, learning classification features complement

Re-ID features. Re-ID and regression tasks make predictions

on the same semantic features, and thus both can share the

complementary information during training.

From the above observations, the extension of the double
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Fig. 3. The detailed sub-network of Correlation Estimation (CE), where
E denotes the number of hidden channels.

⊗
is element-wise matrix

multiplication.

branch-reg with the CE module is explored in Fig. 2(f) to

learn three related tasks in an effective way. Motivated by

the analysis in the PISA [30], the CE module is proposed to

estimate the correlation between regression and classification

tasks in a different perspective, regression quality, illustrated

in Fig. 3. The regression distribution implemented by the

softmax function ϕ is considered as Dirac delta distribution

defined by the BBENet, which reflects ambiguities of the

real dataset. The input of the CE sub-network is four offset

parameters of the bounding box. Straightforwardly, the Topk

values are used to measure regression quality D. If Topk

values are higher, the bounding box distribution is sharper (i.e.,

corresponding to higher regression quality) and vice versus.

These values guide classification score during NMS (Non-

maximum Suppression). The CE module only has three 1×1
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convs followed by ReLU and sigmoid to yield the quality

feature Q. Finally, the classification feature I is multiplied by

the quality feature Q to leverage joint representation J:

J = I×Q, (1)

D = Topk(ϕ(R)), (2)

Q = δ(W′

3σ
′

2
(W′

2σ
′

1
(W′

1D))), (3)

where R is the regression feature that denotes regressed offsets

of the bounding box. W′

1 ∈ R
4×E , W′

2 ∈ R
E×E and W′

3 ∈
R

E×1 are linear transforms implemented by 1×1 convolution.

The PyTorch code of the Correlation Estimation (CE) mod-

ule is illustrated in the Algorithm 1. The input of the CE

module is the regression features with four offset channels

(box’s center, height, and width). The selected Topk values

must be suitable for input channel dimension, e.g., channel

dimensions are divisible by Topk values. Thus, the Topk

values can only be one, two, or four. During training and

testing, we set Topk = 2 for all implementations since this

value does not affect the performance.

Algorithm 1 Pytorch code of the CE sub-network

import torch

import torch.nn as nn

import torch.nn.functional as F

# E is the number of hidden channels

# topk_value forms regression quality

# (C_r is divisible by Topk value)

####initial_layers####

CE_net = nn.Sequential(

nn.Conv2d(2*topk_value, E, kernel_size=1),

nn.ReLU(inplace=True),

nn.Conv2d(E, E, kernel_size=1),

nn.ReLU(inplace=True),

nn.Conv2d(E, 1, kernel_size=1),

nn.Sigmoid())

def CE_module(regress_feat):

# regress_feat (tensor): size [N, C, H, W]

# N: batch size

# C_r=4: number of regressed offset variables

# H, W: height, width of feature map

x = regress_feat

N, C_r, H, W = x.size()

# model distribution probability

prob = F.softmax(x.reshape(N, 2, 2, H, W),dim=2)

# quality estimation by Topk

qe, _ = prob.topk(topk_value, dim=2)

qe = qe.reshape(N, -1, H, W)

# forward to CE network

corr_score = CE_net(qe)

return corr_score

Model complexity is shown in the last row of Table I. The

CE module only brings negligible additional GFLOPs, and

thus it does not affect the training or testing time of the one-

shot tracker. And the number of parameters (# params) is the

same as type (e). Moreover, the extension of type (e) achieves

a MOTA score of 76.1%, which surpasses all structures. It

demonstrates the CE sub-network is simple yet effective.

IV. EXPERIMENTS AND RESULTS

A. Datasets, Evaluation Metrics, and Implementation Details

The performance of the proposed method is evaluated on

the benchmark dataset: MOT17 [26]. This dataset contain 7

training videos and 4 testing videos. More importantly, in

this paper, we only train the model on the training set of

the MOT17 while CenterTrack [13], JDE [14], and FairMOT

[17] use combinations of other large-scale datasets for training.

Thus, we do not include some methods in this paper for fair

comparisons.

All results are measured by three standard metrics: Multiple

Object Tracking Accuracy (MOTA), ID F1 score (IDF1) de-

fined by CLEAR MOT, and Higher Order Tracking Accuracy

(HOTA). Additional metrics include Multiple Object Tracking

Precision (MOTP), the percentage of Mostly Tracked targets

(MT), the percentage of Mostly Lost targets (ML), the total

number of False Positive (FP), the total number of False

Negatives (FN), and the number of Identity Switches (IDS).

Among them, the MOTA score is the primary metric used for

comparison with other methods.

All experiments are conducted by the deep learning Pytorch

framework. The backbone ResNet-50 is pre-trained on the

dataset ImageNet [31]. The weight initialization of the newly

added convolutional layers in the FPN, tracking head, and CE

module is filled from the normal distribution. Two GPU Tesla

V100 devices with Cuda 10.2, and CuDNN 7.6.5 are used to

train the model for 100 epochs with a batch size of 8. The

Adam optimizer is applied for minimizing the detection and

Re-ID objectives. The learning rate is set to 5×e−5, and the

number of anchor boxes tiled per one feature location is set

to A = 1 for all implementations.

B. Results

This subsection analyzes the main performances conducted

on the testing set of the benchmarks in subsection IV-B1, as

well as the ablation study carried out on the MOT17 validation

set in subsection IV-B2.

1) Comparison with State-of-the-art Methods: In this sub-

section, we describe the main results of our method on testing

sets of the MOTChallenge benchmark, listed in Table II. The

bold font indicates the best result among all state-of-the-

art online methods. Since MOT benchmarks did not provide

annotations for testing, all the detection and Re-ID results

are uploaded and evaluated to the official MOT evaluation

protocol.

Our proposed network achieves state-of-the-art perfor-

mances on the dataset MOT17 in terms of the MOTA score

and IDF1. More specifically, we achieve an MOT score of
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE TESTING SETS OF THE MOT17 BENCHMARKS

Dataset Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓

MOT17

DMAN [4] 48.2 55.7 75.9 19.3 38.3 26218 263608 2194
MOTDT [5] 50.9 52.7 76.6 17.5 35.7 24069 250768 2474
Tracktor [12] 53.5 52.3 78.0 19.5 36.6 12201 248047 2072
BLSTM-MTP [6] 53.6 55.8 - 23.5 34.4 23583 236185 1845

Tracktor++ [12] 54.4 56.1 78.1 25.7 29.8 44109 210774 2574
TADAM [8] 59.7 58.7 - - - 9676 21629 1930
DeepSORT [9] 60.3 61.2 79.1 31.5 20.3 36111 185301 2442
CenterTrack [13] 61.5 59.6 - 26.4 31.9 14076 200672 2583
ArTIST [10] 62.3 59.7 - 29.1 34.0 19611 191207 2062
SiamMOT [15] 65.9 63.3 - 34.6 23.9 18098 170955 3040
CTracker [16] 66.6 57.4 78.2 32.2 24.2 22284 160491 5529
Ours 67.6 57.6 79.0 31.7 26.0 16485 161502 4983

67.6%, which is superior to all the other trackers, including

TADAM [8] (59.7%), DeepSORT [9] (60.3%), CenterTrack

[13] (61.5%), SiamMOT [15] (65.9%), and CTracker [16]

(66.6%).

TABLE III
INVESTIGATION OF E IN CE MODULE

E MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ #params

16 74.3 65.8 85.1 259 1954 0.34k
32 74.6 66.6 85.2 270 2060 1.18k
64 75.7 66.3 85.7 270 1493 4.41k
128 76.1 67.3 85.6 278 1668 17.02k
256 74.8 66.2 85.2 266 2115 66.81k

2) Ablation Study:

a) Hyperparameters in CE: Table III shows that the

results of the model are sensitive to the variation of E.

Specifically, setting E = 128 gets the optimal MOTA score

among various values. Moreover, our CE module is very

lightweight, which only takes 0.0004% of #params of the

whole tracking network.

b) Performance on the MOT testing set: The detailed

performances of our method on testing sets of MOTChallenge

benchmarks are listed in Table IV.

TABLE IV
THE PERFORMANCE ON EACH VIDEO OF MOT17 TESTING SET

Video MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ IDs↓

MOT17-01 47.5 39.7 76.8 6 165 65
MOT17-03 87.2 66.8 78.9 124 3565 505
MOT17-06 56.6 56.2 78.5 65 397 216
MOT17-07 50.6 41.3 77.8 12 480 230
MOT17-08 30.3 30.1 83.1 11 225 178
MOT17-12 42.8 51.8 80.9 14 186 70
MOT17-14 40.1 43.1 78.4 13 477 397

Overall 67.6 57.6 79.0 735 16485 4983

c) Qualitative Results: The qualitative results of the

proposed method are described in Fig. 4. Human identification

is addressed by the identity number. Each curve denotes the

predicted trajectory over the time domain.

V. CONCLUSION

This paper leverages the benefits of multi-task learning into

improving the MOT network. The comprehensive analysis of

the tracking head structure is investigated through empirical

and theoretical analysis. As a result, we find the interesting

fact that three tasks in MOT are complementary, and jointly

learning such property can result in better generalization

performance. To form better representation, the lightweight

Correlation Estimation (CE) sub-network is proposed, which

improves classification features by learning the estimated

regression quality. The proposed method is evaluated on

the dataset MOT17, achieving state-of-the-art performance.

We hope that our method can serve as the simple baseline

for multi-task learning research. In the future, the proposed

method will be applied to multiple high-level tasks such as

abnormal action detection, human pose tracking, and human

behavior detection in video surveillance systems. It is a new

and different perspective in solving multi-task learning and

specific MOT task.
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