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AbstractÐThe robotic demand a vision method to work in real-
time on embedded devices. Besides, an assistive robot requires
person detection, which is widely used to help automatically
interact with the user. This work presents a fast real-time person
detection (Fast-PdNet) to localize human areas implemented
on a Jetson Nano. This device has been commonly used as
an embedded system and is suitable for synchronizing sensors
and actuators. The proposed architecture contains layers of
Convolutional Neural Network consisting of two main modules:
backbone and detection. An efficient extractor module with a
multi-level contextual block is employed to extract the spatial
features quickly. It avoids high-cost computing to distinguish
interest features of the human body and background features.
The lightweight learning attention selects suspected specific
features area without generating excessive parameters. The end-
to-end training was conducted on MS COCO 2017 to generate
efficiently weighted models. The Fast-PdNet achieves competitive
performance with other light detectors evaluated on the MS
COCO 2017, PASCAL VOC 2007, and 2012 datasets. Moreover,
this detector can run 35 frames per second when working in
real-time on Jetson Nano.

Index TermsÐPerson detector, efficient multi-level contextual,
jetson nano, real-time.

I. INTRODUCTION

Nowadays, robotics have spread rapidly in society globally

to improve the welfare of humankind. Instead of only using in

industrial areas, robots have been applied in residents, offices,

streets, schools, shops, department stores, and public areas [1].

They tend to be assigned to difficult and dangerous tasks. Even

specific robots can help with human tasks, one of which is

an assistive robot. This robot is employed in public areas to

serve humans [2]. Besides, interaction activities always occur

between robots and users. Human-robot interaction has been

present and widely implemented to prevent misunderstanding

of user actions. Therefore, a computer vision method is needed

for a robot to detect and recognize humans. It is the initial

process of a robot to generate the perception of its interaction

with the user [3]. The primary motivation of computer vision

in the robotics field is to obtain a perception level that is as

close as possible to the human visual system. As an essential

part of visual perception, computer vision in robotics is mainly

used for object detection and recognition. More specifically, to

support interaction activities between robots and users, pose

estimation, human action recognition, and person identification

require this method as the beginning of the step to precisely

localize the human body area.

The human body contains distinctive features, and it is

easily distinguished from the background using the human

eye. The computer vision method adopted this visual technique

to localize the person area in an image. Several works have

introduced computer vision methods to identify these essential

features [4]±[6]. Blair et al. [4] have presented a pedestrian

detection approach using a histogram of oriented gradients

(HOG) implemented in an embedded system. This method

explores a combination platform with multiple heterogeneous

accelerators to investigate the trade-off characteristics and

performance. Other work also utilizes HOG as a features ex-

tractor that quickly separates important features [5]. This study

applied SVM (Support Vector Machine) to classify human

body features from raw features generated by HOG. Logic

Inference is employed sequentially to combine the elements

selected in the final classifier. The short execution time showed

that these studies have detectors that can operate quickly

by avoiding over-computation costs. However, conventional

methods are weak to identify partially occluded persons and

extreme positions in low-level brightness.

The deep learning approach has shown excellent results in

discriminating against specific features and backgrounds [7].

Convolutional Neural Network (CNN) has been implemented

by benchmark framework to solve person detection tasks

[7]±[11]. They are supported by the anchor method, which

precisely predicts the location of small objects. Faster-RCNN

[7] applied a two-stage approach to predict the Region of

Interest (RoI), identify the class of objects, and refine their lo-

cation. Meanwhile, YOLOV3 [8], YOLOV4 [9], and YOLOV5

[10] explored the feature pyramid network approach to fuse

features with different frequencies. SSD (Single Shot Multibox

Detector) [11] predicts object localization and classification in

a single forward pass of the network. Although the frameworks

have implemented several mobile and tiny versions to reduce

the number of parameters, the detectors still have problems

running smoothly on edge devices. The previous architecture

employed deep layers to discriminate human features. There-

fore, they tend slowly operate at real-time processing speed on

inexpensive hardware. This weakness hinders the reliability of

a vision method in the practical application aspect.

A robot needs a vision method that can work in real-time



Fig. 1. The Fast-PdNet architecture. An efficient backbone module is consists of compaction and stem module to sequential extract the human body features.
A hierarchy detection layer is applied on four feature maps to predict person bounding boxes of varying sizes. Best viewed in color.

to acquire a response from the user [12]. The information

from the object must be received directly without suspension.

This issue can be overcome by minimizing the algorithm

computation to reduce the delay time. On the other hand,

robotics uses low-cost devices to process the input and output

data [13]. Embedded hardware has been commonly used as

the main processor of robots to decide actions from physical

sensor information and synchronize them. Jetson Nano is an

embedded system used to perform computing at the edge of

the system included by a low-cost accelerator [14]. Therefore,

a person detector must be required to work smoothly on

this device that encourages a robot’s ability. It increases the

capability of the vision method to be implemented in practical

applications. This work presents a new real-time detector that

can efficiently detect a person’s area without compromising

performance.

A Fast person detection (Fast-PdNet) proposes a light ar-

chitecture that offers a multi-level contextual block to dis-

criminate against specific features of the human body. This

network avoids the computational overhead and produces

fewer weighted parameters than standard detectors. So the

slim structure produces a lightweight detector that can speedily

operate on edge devices. Based on this description, the main

contributions of the study are summarized as follows:

1) A novel fast person detection (fast-PdNet) is offered to

efficiently find the location of multiple humans using

hierarchy features detection. It can run smoothly on a

Jetson Nano that is suitable to implement for assistive

robots.

2) An efficient multi-level contextual module is proposed

to quickly distinguish person features by assigning

gradual attention to improving the detector’s accuracy.

The performance result achieves competitive accuracy

with other architectures on MS COCO 2017 [15] and

PASCAL VOC [16].

II. PROPOSED ARCHITECTURE

The proposed architecture employs a series of convolution

layers consisting of two main modules, as shown in Fig. 1. A

backbone efficiently extracts person features by applying com-

paction and stem blocks sequentially. Furthermore, hierarchy

features detection is applied to four layers to serve various

object sizes by adjusting them to anchor sizes.

A. The Backbone

The backbone module extracts interest features by discrim-

inating components assumed as target objects from trivial

features. The convolutional operation employs a weighted

kernel at each input pixel to produce spatial extracted features

affected by neighboring source pixels. The CNN architec-

ture generally works to reduce the size of the feature map

incrementally for saving computing from subsequent layers.

The number of channels from each layer will increase, which

provides rich information about the object’s features. The

compaction block employs 3 × 3 convolution with two strides

to shrink the feature map. It is more robust than the pooling

layer [17]. It consists of four stages which reduce 32 times

of the input image to produce a feature map of 40 × 40

with 128 channels at the end of the block. In addition, 3 × 3

convolution with a stride of one was employed in the third and

fourth stages to improve the quality of the low-level features.

In order to overcome the gradient problem, it applies ReLU

(Rectified Linear Unit) activation and Batch Normalization

after convolution operations. The compaction block is assigned

to rapidly reduce the feature map in stages while generating

mid-level features that contain elements of the human body.



Fig. 2. An efficient multi-level contextual block (left side) consist of 3 × 3
convolution and simple spatial attention (right side). Best viewed in color.

The series block provides efficient computing that supports the

ability of the detector to operate quickly.

The Fast-PdNet proposes the central feature extractor as a

stem block to comprehensively filter human-specific features

from unimportant features. This block offers an efficient multi-

level contextual module to help the detector operate quickly

without compressing its performance. Fig. 2 shows this mod-

ule applies two 3 × 3 convolutions at different frequency

levels. It generates multiple receptive fields, thereby providing

a variety of information. Additionally, contextual blocks are

inserted before and after the CNN layer to enhance specific

features. This combination block is described as:

Ci = S2(W1[S1(xi)]) + S3(W2[W1[S1(xi)]]), (1)

where xi is the input features of each cell pixel i− th, W is

the weighted kernel for convolution operations, while S is a

simple spatial attention module illustrated as follows.

S(zi) = zi ⊗ σ(W [zi]). (2)

An attention module affirms the important elements of

the features map (zi) from the previous process. It uses 1

× 1 convolution to generate a single layer, then sigmoid

activation (σ) establishes the probability score of each pixel.

Updating features assert quality improvement by applying the

broadcast multiplication (⊗) operation to each input cell. It

encourages a better feature map output, which improves the

intensity value of each input feature. A low probability will

reduce the intensity of the input features, while a weight with

a high score enhances the input features and describes the

component as an interset feature. On the other hand, the multi-

update system promotes improvement in extraction quality

by reducing the intensity of trivial features to a low score.

Therefore, only human body features are present to ensure the

vital information supports the prediction system for precise

and accurate results. In addition, simple attention does not

produce a significant number of parameters and computations.

It is due to using a single channel kernel that only performs

one filter-based operation. Furthermore, a transition block is

applied to produce feature maps of different sizes at high-level

frequencies. It generates feature maps of 20 × 20 and 10 ×

10 for predicting medium and large-sized persons. Sequential

convolution represents the extracted features by applying 1 ×

1 and 3 × 3. This combination is more efficient than vanilla

convolution.

B. Hierarchical Features Detection Module

Object detectors require the detection layer to predict the

person area at the network’s end. Generally, the locations

of suspected persons are marked with bounding boxes. The

prediction features map estimates the coordinates and dimen-

sions (x, y, h, w). Besides, the network also provides class

probabilities for each object (person and none). Fast-PdNet

implements a Hierarchical pyramid network to generate dif-

ferent map features. The variety of map sizes increases the

ability of the adjustment process at the anchor assignment.

Instead of using a pyramid features network [8], it implements

a more efficient structure to encourage detectors to work faster.

Four detection stages are used to predict tiny, small, medium,

and large person. Anchors are employed as initial bounding

boxes, making it easier for the network to adjust and fit the

size. Each stage employs three anchors. Fig. 1 shows that each

anchor level is adapted to the size of the feature map to predict

different person scales. The scale-based assignment employs

a map of 80 for predicting tiny people, 40 for small, 20 for

medium, and 10 for large scale. The transition model helps

the detector produce medium and small feature map sizes. So,

the detector can explore the ability to detect full-body human

objects at multi-scale. Additionally, this strategy also enhances

the network performance.

C. Multi-box Loss Function

The CNN detector requires a feedback process to evalu-

ate the detection and update the kernel weights to produce

accurate predictions. Therefore, the loss function is used

to measure the inaccuracy of a prediction compared to the

ground truth box. It also predicts the presence of an object

(objectness) and the probability of class (pedestrian and none).

Firstly, the predicted localization (Lcoord) was evaluated by

employing a complete IoU loss [18]. It assesses the difference

of intersection, center point distance, and aspect ratio of the

predicted box and ground truth. Then, to evaluate the presence

of an object in each cell (Lobj), it applies a confidence loss

[9]. Meanwhile, the binary cross-entropy [9] is utilized to

measure the error of the probability of the predicted class

(Lcls). Multi-box loss is applied to each cell g-th and anchor

a-th. It accumulates all these losses is expressed as follows:

LMB = λcoord

G2∑

g=1

A∑

a=1

gobj
ga Lcoord + λobj

G2∑

g=1

A∑

a=1

1obj
ga Lobj

+λcls

G2∑

g=1

A∑

a=1

1obj
ga Lcls,

(3)

where A is the number of anchors, G2 is cell area. λcoord, λobj ,

and λcls are balancing parameters in regression, objectness,

and classification loss, respectively. 1objga is equal to one if

there is an object in the grid and 0 otherwise.

III. IMPLEMENTATION SETUP

The model was trained using GTX 1080Ti as a GPU

accelerator on MS COCO 2017 that contains 118,287 images.



Then, it was tested on Intel Core I5-6600 CPU @ 3.30GHz,

32GB RAM. The training dataset provides complex instances,

so it can help the model to learn various conditions. The

proposed detector applies several augmentations: random color

distortion, crop, vertical and horizontal flipping to enrich the

variety of data. Then, a mosaic frame with 1280 × 1280

is generated in the last process to help the model learn a

variety of object scales. In the training stage, it uses the initial

learning rates of 10−2 and updates by 2 · 10−1 in the final

OneCycleLR learning rate. To optimize the updating weight,

it applies Stochastic Gradient Descent with weight decay of

5 · 10−4, and the momentum is 0.937. The entire images on

the dataset are inserted in 32 mini-batches. In addition, it sets

0.5 as IoU (Intersection over Union) threshold to establish

the best bounding box with the highest confidence score.

The whole structure of Fast-PdNet was implemented on the

PyTorch framework. Implementation in real-world scenarios

was conducted indoors under different lighting conditions and

at nighttime.

IV. EXPERIMENTAL RESULTS

This section examines the proposed architecture on a bench-

mark consisting of MS COCO 2017, PASCAL VOC 2007, and

PASCAL VOC 2012 datasets. It also evaluates the efficiency

of the detector tested on a Jetson Nano and compares it to

other competitors.

A. Evaluation on Datasets

1) MS COCO 2017: The proposed detector is evaluated

in MS COCO 2017 to test the performance of the person

detector on a wide variety of data. The dataset consists of

122,218 labeled images and 80 object classes containing many

objects with complex backgrounds. It also includes many

challenges with different poses, the object scale, and the

occlusions. The Fast-PdNet uses 64,115 human images for

the training processing, and 2,693 were used for testing. The

image with person class is used as a knowledge detector to

learn and evaluate the specific features of the human body.

In the evaluation stage, it applies Average Precision (AP)

with the primary metric (IoU=.50:.05:.95) to measure the

accuracy of the bounding box prediction. As a result, Fast-

PdNet achieved 41.60% AP, outperforming detectors with light

backbone Resnet18, ShuffleNet, and MobileNet. In addition,

the proposed detector was below the performance of PeleeNet

and Bai et al., which differed by 0.3 and 1.3, respectively.

Although the detectors show weakness in detecting tiny per-

sons, Fast-PdNet is assigned to work more efficiently in person

detection to support service robot systems. Fig. 3 (a) shows

the detector’s qualitative results, which can localize multiple

person areas in conditions such as occluded human body parts

and varying backgrounds.

2) PASCAL VOC 2007: The PASCAL VOC benchmarks

are contained 20 object classes that consist as follows: Person,

Bird, Cat, Cow, Dog, Horse, Sheep, Airplane, Bicycle, Boat,

Bus, Car, Motorbike, Train, Bottle, Chair, Dining table, Potted

plant, Sofa, and TV/Monitor. The PASCAL VOC 2007 has

TABLE I
EVALUATION RESULTS ON MS COCO 2017, PASCAL VOC 2007 AND

PASCAL VOC 2012 DATASETS.

Evaluation on MS COCO 2017

Model
Average Precision

(%)
Backbone

ResNet18 (0.25) 40.1 ResNet18

ShuffleNetv2(0.5) 33.8 ShuffleNetv2

MobileNetV2(0.33) 39.1 MobileNetV2

PeleeNet(0.5) [12] 41.9 PeleeNet

Tiny model-Bai et al [12] 42.9 Manually-designed

Fast-PdNet 41.6 Manually-designed

Evaluation on PASCAL VOC 2007

Improved Faster R-CNN [7] 75.65 VGG16

TinyYOLOV2 63.88 Darknet19

Tiny-YOLOV3 68.54 Darknet19

Improved Tiny-YOLOv3 [8] 73.98 Darknet19

Enhanced Tiny-YOLOv3 [8] 78.64 Darknet19

YOLOV5-nano [13] 86.2 CSP Bottleneck

YOLOV5-small [13] 88.8 CSP Bottleneck

Fast-PdNet 82.7 Manually-designed

Evaluation on PASCAL VOC 2012

Faster R-CNN 62.9 VGG16

SSD512 [11] 39.4 VGG16

RefinedDet320 58.5 VGG16

RefinedDet320+ 61.6 VGG16

RefinedDet512 63.6 VGG16

RefinedDet512+ 66 VGG16

RFBNet300 29 VGG16

RFBNet512-E 32.6 VGG16

RFBMobileNet 23.8 MobileNet

RetinaNet 60.7 ResNet-50

YOLO-AF-MS [19] 77.3 CSPDarkNet53

YOLOV5-nano [13] 86.6 CSP Bottleneck

YOLOV5-small [13] 88.9 CSP Bottleneck

Fast-PdNet 83.6 Manually-designed

total images is 9,963 with different backgrounds, human

postures, scale, and occlusion. It also provides various illu-

minations of each object. The proposed detector uses 2,007

images labeled as a person to evaluate its performance with

considered a predicted bounding box is to be true detection if it

has an IoU 0.5 with a ground-truth annotation. As a qualitative

result, Fast-PdNet can detect persons for various challenge

datasets, even with different lighting intensity frequencies, as

shown in Fig. 3 (b). In addition, Table I shows that PdNet

achieves an AP of 82.70% that is 3.5% different from the

YOLOV5 small version. In contrast, it outperforms Tiny-

YOLOV2, Tiny-YOLOV3, and their improvements.

3) PASCAL VOC 2012: This dataset is extended from the

2007 version containing 11,540 images with 20 classes. The

proposed detector uses 2,093 images with a ground truth

label to evaluate the model. This configuration is the same as

PASCAL VOC 2007 that only uses person class to examine

the proposed detector. Fig. 3 (c) shows that the proposed

detector can detect a person with occluded objects and various

scales that are optimized for robot needs. In comparison, the

quantitative results show that this achieves an AP of 83.60%
in this evaluation dataset. It is under the accuracy of 5.3% of

YOLOV5 small architecture.



Fig. 3. The prediction results of the Fast-PdNet detector on the MS COCO 2017 (a), PASCAL VOC 2007 (b), PASCAL VOC 2012 (c), Color video on
VGA-resolution (d), low-illuminance level on VGA-resolution (d), and infrared video on VGA-resolution (e).

B. Runtime Efficiency

The Fast-PdNet focus quickly localizes the person area to

support assistive robot performance. This robot is assigned to

provide services to public users by interacting with humans at

close range. Therefore, the detector is designed to have a high

performance for medium and large objects and optimize the

speed. Fig. 3 (d) shows the precise results to detect persons

on these scales. The real-case testing can localize multiple

occluded objects. In addition, the detector is also reliable in

working in low illuminance conditions, as illustrated in Fig.

3(e). The model can carefully learn human body features at

low brightness and contrast intensities and distinguish trivial

features reliably. On the other hand, the robot is also required

to work all the time, so it must be able to detect people at night.

Fig. 3 (f) shows that the robot can recognize person features

and localize them in bounding boxes on infrared video. This

reliability represents that Fast-PdNet is suitable for assistive

robots to support human-robot interaction.

The detector’s efficiency also increases the model’s ability

to be implemented in practical applications. The proposed

detector generates 2,218,545 parameters with 1.4 GFLOPS.

These results describe that the light model uses an efficient

number of kernels and computations. It encourages Fast-
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Fig. 4. Comparison of detector speeds on a Jetson Nano on VGA-resolution
video.

PdNet to operate in real-time on a low graphics accelerator

device. The proposed detector is the fastest detector that

achieves 34.58 FPS on a Jetson Nano, as illustrated in Fig.

4. Although YOLOV5-nano [10] outperforms its accuracy

by 3.5%, the proposed method is 2.3 times faster than this

competitor. The YOLOV5-small [10] only achieved a speed

of 6.42 on the Jetson Nano device. Additionally, these results

indicate that the proposed detector uses a smaller number of

algorithm operations than other models. The proposed detector

comprehensively learns person features from complex data

and instances. This learning capability does not compromise

the model’s efficiency, generating low-cost computations that

enable the detector to work on an edge device in real-time.

V. CONCLUSION

This paper presents a fast person detector that uses CNN

structure to localize human areas supporting assistive robots.

The Fast-PdNet is designed to operate in real-time on a

Jetson Nano without compromising performance. The entire

network consists of a backbone and multi-layer detection.

The extractor features block employs an efficient multi-level

contextual module to comprehensively discriminate against

specific features of the human body from trivial features.

In addition, this module also avoids computational overhead

resulting in the fewer number of parameters and computations

of standard detectors. Hierarchical features detection helps the

network predict multi-scale objects with anchor assignments

adjusted to the feature map size. The proposed detector

achieves competitive performance with other light detectors

on MS COCO 2017, PASCAL VOC 2007, and PASCAL VOC

2012. The detector’s capability shows that it can run 34.58 FPS

in real-time on a Jetson Nano, faster than other competitors.

The integration of the detector with a robot will be explored

in the future to assess the reliability in real-case applications.
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