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Abstract. The COVID-19 pandemic requires everyone to wear a face
mask in public areas. This situation expands the ability of a service robot
to have a masked face recognition system. The challenge is detecting
multi-view faces. Previous works encountered this problem and tended
to be slow when implemented in practical applications. This paper pro-
poses a real-time multi-view face mask detector with two main modules:
face detection and face mask classification. The proposed architecture
emphasizes light and robust feature extraction. The two-stage network
makes it easy to focus on discriminating features on the facial area. The
detector filters non-faces at the face detection stage and then classifies
the facial regions into two categories. Both models were trained and
tested on the benchmark datasets. As a result, the proposed detector
obtains high performance with competitive accuracy from competitors.
It can run 20.60 frames per second when working in real-time on Jetson
Nano.

1 Introduction

The technology of robots is developing rapidly in the industrial and medical
fields. The Industrial Revolution 5.0 supports to encourage the implementation
of robots in the public area. Service robots are one type used by humans to help
with daily activities [11]. This robot has human-like abilities that can walk, see,
talk, and understand the environment. Since the emergence of COVID-19 spread
like a pandemic globally, prevention of this virus is the first step to reduce its
impact by wearing face masks. It is useful for protecting the transmission of the
virus through droplets in the mouth, and nose area [4]. So everyone to be required
to wear a mask when in a public environment. This situation recommends service
robots can detect and classify face masks in public areas. It is useful for warning
people who don’t use it.

Several previous studies have succeeded in classifying face masks. Ejaz et al.
used the Principal Component Analysis (PCA) to recognize the face masks [3].
This study uses statistical differences of accuracy to measure the performance
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Fig. 1. Flowchart of overall face masks detector.

of the classification system. In addition, the face detection of Viola-Jones was
employed for detecting the face region. Another work is applying the Gaussian
Mixture Model (GMM) to build a faces model [1]. This system predicts face
masks by analyzing and learning typical facial features in the eyes, nose, and
mouth area. This model was tested on various face challenges using accessories
such as respirators and sunglasses as an evaluation. However, both works are
weak when classifying face masks on non-frontal faces. It is caused by the limi-
tation of face detection and feature extraction.

Convolutional Neural Network (CNN) has been proven as a robust extrac-
tor feature [8]. In general, CNN architecture consists of feature extractor, and
classifier [13]. This method can classify various images by updating the filter
weights to produce an output that matched the ground truth [2]. However, this
reliability is not supported by efficiency when run in real-time. Deep CNN tends
to generate a large number of parameters and heavyweights [6]. Loey et al.
used Resnet-50 as a backbone for feature extraction followed by decision trees,
Support Vector Machine (SVM), and ensemble algorithm as the classifier [9].
The model produces high accuracy but is slow, while the practical application
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requires an algorithm to work in real-time on a portable device. Jetson Nano is a
mini-computer supported by a 128-core graphic accelerator. This edge device is
recommended for use as a robot processor because it supports sensor acquisition
and actuator control functions.

This paper aims to build real-time masked face recognition on edge devices
implemented in service robots. The contributions of this paper are as follows:
1. Fast face detector was developed to detect multi-view faces and occlusion

challenges (FFDMASK). The process helps to get the RoI (Region of Interest)
from the face.

2. Slim CNN architecture to fast and accurately classifies the face masks (masks
or none). The attention module is applied to improve the quality of shallow
feature maps.

As a result, it achieves competitive performance with state-of-the-art algorithms
on several datasets and can work in real-time on the Jetson Nano without lack.

2 Proposed Architecture

The proposed detector consists of two-stage, including face detector and clas-
sification module. Figure 1 shows the overall diagram of the proposed system.
A face detector works to detect faces in an image to produce bounding boxes
as the face area [14]. The crop technique is used in each box to generate facial
RoI. Then a classification module is employed to extract information and classify
masked faces.

2.1 Face Detector

Backbone Module. FFDMASK develops the architecture of FFCPU [10]. This
network consists of two main parts, including the backbone and detection block,
as shown in Fig. 2. This model functions as a feature extractor to produce a clear
feature map on the detection module. Rapidly Reduced Block (R2B) emphasizes
reducing the dimension of the feature map with a convolutional layer and an
Efficiently Extracted Block (E2B) to separate facial and non-facial distinctive
features effectively. FFDMASK employs the S-Res (Split-residual) module to
upgrade the E2B. This block divides the feature input into two parts based on
the number of channels, then employs a bottleneck convolution on the first part
and passes to the end of the module for the other chunk. Three modules are used
to increase the detector’s performance, which outperforms other competitors.

Detection Module and Anchor. The detection module is responsible for
predicting the facial area, which includes three layers. This module employs a
depthwise convolution between layers. This block saves computing power and
increases speed. Besides, the decrease in accuracy does not have a significant
impact. Furthermore, the assignment of anchors with scale variations at each
detection layer can adjust the bounding box based on the size of the feature
map, large anchors for small feature maps, and vice versa. In order to optimize
training process, it still uses balanced loss which refers to the FFCPU.
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Fig. 2. The proposed architecture of face detector, including Rapidly Reduced Block
(R2B), Efficiently Extracted Block (E2B), Transfer Transition Block (T2B), and Multi-
level Detection. The training process requires 1024 × 1024 as the input image size.

2.2 Face Masks Classification Module

Baseline Module. The baseline module uses the convolutional neural network
to extract distinctive features, and the max-pooling layers are used to shrink
the feature map size. The ReLU and Batch Normalization are used to prevent
saturation of the network. In order for the detector to work fast, this slim archi-
tecture emphasizes the shallow layers and narrow channels, as shown in Fig. 3.
Each stage uses two 3 × 3 convolutions and a pool. This convolution has proven
that it effectively separates distinctive features from the background (VGG) [12].
The input of this module is an RGB image with a size of 64 × 64. It produces
8 × 8 at the last of the feature map. Furthermore, this module employs an
attention module to increase the discrimination power of facial features that are
covered by masks and normal faces. Fully connected focuses on vectors with two
categories and generates the final probability of predictions.

Attention Module. The shallow layer CNNs tend to produce low-level fea-
tures. Even this architecture is underperforming when it discriminates against
complex features [7]. This problem can be solved by employing the attention
module to improve the quality of the feature map representing the global con-
text of an input image. This technique can highlight the differences in facial
features covered and without a mask. The position attention module is applied
to capture context-based information and separate between interest and useless
facial features [5].

The first step is to apply the 1 × 1 convolution as a simple buffer for the
feature map output of the baseline module (fm(b)), as illustrated by Fig. 4.
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Fig. 3. The slim architecture of the face masks classification. This module consists of
seven convolution layers, three max-pooling layers, an attention module, and a fully
connected layer at the end of the network.

This operation generates new feature maps fm(k) and fm(l) with size H ×
W × C. Reshaping technique is required to obtain a single sized feature map
(HW × HW). The probability of spatial weights is obtained to represent global
information on a spatial scale, as shown in the following equation:

Att = fm(b) +
exp(fm(k) · fm(l))

∑
exp(fm(k) · fm(l))

· fm(m), (1)

where Att measures each position pixel of the local features map with aggregate
results from spatial attention and original maps. Furthermore, the module bot-
tleneck is used as a simple feature extractor (1 × 1) without adding a significant
amount of computation.

Attfull = Wc2ReLU(LN(Wc1Att)), (2)

where it takes two convolutions (C1 and C2). The linear activation and normal-
ization layers are only placed at the initial convolution. This module shrinks the
channel size in the middle and then restores at the end of the module.

3 Implementation Setup

FFDMASK uses the WIDER FACE dataset as a knowledge of facial features to
recognize the facial location in a set of images. Meanwhile, the Simulated Masked
Face Dataset (SMFD) and the Labeled Faces in the Wild (LFW) are used for the
training dataset of the face masks classification model. The detailed configuration
of each training stage is shown in Table 1. The training was conducted on the
Core I5-6600 CPU @ 3.30 Hz with GTX 1080Ti as an accelerator and Jetson
Nano with 128 NVIDIA CUDA as edge devices for testing of the detector.
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Fig. 4. Attention module.

Table 1. Implementation detail of face detection and face masks classification

Setting Face detector Face masks classification

Input image 1024× 1024 64× 64

Optimizer Stochastic Gradient Descent (SGD) Adam

Learning rate 10−5–10−3 10−7–10−4

Batch size 16 8

Total epoch 350 500

Loss function L1 smooth loss Categorical Cross-Entropy loss

Epsilon – 10−7

Weight decay 5 · 10−4 –

Momentum 0.9 –

IoU threshold 0.5 –

Framework Pytorch Keras

4 Experimental Results

In this section, the proposed architecture of the face detector and face masks
classification is evaluated on several datasets. This evaluation shows the qualita-
tive and quantitative results of each dataset. Additionally, another experiment
has shown the runtime efficiency of a detector when tested on an edge device.

4.1 Face Detector Results

The FFDMASK detector’s evaluation is carried out on the Face Detection Data
Set and Benchmark (FDDB) dataset. It is a benchmark dataset consisting
of 5,171 faces on 2,845 images. A variety of challenges are provided by this
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Table 2. Accuracy of face masks classification on SMFD and LFW datasets

Model Num of parameter ACC (%) in SMFD ACC (%) in LFW

Loey et al. [9] 23,591,816 99.49 100

Proposed 668,746 99.72 100

dataset, including scales, poses, lighting, and complex background. Discrete cri-
teria were chosen as evaluations by comparing the IoU between prediction and
ground truth. Figure 5(a) shows that the detector outperforms other competi-
tors (FFCPU and Faceboxes). It is slightly superior to the leading competitors
(FFCPU) by 0.2%. Besides, FFDMASK has faster data processing speed on
different video input sizes, as shown in Fig. 5(b). Especially for the VGA input
size, FFDMASK obtains 51.31 FPS while the FFCPU is 48.27 FPS on the Jetson
Nano. These results compare the average speed of each detector when tested at
1000 frames. The quality of the detector performance is also shown in Fig. 5(c).
It indicates that the proposed detector can overcome the challenges of occlusion,
expressions, accessories, and complex backgrounds.

4.2 Face Masks Classification Results

Evaluation of SMFD Dataset. The dataset consists of 1,376 images, 690 for
simulated masked faces, 686 for unmasked faces. It is used for the training and
testing phases. This face dataset contains portrait images of male and female
faces with a variety of poses and sizes. Face detection is applied to obtain a facial
RoI measuring 64 × 64. This process helps the slim model to focus on learning
facial features without being affected by background noise. In this dataset, the
proposed architecture obtains an accuracy of 99.72%. This result is superior to
Loey et al., which only achieves 99.49% on the same dataset. This success is
supported by feature extraction suitable for preprocessed datasets. Figure 6(a)
shows the qualitative results of the proposed detector. This result proves that
the variations in facial poses in the dataset are not a barrier for the model to
get high performance.

Evaluation of LFW Dataset. The benchmark dataset contains 13,000 masked
faces for celebrities around the round. The training and testing process uses this
dataset separately. The face dataset consists of facial images that were manip-
ulated with an artificial mask that referred to work [9], as shown in Fig. 6(b).
LFW masked has a size of 128 × 128, which instantly provides the RoI of a face
that is avoided from the background. Our model uses 64 × 64 as the input size of
RoI, which is reshaped from the original size. As a result, the proposed detector
achieves perfect and competitive results with Loey et al., as shown in Table 2.
The majority of this dataset is in the frontal pose. It is more comfortable than
the SMFD dataset. The proposed model explicitly discriminates against nose
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Fig. 5. ROC (Receiver Operating Characteristics) discrete evaluation curve on the
FDDB dataset (a), comparison of mean detector speed at different video input sizes
(b), qualitative results on FDDB datasets (c).

and mouth features from other features. These features tend to be closed and
undetectable when the face is wearing a mask.

4.3 Runtime Efficiency

The practical application recommends a computer vision method to run real-time
on portable devices. In general, service robots use mini-computers to process
intelligent algorithms and computer vision. It requires a small accelerator to
process the computation of the algorithm. Therefore, the proposed architecture
is tested on a Jetson Nano to find out the efficiency of the model. Table 3 shows
that face detector and face masks classification models have less computing power
than competitors. FFDMASK produces a smaller number of parameters than
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Fig. 6. Qualitative results on SMFD (a), LFW dataset (b), and running real-time (c).

Table 3. Comparison of detector speeds with competitors on the Jetson Nano.

Model Input size Num of parameter Accuracy (%) Speed(FPS)

Face detector

FFCPU [10] 640 × 480 715,844 96.60 48.27

FFDMASK 640 × 480 602,310 96.80 51.31

Face masks classification

Loey et al. [9] 64 × 64 23,591,816 99.49 5.80

Proposed 64 × 64 668,746 99.72 20.60

FFCPU. It also impacts the speed of the detector. The S-Res module emphasizes
computational savings for the residual method without compromising the quality
of feature extraction.

Furthermore, the proposed model of face masks classification produces a
faster speed than Loey et al. This competitor uses the Resnet-50 backbone
module, which generates many parameters and heavyweights. Meanwhile, the
proposed module only requires a slim architecture to obtain superior results.
Table 3 shows that this model produces 668,746 as of the number of parameters
and achieves 20.60 FPS on the Jetson Nano. These results are an accumulation
of face detection (VGA-resolution) and masks classification speed (RoI size of
64). Real-time detectors use training data on the SMFD dataset, which tends
to have a variety of poses. As a result, the system achieves high performance
when it recognizes multi-view masked faces, as shown in Fig. 6(c). Besides, this
detector also obtained satisfactory results for the challenge of various colored
masks.
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5 Conclusion

This paper presents a real-time multi-view face masks recognition system applied
to service robots. The two-stage module is used to focus feature extraction on
facial RoI. Face detection is responsible for filtering non-face areas, while face
masks classification is used to classify Roi faces into two categories. Light and
slim architecture do not prevent the detector from obtaining high performance.
As a result, two CNN modules can outperform competitors in accuracy and
speed. Additionally, the system achieves 21 FPS when running on the Jetson
Nano. In future work, the augmentation can increase the dataset varieties and
solve the disturbance of lighting and extreme poses.
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