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Abstract. The COVID-19 pandemic requires everyone to wear a face
masks in public areas. This situation expands the ability of a service
robot to have a masked face recognition system. The challenge is detect-
ing for multi-view faces. Previous works encountered this problem and
tended to be slow when implemented in practical applications. This pa-
per proposes a real-time multi-view face masks detector with two main
modules: face detection and face masks classification. The proposed ar-
chitecture emphasizes light and robust feature extraction. The two-stage
network makes it easy to focus on discriminating features on the facial
area. The detector filters non-faces at the face detection stage and then
classifies the facial regions into two categories. Both models were trained
and tested on the benchmark datasets. As a result, proposed detector
obtain high performance with competitive accuracy from competitors. It
can run 20 frames per second when working in real-time on Jetson Nano.

1 Introduction

The technology of robots is developing rapidly in the industrial and medical
fields. The Industrial Revolution 5.0 supports to encourage the implementation
of robots in the public area. Service robots are one type used by humans to help
with daily activities [11]. This robot has human-like abilities that can walk, see,
talk and understand the environment. Since the emergence of COVID-19 spread
as a pandemic in the World, prevention of this virus is the first step to reduce its
impact by wearing face masks. It is useful for protecting the transmission of the
virus through droplets in the mouth and nose area [4]. So this causes everyone
to be required to wear a mask when in a public environment. This situation
recommends service robots to have the ability to detect and classify face masks
in public areas. It is useful for warning people who don’t use it.

Several previous studies have succeeded in finding a method for classifying
face masks. Ejaz et al. used the Principal Component Analysis (PCA) to rec-
ognize the face masks [3]. This study uses statistical differences of accuracy to
measure the performance of the classification system. In addition, the face de-
tection of Viola-Jones was employed for detecting the face region. Another work



Fig. 1. Flowchart of overall face masks detector.

is applying the Gaussian Mixture Model (GMM) to build a faces model [1].
This system predicts face masks by analyzing and learning typical facial fea-
tures in the eyes, nose, and mouth area. This model was tested on various face
challenges using accessories such as respirators and sunglasses as an evaluation.
However, both works are weak when classifying face masks on non-frontal faces.
It is caused by the limitation of face detection and feature extraction.

Convolutional Neural Network (CNN) has been proven as a robust extrac-
tor feature [8]. In general, CNN architecture consists of feature extraction and
classifier [13]. This method can classify various images by updating the filter
weights to produce an output that matches the ground truth [2]. However, this
reliability is not supported by efficiency when run in real-time. Deep CNN tends
to generate a large number of parameters with heavyweights [6]. Loey et al.
used Resnet-50 as a backbone for feature extraction followed by decision trees,
Support Vector Machine (SVM), and ensemble algorithm as the classifier [9].
The model produces high accuracy but is slow, while the practical application
requires an algorithm to work in real-time on a portable device. Jetson Nano is a



Fig. 2. The proposed architecture of face detector, including Rapidly Reduced
Block (R2B), Efficiently Extracted Block (E2B), Transfer Transition Block
(T2B), and Multi-level Detection. The training process requires 1024 × 1024
as the input image size.

mini-computer supported by a 128-core graphic accelerator. This edge device is
recommended for use as a robot processor because it supports sensor acquisition
and actuator control functions.

This paper aims to build real-time masked face recognition on edge devices
implemented in service robots. The contributions of this paper are as follows:

1. Fast face detection for mask was developed to detect multi-view faces and
occlusion challenges (FFDMASK). The stage helps to get the RoI (Region
of Interest) from the face.

2. Slim CNN architecture for fast and accurate classification of face masks. The
attention module is applied to improve the quality of shallow feature maps.

As a result, it achieves competitive performance with state-of-the-art algorithm
on several datasets and can work in real-time on the Jetson Nano without lack.

2 Proposed architecture

The proposed detector consists of two-stage, including face detector and classifi-
cation module. Fig. 1 shows the overall diagram of the proposed system. A face
detector works to detect faces in an image to produce bounding boxes as the face
area [14]. The crop technique is used in each box to generate facial RoI. Then
a classification module is employed to extract information and classify masked
faces.



2.1 Face detector

Backbone module. FFDMASK develops the architecture of FFCPU [10]. This
network consists of two main parts, including the backbone and detection block,
as shown in Fig. 2. This model functions as a feature extractor to produce a clear
feature map on the detection module. Rapidly Reduced Block (R2B) emphasizes
reducing the dimension of the feature map with a convolutional layer and an
Efficiently Extracted Block (E2B) to separate facial and non-facial distinctive
features effectively. FFDMASK employs the S-Res (Split-residual) module to
upgrade the E2B. This block divides the feature input into two parts based on
the number of channels, then employs a bottleneck convolution on the first part
and passes to the end of the module for the other chunk. Three modules are used
to increase the detector’s performance, which outperforms other competitors.

Detection module and anchor. The detection module is responsible for pre-
dicting the facial area, which includes three layers. This module employs a depth-
wise convolution between layers. This block saves computing power and increases
speed. Besides, the decrease in accuracy does not have a significant impact. Fur-
thermore, the assignment of anchors with scale variations at each detection layer
can adjust the bounding box based on the size of the feature map, large anchors
for small feature maps, and vice versa. In order to optimize training process, it
still uses balanced loss which refers to the FFCPU.

2.2 Face masks classification module

Baseline module. The baseline module uses the convolutional neural network
to extract distinctive features, and the max-pooling layers are used to shrink
the feature map size. The ReLU and Batch Normalization are used to prevent
saturation of the network. In order for the detector to work fast, this slim archi-
tecture emphasizes the shallow layers and narrow channels, as shown in Fig. 3.
Each stage uses two 3 × 3 convolutions and a pool. This convolution has proven
that it effectively separates distinctive features from the background (VGG) [12].
The input of this module is an RGB image with a size of 64 × 64. It produces
8 × 8 at the last of the feature map. Furthermore, this module employs an at-
tention module to increase the discrimination power of facial features that are
covered by masks and normal faces. Fully connected focuses on vectors with two
categories and generates the final probability of predictions.

Attention module. The shallow layer CNNs tend to produce low-level features.
Even this architecture is underperforming when it discriminates against complex
features [7]. This problem can be solved by employing the attention module to
improve the quality of the feature map representing the global context of an input
image. This technique can highlight the differences in facial features covered and
without a mask. The position attention module is applied to capture context-
based information and separate between interest and useless facial features [5].



Fig. 3. The slim architecture of the face masks classification. This module con-
sists of seven convolution layers, three max-pooling layers, an attention module,
and a fully connected layer at the end of the network.

The first step is to apply the 1 × 1 convolution as a simple buffer for the
feature map output of the baseline module (fm(b)), as illustrated by Fig. 4.
This operation generates new feature maps fm(k) and fm(l) with size H ×
W × C. Reshaping technique is required to obtain a single sized feature map
(HW × HW). The probability of spatial weights is obtained to represent global
information on a spatial scale, as shown in the following equation:

Att = fm(b) +
exp(fm(k) · fm(l))∑
e xp(fm(k) · fm(l))

· fm(m), (1)

where Att measures each position pixel of the local features map with aggregate
results from spatial attention and original maps. Furthermore, the module bot-
tleneck is used as a simple feature extractor (1 × 1) without adding a significant
amount of computation.

Attfull = Wc2ReLU(LN(Wc1Att)), (2)

where it takes two convolutions (C1 and C2). The linear activation and normal-
ization layers are only placed at the initial convolution. This module shrinks the
channel size in the middle and then restores at the end of the module.

3 Implementation setup

FFDMASK uses the WIDER FACE dataset as a knowledge of facial features to
recognize the facial location in a set of images. Meanwhile, the Simulated Masked
Face Dataset (SMFD) and the Labeled Faces in the Wild (LFW) are used for the
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Fig. 4. Attention module.

Table 1. Implementation detail of face detection and face masks classification

Setting Face Detector Face Masks Classification

Input image 1024 x 1024 64 x 64

Optimizer Stochastic Gradient Descent (SGD) Adam

Learning rate 10−5 − 10−3 10−7 − 10−4

Batch size 16 8

Total epoch 350 500

Loss function L1 smooth loss Categorical Cross-Entropy loss

Epsilon - 10−7

Weight decay 5 · 10−4 -

Momentum 0.9 -

IoU threshold 0.5 -

Framework Pytorch Keras

training dataset of the face masks classification model. The detailed configuration
of each training stage is shown in Table 1. The training was conducted on the
Core I5-6600 CPU @ 3.30Hz with GTX 1080Ti as an accelerator and Jetson
Nano with 128 NVIDIA CUDA as edge devices for testing of the detector.

4 Experimental results

In this section, the proposed architecture of the face detector and face masks
classification is evaluated on several datasets. This evaluation shows the qualita-
tive and quantitative results of each dataset. Additionally, another experiment
has shown the runtime efficiency of a detector when tested on an edge device.



Table 2. Accuracy of face masks classification on SMFD and LFW datasets

Model Num of Parameter ACC (%) in SMFD ACC (%) in LFW

Loey et al.[9] 23,591,816 99.49 100

Proposed 668,746 99.72 100

4.1 Face detector results

The FFDMASK detector’s evaluation is carried out on the Face Detection Data
Set and Benchmark (FDDB) dataset. It is a benchmark dataset consisting of
5,171 faces on 2,845 images. A variety of challenges are provided by this dataset,
including scales, poses, lighting, and complex background. Discrete criteria were
chosen as evaluations by comparing the IoU between prediction and ground
truth. Fig. 5 (a) shows that the detector outperforms other competitors (FFCPU
and Faceboxes). It is slightly superior to the leading competitors (FFCPU) by
0.2 %. Besides, FFDMASK has faster data processing speed on different video
input sizes, as shown in Fig. 5 (b). Especially for the VGA input size, FFDMASK
obtains 51.31 FPS while the FFCPU is 48.27 FPS on the Jetson Nano. These
results compare the average speed of each detector when tested at 1000 frames.
The quality of the detector performance is also shown in Fig. 5 (c). It indicates
that the proposed detector can overcome the challenges of occlusion, expressions,
accessories, and complex backgrounds.

4.2 Face masks classification results

Evaluation of SMFD dataset. The dataset consists of 1,376 images, 690 for
simulated masked faces, 686 for unmasked faces. It is used for the training and
testing phases. This face dataset contains portrait images of male and female
faces with a variety of poses and sizes. Face detection is applied to obtain a facial
RoI measuring 64 × 64. This process helps the slim model to focus on learning
facial features without being affected by background noise. In this dataset, the
proposed architecture obtains an accuracy of 99.72 %. This result is superior
to Loey et al., which only achieves 99.49 % on the same dataset. This success
is supported by feature extraction suitable for preprocessed datasets. Fig. 6 (a)
shows the qualitative results of the proposed detector. This result proves that
the variations in facial poses in the dataset are not a barrier for the model to
get high performance.

Evaluation of LFW dataset. The benchmark dataset contains 13,000 masked
faces for celebrities around the round. The training and testing process uses this
dataset separately. The face dataset consists of facial images that were manipu-
lated with an artificial mask, as shown in Fig. 6 (b). LFW masked has a size of
128 × 128, which instantly provides the RoI of a face that is avoided from the
background. Our model uses 64 × 64 as the input size of RoI, which is reshaped



Fig. 5. ROC (Receiver Operating Characteristics) discrete evaluation curve on
the FDDB dataset (a), comparison of mean detector speed at different video
input sizes (b), qualitative results on FDDB datasets (c).

from the original size. As a result, the proposed detector achieves perfect and
competitive results with Loey et al., as shown in Table.2. The majority of this
dataset is in the frontal pose. It is more comfortable than the SMFD dataset.
The proposed model explicitly discriminates against nose and mouth features
from other features. These features tend to be closed and undetectable when the
face is wearing a mask.

4.3 Runtime efficiency

The practical application recommends a computer vision method to run real-time
on portable devices. In general, service robots use mini-computers to process



Fig. 6. Qualitative results on SMFD (a), LFW dataset (b), and running real-
time (c).

Table 3. Comparison of detector speeds with competitors on the Jetson Nano.

Model Input size Num of parameter Accuracy(%) Speed(FPS)

Face detector

FFCPU[10] 640 x 480 715,844 96.60 48.27

FFDMASK 640 x 480 602,310 96.80 51.31

Face masks classification

Loey et al.[9] 64 x 64 23,591,816 99.49 5.80

Proposed 64 x 64 668,746 99.72 20.60

intelligent algorithms and computer vision. It requires a small accelerator to
process the computation of the algorithm. Therefore, the proposed architecture
is tested on a Jetson Nano to find out the efficiency of the model. Table 3 shows
that face detector and face masks classification models have less computing power
than competitors. FFDMASK produces a smaller number of parameters than
FFCPU. It also impacts the speed of the detector. The S-Res module emphasizes
computational savings for the residual method without compromising the quality
of feature extraction.

Furthermore, the proposed model of face masks classification produces a
faster speed than Loey et al. This competitor uses the Resnet-50 backbone mod-
ule, which generates many parameters and heavyweights. Meanwhile, the pro-
posed module only requires a slim architecture to obtain superior results. Table
3 shows that this model produces 668,746 as of the number of parameters and
achieves 20.60 FPS on the Jetson Nano. These results are an accumulation of
face detection (VGA-resolution) and masks classification speed (RoI size of 64).
Real-time detectors use training data on the SMFD dataset, which tends to have



a variety of poses. As a result, the system achieves high performance when it
recognizes multi-view masked faces, as shown in Fig. 6 (c). Besides, this detector
also obtained satisfactory results for the challenge of various colored masks.

5 Conclusion

This paper presents a real-time multi-view face masks recognition system applied
to service robots. The two-stage module is used to focus feature extraction on
facial RoI. Face detection is responsible for filtering non-face areas, while face
masks classification is used to classify Roi faces into two categories. Light and
slim architecture do not prevent the detector from obtaining high performance.
As a result, two CNN modules can outperform competitors in accuracy and
speed. Additionally, the system achieves 20 FPS when running on the Jetson
Nano. In future work, the augmentation can increase the dataset varieties and
solve the disturbance of lighting and extreme poses.
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