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Abstract—Accurate single-shot object detection is an ex-
tremely challenging task in real environments because of
complex scenes, occlusion, ambiguities, blur, and shadow,
i.e., these factors are called uncertainty problem. It leads to
unreliable labeling of bounding box annotation and makes
detectors arduous to learn bounding box localization. Pre-
vious methods viewed the ground truth box coordinates
as a rigid distribution omitting localization uncertainty in
real datasets. This article proposes a novel bounding box
encoding algorithm integrated into the single-shot detector
(BBENet) to consider the flexible distribution of bounding
box localization. First, discretized ground truth labels are
generated by decomposing each object’s boundary into
multiple boundaries. The new representation of ground
truth boxes is more arbitrary and flexible to cover any case
of complex scenes. During training, the detector directly
learns discretized box locations instead of continuous do-
main. Second, the bounding box encoding algorithm reor-
ganizes bounding box predictions to be more accurate. Fur-
thermore, another problem in existing methods is inconsis-
tency in estimating detection quality. The single-shot detec-
tion consists of classification and localization tasks, but the
popular detectors consider the classification score as the
final detection quality. Thus, it lacks localization quality and
hinders the overall performance because both tasks have
a positive correlation. To overcome this problem, BBENet
introduces detection quality by combining the localization
and classification quality to rank detection during nonmax-
imum suppression. The localization quality is computed
based on how uncertain the predicted boxes are, which
is a new perspective in detection literature. The proposed
BBENet is evaluated on three benchmark datasets, i.e.,
MS-COCO, Pascal VOC, and CrowdHuman. Without bells
and whistles, BBENet outperforms the existing methods
by a large margin with comparable speed, achieving the
state-of-the-art single-shot detector.

Index Terms—Convolutional neural networks (CNNs), de-
tection quality, localization quality, localization uncertainty,
object detection.
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I. INTRODUCTION

OBJECT detection is a fundamental task in computer vision
research. This task has been widely used in many indus-

trial applications, such as nondestructive defect detection [1],
face detection [2], lung cancer detection [3], detection in cellular
networks [4], copy–move forgery detection [5], and surveillance
systems [6], [7].

Although object detection has achieved outstanding per-
formance, it is still difficult to accomplish perfect detection.
Specifically, detection in real environments is highly challenging
because of uncertainty problem originated by crowded scenes,
occlusion, ambiguities, blur, and shadow. Because uncertainty
problem often appears in real datasets, it leads to challenging
problems as follows.

1) Ambiguous boundaries of objects are depicted: All the
previous detectors identify objects’ location through rect-
angle bounding box form. Each object coordinate is deter-
mined based on object boundaries (top, right, bottom, and
left boundaries). When creating ground truth (GT) bound-
ing boxes, ambiguous boundaries make it challenging to
identify object coordinates. Therefore, the definition of
GT boxes is sometimes not reliable. For example, Fig. 1
depicts boundary ambiguities in several images. In the
first image, the leg part of the person is partially occluded
by the motorcycle, which is not annotated. The pixels
belonging to the background class in the green circle
of the second image are labeled as a truck class due to
ambiguities, which is imprecise. The baseball glove class
in the third image is unreliably labeled because most
pixels of this class belong to background and person
classes. The right boundary of the giraffe in the fourth
image is not clear due to blur and ambiguities. In the
fifth image, the horse class is occluded by the person and
affected by shadow. All the factors affect box labeling and
generate unreliable GT boxes.

2) Ambiguous learning in object detection is identified: Be-
cause object boundaries are not clear enough due to un-
certainty, existing detectors can not know the exact object
locations. As a result, detectors generate mislocalized and
misclassified detections. Even though detectors produce
highly overconfidence scores, the bounding box predic-
tion does not satisfy high localization quality. Therefore,
it directly degrades the detection performance.

The abovementioned problems hinder the learning ability of
the model and prevent perfect localization in solving object
detection.
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Fig. 1. Examples of the localization uncertainty in real datasets (e.g., MS-COCO dataset [8]) due to occlusion, ambiguity, blur, etc., are marked
as green circles. The white boxes denote GT boxes. The red boxes indicate our predicted boxes learned under the discretized distribution of target
locations.

However, conventional detectors [9]–[19] do not take local-
ization uncertainty into consideration. The GT box representa-
tion of these methods can be regarded as Dirac delta distribution
(e.g., does have any change in GT box process), which is too
rigid and simple. Thus, these detectors fail to model localization
uncertainty in the real world. Moreover, KL-Loss [20] and
Gaussian YOLOv3 [21] were the first methods to solve local-
ization uncertainty problem. Although both detectors model the
bounding box predictions as Gaussian distributions, it is still too
simple and symmetric to reflect the real distribution. In reality,
the real distribution of the GT locations and predicted boxes is
arbitrary and flexible.

To solve these limitations, this article presents the new repre-
sentation of GT box coordinates with more reliability to reflect
the real distribution and proposes a bounding box encoding
algorithm to find optimal boxes from the prediction set. Both
proposed components are used in the single-shot detector to
reduce the uncertainty problem on detection performance, and
this is called novel bounding box encoding algorithm integrated
into the single-shot detector (BBENet). First, each GT box is
discretized into multiple target boxes to recover the real locations
of objects. The detector BBENet is learned under the discretized
distribution of target boxes over the continuous domain. The
new representation can produce more arbitrary bounding box
predictions around truth target locations. Second, the bounding
box encoding algorithm is introduced to reorganize predicted
boxes to be well aligned to the boundaries of target locations.
As shown in Fig. 1, the predicted boxes with red color are more
credible and accurate.

Single-shot object detectors require both classification and
localization tasks to predict object categories and locations.
Intersection of union (IoU)-aware [22] states that both tasks
have a strong positive correlation. However, popular detectors,
such as RetinaNet [9], Faster R-CNN [23], Reppoints [15],
Foveabox [13], FreeAnchor [12], gradient harmonizing mech-
anism (GHM) [10], and FSAF [11] defined the classifica-
tion score as the final detection quality without considering
the localization quality. Hence, there is an inconsistency be-
tween classification and localization tasks, and it potentially
decreases the detection performance. To address this prob-
lem, the proposed BBENet represents the detection quality
by merging both localization quality and classification score
to rank detection during inference. The localization quality is
estimated from the reorganized bounding boxes, which can
reflect the level of localization uncertainty, i.e., uncertainty

score. For clear cases (nonocclusion and nonambiguities), the
uncertainty score is low since detection networks pre-
cisely locate the coordinate of each object and other-
wise. During nonmaximum suppression (NMS), the boxes
have high uncertainty, filtered out because of low detection
quality.

The main contributions of the proposed method are summa-
rized as follows.

1) The new representation of GT bounding boxes is per-
formed to cover truth boundaries of the object, generating
more reliable boxes around real locations. The BBENet
is trained under discretized probability distribution that
has arbitrary characteristics suitable for real datasets.

2) The bounding box encoding algorithm with a simple and
effective strategy produces accurate bounding box predic-
tions by reducing the influence of localization uncertainty
on the detection performance.

3) We estimate the localization quality by considering the
predicted bounding box uncertainty. This is called un-
certainty score, which is a new and different perspective
in object detection literature. During testing, the uncer-
tainty score and classification score are combined as a
final detection quality to improve the representation of
localization and classification tasks.

4) Extensive experiments on three benchmark datasets are
conducted. Without bells and whistles, the proposed
method achieves a state-of-the-art single-shot detector.

II. RELATED WORKS

A. Single-Shot Object Detection

The representative methods of single-shot detectors are
single-shot detector (SSD) [24], RetinaNet [9] and its improve-
ments [10]–[14], [16]–[18], [22], and FCOS [19]. SSD was
the first deep learning-based object detection without region
proposal generation. This network places anchor boxes with
different scales and aspect ratios on each location of multiple
feature maps, and then predicts object categories and box offsets
for each anchor. After that, many researchers have attracted
much attention to single-shot detectors due to their simpleness
and high efficiency. RetinaNet proposed a simple and unified
detector including five improved components.

1) Integrating feature pyramid networks (FPN) [25] into
detection network to solve scale imbalance.
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2) Placing nine anchor boxes on each location of feature
pyramid to cover all the objects in images.

3) A simple IoU-based anchor assignment.
4) Designing classification and box regression subnets.
5) Introducing Focal loss to handle the class imbalance in

training detectors.
Based on the baseline RetinaNet, there are many studies

enhancing detectors’ learning ability in many aspects. GHM [10]
addressed gradient imbalance between easy and hard samples
when training RetinaNet detector and proposed gradient harmo-
nizing mechanism to balance the gradient contribution of each
sample. Feature selective anchor-free (FSAF) [11] improved
RetinaNet in two components: 1) adding anchor-free branch with
online feature selection to classification and regression subnets
and 2) based on the outputs of the anchor-free branch, FSAF
defines the center region of each bounding box as positive sam-
ples. Instead of IoU-based anchor assignment, FreeAnchor [12]
proposed an object–anchor matching mechanism via maximum
likelihood estimation to train detectors. IoU-aware [22] attached
an additional IoU prediction to the regression branch, leveraging
the positive correlation between classification and localization
tasks. FoveaBox [13] defined the positive area of each GT
box to select negative and positive samples, eliminating an-
chor demand. Adaptive training sample selection (ATSS) [14]
introduced adaptive training sample selection to dynamically
separate negative and positive samples based on statistic distri-
bution of IoU variable. YOLOF [17] investigated the redundant
characteristics of the FPN in RetinaNet. Through empirical ex-
periments, YOLOF only used one-level feature for detection and
proposed uniform matching to balance the number of positive
samples for each object. Fully convolutional one-stage object
detector (FCOS) [19] considers anchor boxes as anchor points.
Then, FCOS predicts distance offsets between the anchor point
and object boundaries.

Unlike the existing methods, our proposed BBENet improves
the baseline RetinaNet in four parts.

1) Efficient anchor box design: We only place one anchor
box per location while RetinaNet places nine anchors
per location, avoiding hyperparameter selections of the
anchor box and high model complexity.

2) Regression offset variables: The BBENet considers the
center of the anchor box as an anchor point and regresses
distance offsets from the center during training.

3) Localization Uncertainty: We take localization uncer-
tainty into consideration, while the previous methods
considered single-shot detectors in different perspectives,
such as anchor assignment [11]–[14], [16], [17], network-
level [11], [17], [25]–[27], loss optimization [10], [12],
[28], learned anchor boxes [29], and estimated corre-
lation [22]. To the best of our knowledge, there is no
prior work in literature improving RetinaNet concerning
localization uncertainty.

4) Estimated localization quality: RetinaNet and state-of-
the-art detectors [10]–[13], [16], [18] consider classifi-
cation score as final detection quality, while our method
joins both localization quality and classification score as
final detection quality.

B. Localization Uncertainty

Although most of the state-of-the-art single-shot detec-
tors [9]–[14], [16]–[19], [22], [24], [26]–[29] have achieved
impressive performance in both accuracy and speed, they still
do not take localization uncertainty into account. These methods
viewed bounding box localization as Dirac delta distribution,
which is too rigid and simple to model the arbitrary distribution
of the target box locations in real datasets. As a result, these
detectors generated mislocalized detections (false detections),
thus it hampers the detection performance. KL-Loss [20] was the
first method to solve the uncertainty problem in object detection
research. This method proposed the new KL-Loss by modeling
bounding box predictions and box targets as Gaussian and
Dirac delta distribution. To form the final localization loss, KL-
divergence is used to estimate the difference between two distri-
butions: θ̂ = argminθ

1
N

∑
KL(P (x)||GT(x)), where P (x) =

1√
2πσ2

e−(x−x̂)
2

2σ2 is Gaussian distribution with regression variable
x̂ and standard deviation σ to indicate bounding box prediction,
and GT(x) = δ(x− xgt) is Dirac delta distribution to address
GT box locations xgt. The KL-divergence function is consid-
ered as the new localization loss: LKL = KL(P (x)||GT(x)) ∝
(xgt−x̂)2

2σ + 1
2 log σ. In addition to conventional boxes, a branch is

added to the detection network to predict the standard deviation
σ by using some convolutional layers. If σ is larger (i.e., sample
contains ambiguous boundary), the loss for this object is lower.
Even though KL-Loss achieves significant improvement, they
have some drawbacks.

1) The distribution of GT locations is modeled as Dirac delta
distribution that can not be well matched with Gaussian
distribution.

2) Both used distributions are symmetric that fail to reflect
the arbitrary distribution.

3) KL-Loss degenerates to L2-norm-based loss with pre-
dicted standard deviation σ = 1.

This leads to an imbalance in regression loss during training
because L2 loss gives small errors for easy samples but larger
errors for hard samples. To overcome problems (1) and (3)
of KL-Loss, Gaussian YOLOv3 [21] models both predictions
and targets as Gaussian distributions. However, the mentioned
problem (2) opens challenging issues. To the best of our knowl-
edge, there are two recent methods, KL-Loss and Gaussian
YOLOv3, investigating localization uncertainty in the detection
research.

Finally, the difference between our proposed method and
conventional methods is summarized as follows.

1) The GT boxes are discretized into multiple target boxes
to recover real boundaries of objects. The BBENet is
trained with multiple targets to learn bounding box lo-
cations under discretized distribution over the continuous
domain of KL-Loss and Gaussian YOLOv3. This new
representation can solve the problem (2) of both KL-Loss
and Gaussian YOLOv3.

2) Without creating new loss function such as KL-Loss and
negative log likelihood (NLL) loss in Gaussian YOLOv3,
we can reduce the influence of unclear boundaries on the
detection performance.
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Fig. 2. Overall architecture of the BBENet consists of three parts:
backbone network, feature pyramid, and detection head. The backbone
network extracts the informative features from the input image. The
feature pyramid constructs multilevel feature maps with different scales.
The detection head predicts classification scores and bounding boxes
for each object in the image.

3) The proposed bounding box encoding algorithm is inte-
grated into the detection head to produce accurate boxes
and uncertainty scores.

C. Localization Quality

Most of the state-of-the-art single-shot detectors [9]–[13],
[16], [18], [24], [26], [27], [29] identified the predicted
classification scores as final detection scores without consid-
ering localization quality. During NMS procedure, detectors
use this score to rank detection. However, this step suppresses
detection with high localization quality, degrading the overall
performance since classification and localization have a strong
positive correlation. In the literature, there are three methods,
FCOS [19], ATSS [14], and IoU-aware [22], considering local-
ization quality. FCOS and ATSS attached a new branch to the
localization subnet to predict centerness score that is considered
as localization quality. During inference, the classification score
and centerness score are multiplied as a final detection quality to
suppress low-quality predicted bounding boxes that are far from
the center of objects. IoU-aware [R8] predicted the IoU score
between the predicted box and GT box as localization quality.
Both centerness and IoU scores do not reflect the localization
uncertainty of bounding boxes. As a result, the detection with
high IoU or centerness scores still does not satisfy accurate
localization in some difficult cases.

Unlike existing methods, we introduce an uncertainty score
as a new form of localization quality that is combined with
classification scores to calibrate the box quality score.

III. METHODOLOGY

This section analyzes the general architecture of the single-
shot object detection BBENet, the bounding box encoding al-
gorithm in Section III-A, and uncertainty score prediction in
Section III-B.

The overall architecture of the BBENet is shown in
Fig. 2. The used backbone network is ResNet-50 [30], illus-
trated in Fig. 3. Inspired by FPN [25], the pyramid feature
{P3 ,P4 ,P5 ,P6 ,P7} with various scales is also described in
Fig. 3. As shown in Fig. 4, the detection head consists of the clas-
sification and localization branches, independently performing
detection on each feature map of the pyramid. The classification
branch classifies anchor boxes belonging to certain classes, i.e.,
outputting classification scores. The localization branch predicts
distance offsets from the center of anchor boxes to multiple
object boundaries. Then, the bounding box encoding algorithm

Fig. 3. Detailed network of the backbone and neck parts in BBENet.
The stem block includes 7 × 7 convolution and 3 × 3 max-pooling with
stride 2. Ci, Co is the number of input and output channels. N denotes
the number of residual blocks on each stage. {P3 ,P4 ,P5 ,P6 ,P7 } is
the feature pyramid with different scales.

Fig. 4. Detailed network of the detection head in BBENet. Pf is the
feature map in the feature pyramid with f ∈ {3, 4, 5, 6, 7} and dimension
Hf×Wf (height and width of tensor). k is the number of discretized
boundaries on each direction of the target box, defined in Fig. 5. Each
branch consists of four convolutional layers, where each layer contains
3 × 3 conv followed by group normalization (GN) and ReLU activation
function.

aligns predicted bounding boxes learned under discretized repre-
sentation of the GT box locations. Finally, the uncertainty score
is estimated from the IoU set of aligned bounding boxes and the
GT bounding box.

A. Bounding Box Encoding Algorithm

Due to the uncertainty problem, ambiguous boundaries of
objects and ambiguous learning are identified. Thus, we have
to redefine the coordinates of GT box locations and design an
algorithm to process the new representation of GT boxes. First,
each boundary of the GT bounding boxes is discretized into
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Algorithm 1: Bounding Box Encoding Algorithm.
Input:
G is a set of GT bounding boxes
F is a set of predicted bounding boxes

Output:
P∗ is an optimal set of predicted bounding boxes
U is a set of uncertainty scores

1: P∗ ← ∅; U ← ∅;
2: for Qi ∈ F do
3: Ts ← ∅; Ls ← ∅; Bs ← ∅;Rs ← ∅;
4: for qi,j ∈ Qi do
5: Ts ← ti,j ∈ qi,j ;
6: Ls ← li,j ∈ qi,j ;
7: Bs ← bi,j ∈ qi,j ;
8: Rs ← ri,j ∈ qi,j ; // (k + 1) right boundaries
9: end for

10: Mi ← Recombination {Use (1)}
11: for g ∈ G do
12: Sg ← sgi,c = IoU(Gg,Mi,c); {Use (2)}
13: σg = Std(Sg); {Use (6)}
14: c∗ = argmax(Sg);
15: P∗ ← P∗ ∪Mg

i,c∗ ; {Top-1 bounding box}
16: U ← σg; {Uncertainty score}
17: end for
18: end for
19: returnP∗, U

Fig. 5. Ground truth (GT) with the green box is discretized into 4(k + 1)
boundaries corresponding to (k + 1) target boxes to involve real bound-
aries of objects due to uncertainty. The BBENet is trained with multiple
targets to learn bounding box locations under discretized probability
distribution. {tg , lg , bg , rg} are the coordinates of the original GT box.

(k + 1) boundaries to generate more reliable box coordinates.
This procedure generates (k + 1) target boxes for each instance,
as shown in Fig. 5. Second, the proposed BBENet with the new
representation of GT labels obtains a dense set of foreground
bounding boxes up to (k + 1) predictions for each pixel inside an
instanceA. However, the detector requires one bounding box per
one object. Therefore, we propose the bounding box encoding
algorithm to reduce the number of bounding boxes per location
and keep the accurate ones. To perform that, the bounding box
encoding algorithm reorganizes predicted bounding boxes to be
more accurate and then finds the optimal box from the reorga-
nized bounding box set for each instance. Because the detector
does not know which boundaries are ambiguous, we reconstruct
predicted boxes to form the relation between them, i.e., create
accurate bounding box candidates as much as possible. The
optimal box is sorted via ranking IoU scores, well aligned with

object boundary. Algorithm 1 describes how the bounding box
encoding operates.

Given an instance A, the set of predicted boxes are F =
{Q1, . . .,Qn}, where n is the number of positive samples fol-
lowing [9] and[19]. For each pixel, the set of estimated boxes
learned under improved distribution of box targets are Qi =
{qi,0, . . ., qi,k}, where k is the number of discretized bound-
aries on each direction of the bounding box. Following [19],
the regressed distances of a box are qi,j = {ti,j , li,j , bi,j , ri,j}
corresponding to top, left, bottom, and right boundaries. Fig. 6
describes all components of the each set.

Boundary Selection: The first, lines 3–9 in Algorithm 1 ar-
ranges four groups of boundaries into four sets, e.g., a set of
top boundary Ts = {ti,0, . . ., ti,k}, a set of left boundary Ls =
{li,0, . . ., li,k}, a set of bottom boundary Bs = {bi,0, . . ., bi,k},
and a set of right boundaryRs = {ri,0, . . ., ri,k}. The structure
of each set is analyzed in Fig. 6.

Recombination: The combination of the four sets is performed
to reconstruct new bounding boxes described in the line 10 of
Algorithm 1, defined as

Mi = {Mi,0, . . .,Mi,C} = {{ti,j , li,j , bi,j , ri,j} | ti,j ∈ Ts
li,j ∈ Ls, bi,j ∈ Bs, ri,j ∈ Rs ∀j ∈ [0, k]} (1)

whereMi is the recombined bounding box from boundary sets
for each pixel. Using all the boundaries of the four boundary sets
to obtain bounding boxes as much as possible is an insightful
way. However, in this strategy, the computational cost is too high
and difficult to implement. To reduce the model complexity, the
simple ranking is applied to sort the distances between the top
boundary in each set and the top target boundary. If the ranking
is highest, this boundary closest to the GT is fixed during the
recombination step. For example, Fig. 7 states recombined boxes
according to the fixed top boundary ti,0 nearest GT.

IoU Computation and Assignment: For each GT bounding
box g ∈ G, the proposed algorithm computes the IoU scores
between the GT g and recombined bounding boxMi,c in line
the 12 of Algorithm 1. For one reconstructed bounding box, the
IoU score is computed as follows:

sgi,c = IoU(Gg,Mi,c) =
I(Gg,Mi,c)

Union(Gg,Mi,c)
(2)

where I(Gg,Mi,c), Union(Gg,Mi,c), and IoU(Gg,Mi,c) com-
pute the intersection area, union area, and the intersection of
the union between the GT Gg and reconstructed box Mi,c,
respectively. I(Gg,Mi,c) is defined as

I(Gg,Mi,c) = (min(ti,c, tg) + min(bi,c, bg))

× (min(li,c, lg) + min(ri,c, rg)). (3)

The function Union(Gg,Mi,c) is calculated as

Union(Gg,Mi,c) = (ti,c + bi,c)(li,c + ri,c)

+ (tg + bg)(lg + rg)− I(Gg,Mi,c) (4)

where {tg, lg, bg, rg} and {ti,c, li,c, bi,c, ri,c} are the top, left,
bottom, and right boundaries of the GT bounding box and
recombined box, respectively. The reconstructed bounding box
has a low IoU score, and it is not selected since its boundaries
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Fig. 6. Flow diagram of the bounding box encoding algorithm for selecting the optimal bounding box. Each pixel Qi in the feature F regresses
(k + 1) bounding boxes, each bounding box is qi,j = {ti,j , li,j , bi,j , ri,j} with j ∈ [0, k]. Ts, Ls, Bs, and Rs are the set of top, left, bottom, and
right boundaries. IoU indicates the intersection of union of the recombined boxMi,c and the original GT box (red color). Then, the bounding box
with highest rank is considered as the final output. σg is the uncertainty score of the IoU set {sgi,0, . . ., si,C}, where C is the number of recombined
bounding boxes. Finally, the feature P∗ and U are computed for every pixel inside the feature F.

Fig. 7. Toy example with k = 2 to describe box coordinates, boundary selection, and recombination. The original GT box is denoted by the green
box. Other colors indicate predicted bounding boxes. The number of recombined boxes is C = 12 for simplicity. The sgi,9 with the highest score is
assigned as the final result.

are far from the target box. Thus, the optimal bounding box
is assigned to be well aligned to the GT box in lines 14 and
15 of Algorithm 1. This representation ensures the assigned
bounding box is close to the target location, which aims to
reduce localization uncertainty on the detection performance.
As shown in Fig. 7, the sgi,9 achieves the highest IoU score, the
9th reorganized box is assigned to the final form toward more
accurate estimation.

B. Uncertainty Score as Localization Quality

The proposed BBENet outputs the uncertainty score to rep-
resent the localization quality for each box in the line 16 of
Algorithm 1. For one GT, the set Sg contains IoU scores of
recombined bounding boxes. Inspired by KL-Loss [20], the
distribution of IoU variables follows the normal distribution.
Accordingly, the mean and standard deviation of the statistic

characteristics of reorganized boxes are computed as

μg =
1
C

C∑
c=0

IoU(Gg,Mi,c) (5)

σg =

√
1
C

∑C

c=0
[IoU(Gg,Mi,c)− μg]

2 (6)

where C is the number of recombined boxes for each GT (C =
12 in Fig. 7). IoU(Gg,Mi,c) = sgi,c is the intersection of the
union between the GT and recombined box. Because the GT is
not provided during inference, the bounding box with the highest
confidence score is considered as the reference to compute the
IoU score.

The BBENet obtains the standard deviation σg as an uncer-
tainty score. The final detection quality includes the classifica-
tion and uncertainty scores, calculated in line 3 of Algorithm
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Algorithm 2: NMS With Uncertainty Score.
Input:
P∗ = {P∗1 , . . .,P∗n} is the list of optimal bounding

boxes
D = {D1, . . .,Dn} is the list of classification scores
U = {U1, . . .,Un} is the list of uncertainty scores
α is the IoU threshold
Output:
O is the list of final bounding boxes
H is the list of detection quality scores

1: O ← {};H ← {};
2: for Di ∈ D and Ui ∈ U do
3: H ← Hi = Di × (1− Ui); // detection quality

scores
4: end for
5: while P∗ 	= empty do
6: m← argmax(H);
7: Y ← P∗m;
8: O ← O ∪ Y; P∗ ← P∗ − Y;
9: for P∗i ∈ P∗ do

10: if IoU(Y,P∗) � α then
11: P∗ ← P∗ − P∗i ;H ← H−Hi;
12: end if
13: end for
14: end while
15: return O,H

2. If the standard deviation σi is larger (the box i contains am-
biguous boundaries), the value (1− Ui) becomes smaller. After
multiplying, the detection score is smaller. It means that this box
has low localization quality. Thus, the box i has a low ranking,
and it will potentially be suppressed because the boundary of
the bounding box is farther from the object’s boundary (this box
is considered as a mislocalized box). If we do not suppress it,
this box becomes false positive (FP). It directly decreases the
detection performance even the detector produces a high classi-
fication score; otherwise σi is lower, which means that this box
has high localization quality. The value (1− Ui) becomes larger.
Thus, the detection scoreHi becomes larger. This box is sorted
as high ranking (high detection quality). Therefore, our method
produces high detection quality and suppresses the uncertainty
box correctly. As illustrated in Fig. 8, our quality scores under the
uncertainty problem are greater than the nonlocalization quality
method.

IV. EXPERIMENTS

A. Dataset

The proposed method is conducted on the challenging MS-
COCO benchmark [8] to evaluate the effectiveness of the bound-
ing box encoding algorithm and uncertainty score as localization
quality. This dataset contains 115 k images for training and 5 k
validation images for performing the ablation study. Compar-
isons with previous works are measured on the test− dev with
20 k images. All detection results are evaluated by evaluation

Fig. 8. Qualitative results of (a) RetinaNet [9], (b) ATSS [14], and (b)
our BBENet on MS-COCO validation set with uncertainty cases. The
white boxes denote GT labels. Red boxes denote the box prediction.
Each score indicates detection quality.

code [8], with the standard metrics, e.g., average precision (AP),
AP at different IoU thresholds (AP50, AP75), and AP at across
scales (APS , APM , APL).

B. Implementation Details

All experiments were implemented by the deep learning Py-
torch framework. The proposed network adopts the stochastic
gradient descent as an optimizer with a weight decay of 0.0001
and momentum of 0.9. The BBENet was trained for 12 epochs
with a batch size of 8 on a GPU NVIDIA Titan, Cuda 10.2, and
CuDNN 7.6.5. Specifically, the learning rate began at 0.0025
and decreased ten times at epoch 8 and epoch 11. Following
common settings [9], [14], [19], the input image is resized to
1333 × 800.

As shown in Fig. 3, the proposed network employs the back-
bone ResNet [30] pretrained on ImageNet for feature extrac-
tion. The initialized weights of the added convolution layers
in the feature pyramid and detection head were filled from
the normal distribution. For anchor box settings, the proposed
method only places one square anchor box per location to
avoid computational overhead. Note that the offset prediction
is the distance value between the center of the anchor box and
boundaries.

During training, the number of encoded boundaries on each
side of the bounding box was adopted to k=16 for all exper-
iments because the performance achieves accuracy and speed
balance at this value. Similar to previous works with FCOS [19]
and ATSS [14], the training loss is defined as

L = λ1Lcls(Di, D̂i) + λ2Lloc(P∗i ,G) (7)

where Lcls is the Focal loss [9] for the classification task, focus-
ing on hard samples and downweighting the contribution of a
large number of easy negative samples. Di, and D̂i denote the
classification score and class label. Lloc is the GIoU loss [31] for
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TABLE I
COMPARISON WITH STATE-OF-THE-ART SINGLE-SHOT DETECTORS ON MS-COCO TEST-DEV SET

The bold values used to indicate the best performance among detectors.

the localization task. P∗i = {ti,c∗ , li,c∗ , bi,c∗ , ri,c∗} and G denote
the optimal bounding box selected in Algorithm 1 and GT box,
respectively. Following ATSS [14], the balance terms λ1 and λ2

are 1.0 and 2.0, respectively.
During inference, the input image is forwarded to the network

that outputs classification scores, bounding box regression, and
uncertainty scores. At the NMS step, the classification and
uncertainty scores are combined to rank the detection.

V. RESULTS ON MS-COCO

A. Comparison With State-of-The-Art Methods

The results of the proposed BBENet were evaluated on
the MS-COCO test-dev set and compared with state-of-the-art
single-shot object detections listed in Table I. Note that all
experiments used the input image size of 1333 × 800. The
bold font denotes the best performance among detectors with
the same backbone and learning schedule (1×, 2× means the
model is trained for 12 epochs and 24 epochs). Here, ms indi-
cates multiscale training. We use two scales: 1333× 480 and
1333× 800 of the input image to train the model.

For the backbone ResNet-50 [30], the proposed BBENet
outperforms the popular RetinaNet [9] and FCOS [19] by a large
margin, e.g., 3.1% AP. Moreover, the proposed method runs at
21.5 frames per second (FPS), faster than RetinaNet with 19.0
FPS. Because the number of anchor boxes per location is one

for the BBENet and nine for RetinaNet, the computation cost is
fewer 9× than RetinaNet. Compared with FCOS, the parameter
of the BBENet only increases 0.2 M (millions) while the speed
reduces from 22.7 to 21.5 FPS. Note that the proposed network
considers RetinaNet and FCOS as the baseline. Accordingly, the
proposed BBENet improves the detection performance of the
baseline without affecting the speed of the network. Remark-
ably, our result achieved 40% AP, surpassing all state-of-the-art
detectors, such as FoveaBox [13] at 37% AP, GHM [10] at 37.5%
AP, AugFPN [26] at 37.5% AP, YOLOF [17] at 37.7% AP,
Sparse RCNN [29] at 37.9% AP, RepPoints [15] at 38.3% AP,
NAS-FCOS [27] at 38.5% AP, FreeAnchor [12] at 38.9% AP, and
the strong detector ATSS [14] at 39.6% AP. As expected, the AP
at IoU=0.75 of the BBENet is larger than the baseline RetinaNet
and FCOS by 3.9% AP. Therefore, our method performs well at
high IoU thresholds, i.e., more accurate detections.

Similarly, the performance of the proposed method also sur-
passes the baselines and other single-shot detectors with the
same backbone network ResNet-101 and learning schedule 1×.
By using the stronger backbone ResNeXt-32×4d-101 and mul-
tiscale training strategy, the BBENet achieves the best result
45.9% AP at 13 FPS that outperforms other detectors by a large
margin without bells and whistles. Additionally, we insert the
advanced anchor assignment ATSS to BBENet. Our detection
performance achieves 48.4% AP that establishes the new state-
of-the-art single-shot detector.
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TABLE II
INVESTIGATION OF DIFFERENT VALUES OF k

TABLE III
EFFECTS OF EACH COMPONENT ON MS-COCO VALIDATION SET

B. Ablation Studies

1) Hyperparameter k: Several experiments are conducted to
investigate the robustness of the proposed BBENet to the value
k (i.e., number of discretized boundaries on each direction of the
target box). As shown in Table II, the value k ∈ {4, 8, 12, 16, 20}
is selected to train the model.

The results of the proposed method are very sensitive to the
changes in k. Specifically, the result achieves 25.3% AP at k=4
and 39.3% AP at k=8. The small k=4 decreases the accuracy
because too few encoded boundaries correspond to too few re-
combined bounding boxes, causing coarse boundary prediction.
When the value k increases from 8 to 20, the performance is
more stable, i.e., a slight increase in the accuracy from 39.3%
AP to 39.7% AP. Accordingly, our method chooses k = 16 for
all experiments because the model achieves accuracy and speed
balance at this value.

2) Effect of Each Component: This section analyzes the per-
formance of each component on the MS-COCO validation set.
The results shown in Table III are as follows.

1) Baseline: The type inherits the flexible FCOS [19] and
anchor-based RetinaNet [9] as the simplest version of
BBENet.

2) Baseline+BBEAlg: The bounding box encoding algo-
rithm 1 (BBEAlg) toward accurate prediction is added to
the baseline. As given in Table III, the proposed BBEAlg
gains 1.3% AP from the Baseline 36.6% to 37.9% with
inconsiderable complexity. Specifically, BBEAlg only
increases the number of parameters and computational
cost of the baseline by 0.25 M and 3.24 giga floating point
operations per second (GFLOPS). Therefore, the results
show the effectiveness of the BBEAlg in both accuracy
and computations.

3) Baseline+BBEAlg+Uncertainty: This is the full imple-
mentation of the proposed BBENet, which adds an un-
certainty score in the NMS step to reduce the effects of
localization uncertainty on the performance. This version
achieves 39.8% AP, further improving the Baseline and
Baseline+BBEAlg by 3.2% and 1.9% AP, respectively.
Remarkably, the performance at AP75 gains 3.9%, that
detection has high accurate localization. This shows the

TABLE IV
COMPARISON OF UNCERTAINTY METHOD AND LOCALIZATION QUALITY

TABLE V
RESULTS OF DIFFERENT DETECTORS ON MS-COCO VALIDATION SET

detection quality joined by classification score and un-
certainty score can significantly improve the overall per-
formance. As the BBENet creates the uncertainty score
based on Algorithm 1, the model complexity is the same
as Baseline+BBEAlg.

3) Localization Uncertainty: The BBENet surpasses the first
uncertainty method KL-Loss [20] by 0.6% AP, as shown in
Table IV. As the proposed BBENet models bounding box distri-
butions in a more flexible way, KL-Loss considers the prediction
and label as fixed distributions, e.g., Gaussian and Dirac delta
distribution. Alternatively, KL-Loss employs two-stage detec-
tion Faster R-CNN [23] as the baseline, while our method is a
one-stage detection toward the efficient network. In comparison
to localization quality, the BBENet predicting uncertainty score
is superior to the IoU score [22] and centerness score [19].

4) Results on Different Detectors: We conduct the experi-
ments on the MS-COCO validation set to evaluate the effec-
tiveness of the bounding box encoding algorithm (BBEAlg) on
different detectors. The results are given in Table V. All detectors
are trained under ResNet-50, and learning schedule 1×. Reti-
naNet* indicates the simplified version of RetinaNet [9] when
we only place one anchor box per location versus nine anchor
boxes in the original RetinaNet. This simplified RetinaNet is the
same as the structure of FCOS [19]. As a result, our BBEAlg
achieves consistent AP improvements on all detectors (e.g.,
3.6% AP, 3.2% AP, and 1.3% AP improvements), demonstrating
its effectiveness and generality.

5) Comparative Visualizations: The comparative visualiza-
tion between the baseline RetinaNet [9], ATSS [14], and the
proposed method is illustrated in Fig. 8 with unclear boundaries
and partial occlusions of objects. As expected, the proposed
BBENet predicts more accurate bounding box localization than
other detectors. Our bounding boxes have a finer boundary
than the GT labels. In the first column, both RetinaNet and
ATSS generate low localization quality (mislocalized detec-
tion) and low confidence score (achieve a score of 0.59, and
0.33—misclassified detection), while our detector produces high
localization quality and confidence score. In the third column,
although RetinaNet produces a highly overconfidence score (up
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TABLE VI
RESULTS ON PASCAL VOC TEST SET

The bold values used to indicate the best performance among detectors.

TABLE VII
COMPARISON WITH DETECTORS ON CROWDHUMAN DATASET

The bold values used to indicate the best performance among detectors.

to 0.87) but the bounding box prediction is not accurate. ATSS
outputs both low localization and classification quality in this
case.

VI. RESULTS ON PASCAL VOC AND CROWDHUMAN

A. Results on Pascal VOC

To verify the effectiveness of the proposed method, we present
the experimental results on Pascal VOC [32] dataset. Pascal
VOC consists of 20 classes for training and inference. All
detectors are trained on the union trainval set of the Pascal
VOC 2007 and 2012 and evaluated on the Pascal VOC 2007
test set. We reimplement all detectors with the same settings
on MS-COCO dataset for fair comparisons, such as learning
schedule 1× and backbone ResNet-50. We use the mean average
precision (mAP) metric to evaluate the performance. Table VI
shows that the proposed method surpasses the two-stage method
Faster R-CNN [23] by 4.1% mAP and the strong ATSS [14]
by 4.9% mAP. It demonstrates the generalization ability of our
proposed BBENet.

B. Results on CrowdHuman

We conduct the experiment on a challenging dataset, e.g.,
CrowdHuman [33] dataset. This dataset contains a large set
of uncertainty cases, addressing heavy occlusion in crowded
scenes. All the hyperparameters are the same as MS-COCO
dataset. Table VII tabulates the results of the proposed method,
RetinaNet, FCOS, and ATSS. On the CrowdHuman dataset, we
outperform the ATSS by 3.7% and the baseline RetinaNet by
11.7% AP. The performance gap between the BBENet and other
detectors can be explained as follows.

1) The conventional detectors do not identify the uncertainty
of predicted bounding boxes, and it leads to mislocalized
detections (FP).

2) CrowdHuman dataset contains uncertainty cases in every
image.

Thus, both reasons generate many boxes with low detection
quality. It largely decreases the detection performance.

Therefore, our detector performs well in general cases, while
RetinaNet, FCOS, and ATSS perform well in clear cases.

VII. CONCLUSION

This article introduced the BBENet toward the accurate object
detector by investigating the localization uncertainty in object
detection. Specifically, the BBENet proposed the novel bound-
ing box encoding algorithm in which bounding box predictions
are learned under multiple discretized targets to be more reliable.
The reconstructed bounding boxes based on the combination
of four groups of the boundary are performed as statistical
distribution to model the localization uncertainty of box rep-
resentation. The optimal bounding box is chosen to be well
aligned to target locations. Furthermore, the uncertainty scores
are obtained as localization quality from the set of bounding
box recombination, merged with the classification score to rank
the detection during the NMS procedure. Extensive experiments
on three benchmarks show that the proposed BBENet achieves
accurate bounding box prediction, becoming a state-of-the-art
single-shot object detector.
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