
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Fast and Accurate 3D Object Detection
for LiDAR-camera-based Autonomous
Vehicles using One Shared Voxel-based
Backbone
LI-HUA WEN, (Member, IEEE), KANG-HYUN JO, (Senior Member, IEEE)
The Graduate School of Electrical Engineering, University of Ulsan, 44610, Korea (e-mail: wenlihuawlh@gmail.com, acejo@ulsan.ac.kr)

Corresponding author: Kang-Hyun Jo (e-mail: acejo@ulsan.ac.kr).

This work was supported by University of Ulsan.

ABSTRACT Currently, many kinds of LiDAR-camera-based 3D object detectors have been developed
with two heavy neural networks to extract view-specific features, while a LiDAR-camera-based 3D detector
with only one neural network has not been implemented. To tackle this issue, this paper first presents an
early-fusion method to exploit both LiDAR and camera data for fast 3D object detection with only one
backbone, achieving a good balance between accuracy and efficiency. We propose a novel point feature
fusion module to directly extract point-wise features from raw RGB images and fuse them with their
corresponding point cloud with no backbone. In this paradigm, the backbone that extracts RGB image
features is abandoned to reduce the large computation cost. Our method first voxelizes a point cloud
into a 3D voxel grid and utilizes two strategies to reduce information loss during voxelization. The first
strategy is to use a small voxel size (0.05m, 0.05m, 0.1m) in X-axis, Y-axis, and Z-axis, respectively, while
the second one is to project the feature (e.g. intensity or height information) of point clouds onto RGB
images. Numerous experiments evaluated on the KITTI benchmark suite show that the proposed approach
outperforms state-of-the-art LiDAR-camera-based methods on the three classes in 3D performance (Easy,
Moderate, Hard): cars (88.04%, 77.60%, 76.23%), pedestrians (66.65%, 60.49%, 54.51%), and cyclists
(75.87%, 60.07%, 54.51%). Additionally, the proposed model runs at 17.8 frames per second (FPS), which
is almost 2× faster than state-of-the-art fusion methods for LiDAR and camera.

INDEX TERMS LiDAR-camera-based 3D detector, single stage, one backbone, point-wise fusion, KITTI
benchmark

I. INTRODUCTION

W ITH the rapid development of autonomous vehicles,
three-dimensional (3D) object detection has become

more important, whose purpose is to perceive the size and
accurate location of objects in the real world. Currently, an
intelligent car is equipped with at least one LiDAR apparatus,
one radar and one RGB camera. Note that radar is now
widely used in companies, however, only a few researchers
use it to validate a new algorithm. Hence, this paper focuses
on LiDAR and camera for 3D object detection. LiDAR is
employed to collect the surrounding 3D data, referred to as
a point cloud, and the camera is used to capture a high-
resolution RGB image. The two devices provide two impor-
tant and different types of data. However, it is non-trivial to

highly efficiently and quickly extract and fuse the features of
the point cloud and RGB image.

Recently, feature extraction [1]–[4] with deep learning has
drawn much attention. For the RGB image, a general 2D
convolutional neural network (CNN) can be used to extract
its features. For the point cloud however, it is difficult to
extract its features due to its irregular distribution and sparse
contributions. Before the advent of highly-efficient graphics
processing units (GPUs), representative studies [5]–[10] have
converted point clouds into 2D dense images or structured
voxel-grid representations and utilized 2D neural networks
to extract the corresponding feature from the converted 2D
image. With the development of computer technology, the
authors in [11]–[14] directly utilized a multi-layer perceptron

VOLUME 4, 2016 1

VGG-16

VGG-16

Crop &
Resize

Crop &
Resize

3D Anchors Fusion

Crop &
Resize

Crop &
Resize

Fusion
3D

ROIs

3
D

 B
o

x
P

re
d

ic
ti

o
n

s

RGB Image

BEV Image

A: Region-based Fusion (AVOD)

ResNet

PointNet

Fusion

Fusion

M
L

P
M

L
P

3
D

 B
o

x
P

re
d

ic
ti

o
n

s

B: Point-wise Fusion (PointFusion)

RGB Image

3D Point Cloud

RGB Image

3D Point Cloud

Point Transform
Module (PTM)

Fusion

3
D

 B
o

x
P

re
d

ic
ti

o
n

s

VFE&
3D CNN

C: Our Approach

Point-wise
FeatureVoxelization

Global
Feature

Point-wise
Feature

Block-4
Feature

Point Feature Fusion Module

Figure 1: A comparison of two mainstream LiDAR-camera-
based 3D detectors with the proposed approach. Both detec-
tors A and B employ one backbone (VGG-16 or ResNet)
to extract the features of the RGB image. Conversely, our
proposed method directly extracts the pointwise features
from the raw RGB image without a backbone.

(MLP) to aggregate features from point clouds. Shi et al. [15]
encoded the point cloud natively in a graph using the points
as the graph vertices.

To leverages the mutual advantages of point clouds and the
RGB image, some researchers have attempted to fuse view-
specific region of interest (ROI) features. Currently, there are
two mainstream fusion methods. The first is to fuse two view-
specific features, as shown in Figure 1A. The other method
is pointwise feature fusion, as shown in Figure 1B. Chen et
al. [5] and Ku et al. [6] directly fuse the ROI feature maps
output with the two backbones of the point cloud and RGB
image, respectively. On the other hand, Xu et al. [16] and
Sindagi et al. [17] fuse pointwise features. These methods
achieve better performance compared with LiDAR-based
methods; however, their inference time is usually intolerable
for application in real-time autonomous driving systems.

To deal with the above issues, this paper proposes a novel
point-wise fusion strategy between point clouds and RGB
images, illustrated in Figure 1C. The proposed method di-
rectly extracts pointwise features from the raw RGB image
based on the raw point cloud first. Then, it fuses the two
pointwise features and feeds them into a 3D neural network.
The structure, as shown in Figure 2, has only one backbone

to extract features, making the proposed model much faster
than state-of-the-art LiDAR and camera fusion methods.

The key contributions of this work are as follows:
• This paper presents an early-fusion method to exploit

both LiDAR and camera data for fast multi-class 3D
object detection with only one backbone, achieving a
good balance between accuracy and efficiency.

• This paper proposes a highly-efficient pointwise feature
fusion module, which directly extracts the RGB image
point feature based on a point cloud and fuses the ex-
tracted RGB image point feature with the corresponding
feature of the point cloud.

• This paper also enhances 3D object detection with an
RGB+ image, which preserves the information pro-
jected from its corresponding point cloud.

The presented one-stage 3D multi-class object detec-
tion framework outperforms state-of-the-art LiDAR-camera-
based methods on the KITTI benchmark [18] both in terms
of the speed and accuracy.

II. RELATED WORK
This section starts by reviewing recent works in applying
convolutional neural networks (CNNs) to 3D object detection
based on LiDAR, and then focuses on methods specific to
multi-modal 3D object detection from point clouds and RGB
images.

A. LIDAR-BASED 3D OBJECT DETECTION
Recently, there have been three main 3D object detectors
based on LiDAR: voxel-based detectors, point-based detec-
tors, and graph-based detectors. Voxel-based methods [7],
[8], [19]–[21] first voxelize the raw point cloud over a given
range and then utilize a 3D CNN or 2D CNN to extract
features. Different from other existing methods, Muresan et
al. [21] employs a 4-beam LiDAR to collect point clouds.
Unlike VoxelNet [7], Yan et al. [19] replaced a 3D CNN
by a 3D sparse convolutional network, and Lang et al. [20]
directly organized point clouds in vertical columns (pillars)
to generate 2D BEV images. Point-based detectors [11]–
[14] directly deal with the raw point cloud. Charles et al.
[11] pioneered the method used to deal with each point
independently using their shared MLPs. Based on PointNet
[11], Charles et al. [12] further introduced the metric space
distances to learn local features with increasing contextual
scales. Yang et al. [13] abandoned the upsampling layers
in PointNet++ to boost the inference speed. The proposed
method voxelizes a point cloud using a dynamic voxelization
method compared with the hard voxelization method in [7]
and aims to avoid information loss during voxelization.

B. MULTI-MODAL 3D OBJECT DETECTION
3D Object detection in point clouds and RGB images is a
fusion problem. As such, it is natural to extract the RGB
image feature and the point cloud feature with two different
backbones, respectively, which is the paradigm present in all

2 VOLUME 4, 2016

Point Transform Module

Voxelization

Raw Point Cloud

RGB Image

Point-wise Feature

Point-wise
Fusion

VFE
Module

3D Backbone

To Dense

BEV

3
D

 B
o

x
 P

re
di

ct
io

n
s

Detection Head

Deconv.

Deconv.

���� Image

Point Feature Fusion Module

Figure 2: The architecture of the proposed one-stage 3D object detection network for the LiDAR and camera. It mainly includes
the input data, the point feature fusion module, the 3D backbone, and the detection head. The gray box and green box represent
the convolutional block and feature map, respectively.

previous works [5], [6], [9], [10], [16], [17], [22]–[25]. Obvi-
ously, by employing two heavy backbones, these approaches
are very slow and consume a great deal of memory. In the
paradigm, these methods are designed to either study how
to fuse or how to improve accuracy based on state-of-the-
art fusion methods, e.g., AVOD [6] changes the feature gen-
eration method in MV3D [5] from hand-crafted techniques
to automation to improve the running speed of the model.
According to different fusion methods, these methods can
be divided into two categories: pointwise fusion [16], [17]
and region of interest (ROI)-based fusion [5], [6], [22]–[26].
Daraei et al. [27] . Compared with the ROI-based fusion,
pointwise fusion is more flexible. Inspired by pointwise fu-
sion, this article will explore whether it is possible to directly
aggregate the point features of the raw RGB image with
point cloud features. Different from the previous methods,
the proposed method only has one backbone. Additionally,
the proposed model takes the RGB+ image as the input,
instead of using an RGB image.

In this paper, we first present an early-fusion method to
exploit both LiDAR and camera data for fast 3D object
detection with only one backbone, and it achieves a good
balance between accuracy and efficiency. Thanks to the novel
pointwise feature fusion module, which makes the fusion
between LiDAR and camera data high efficient. To further
improve the detection performance, we propose the RGB+

image as the input.

III. PROPOSED APPROACH
The proposed model, as shown in Figure 2, takes point clouds
and RGB images as inputs and predicts oriented 3D bounding
boxes for cyclists, pedestrians, and cars. This model includes
four main parts: (1) A point feature fusion module that
extracts the point features from the RGB image and fuses
the extracted features with the corresponding point cloud
features, (2) a voxel feature encoder (VFE) module and a 3D
backbone to process the fused pointwise features into a high-

level representation, (3) a detection head that regresses and
classifies the 3D bounding boxes, and (4) a loss function.

A. POINT FEATURE FUSION MODULE

The fusion module, shown in Figure 3, consists of three
submodules: the point transform module, the voxelization of
point clouds, and the pointwise fusion module. Since this
module involves the input of raw data, before introducing the
module, the input data is first introduced.

𝐻 ×𝑊 × 3

Raw Point Cloud

𝑅𝐺𝐵ା Image

𝑁 × 4

Point Transform
Module

Transformation Matrix

Voxelization

𝑁 × 3
FC

FC

Fusion

𝑁 × 10

𝑁 × 128

𝑁 × 128

FC
𝑁 × 128

Figure 3: Visualization of the point feature fusion module. N
is the number of points in a point cloud, and FC denotes one
fully connected layer.

Input Data. This model accepts point clouds and RGB
images as the input. To reduce the loss of raw point-cloud
information during voxelization, a LiDAR point cloud is
projected onto an RGB image and embedded into the image
to generate a new image with three channels, called RGB+.
The RGB+ object has two typical representations: the RGBI

portion that embeds the intensity of point clouds into an RGB
image, and the RGBD representation that embeds the Z-axis
value of point clouds into the image. The detailed process
of the RGB+ generation is divided into the three following
steps:

VOLUME 4, 2016 3

(1) First, point clouds (X,Y, Z) are mapped onto the
original image (W ×H) plane as follows:(

u v 1
)T

= M ·
(
X Y Z 1

)T
, (1)

M = Prect ·
(
Rcam
velo tcamvelo
0 1

)
, (2)

where (u, v) is the image coordinate, Prect is a project ma-
trix, Rcam

velo is the rotation matrix from LiDAR to the camera,
tcamvelo is a translation vector, and M is the homogeneous
transformation matrix from LiDAR to the camera.

(2) Second, the points {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z}
located in the image of size W ×H are kept. Meanwhile, the
LiDAR points are projected to the camera coordinates and
denoted as (xc, yc, zc):(

xc yc zc
)T

= M ·
(
x y z 1

)T
. (3)

(3) Finally, zc is mapped between 0 and 255 and then
assigned to the corresponding image coordinate (u, v) to
generate the RGBD object. Similarly, the intensity of the
point cloud for each color channel is mapped between 0 and
255 and then assigned to the corresponding image coordinate
(u, v) to obtain the RGBI data structure. This process uses
the circle function of the OpenCV library.
Point Transform Module. This module extracts point fea-
tures from the RGB+ image I ∈ RH×W×3 based on the raw
point cloud. First, a point cloud P ∈ RN×3 is projected onto
its corresponding image by Eq. 1 to obtain the correspond-
ing image coordinates (ui, vi). Second, the RGB+ and the
(ui, vi) are fed into the image sampler [28], outputting the
image point feature Pi ∈ RN×3, where N is the number of
points in the point cloud.
Voxelization. Voxelization divides the point cloud into
evenly spaced voxel grids and then generates a many-to-
one mapping between 3D points and their corresponding
voxels. The details are shown in Figure 4. Currently, there
exist two voxelization methods: hard voxelization [7] and dy-
namic voxelization [29]. Compared with the former, dynamic
voxelization makes the detection more stable by preserving
all the raw points and voxel information. This work ap-
plies the dynamic voxelization method. Given a point cloud
P = {p1,p2, · · · ,pN}, the process assigns N points to
a buffer of size N × F , where N is the number of points
and F denotes the feature dimension. Specifically, each point
pi = [xi, yi, zi, ri] (containing the XYZ coordinates and
the reflectance value) in a voxel is denoted by its inherent
information (xi, yi, zi, ri), its relative offsets (xv, yv, zv) with
respect to the centroid of the points in the voxel, and its
relative offsets (xp, yp, zp) with respect to the centroid of the
points in the pillar. Finally, the output point-wise feature is
Pv ∈ RN×10, and the resulting size of the 3D voxel grid
is
(
W
sy
, Hsx ,

D
sz

)
, where (sy, sx, sz) gives the voxel sizes, and

(W,H,D) are the ranges along the Y-axis, X-axis, Z-axis,
respectively.

Point-wise Fusion. This module fuses the pointwise features
Pi and Pv. Since the dimensions of the two features are
different, two fully connected (FC), one for each feature, are
used to adjust their dimensions to be the same. There are two
common fusion methods for ROIs: addition and concatena-
tion. Therefore, this paper will analyze which fusion method
is the most suitable for the pointwise features in Table 3 in
the ablation section. After the fusion operation, one FC layer
is utilized to further merge the fused features and output the
result as Pf .

B. VOXEL FEATURE ENCODER MODULE AND 3D
BACKBONE
This section introduces the voxel feature encoder module and
the 3D backbone, in that order.
Voxel Feature Encoder Module. Upon completing the
pointwise fusion, the fused feature Pf is transformed through
the VFE layer which is composed of a fully connected
network (FCN), into a feature space, where information from
the point features fi ∈ Rm can be aggregated to encode
the shape of the surface contained within the voxel [7], [8],
[17], where i ∈ [1, N] and m is the feature dimension of a
point. The FCN consists of a linear layer followed by a batch
normalization layer, and a ReLU layer. An elementwise max-
pooling process is used to locally aggregate the transformed
features and output a feature ~f for Pf . Finally, the max-
pooled feature ~f is concatenated with each point feature fi to
generate the final feature Pvfe. his work stacks two such VFE
layers and both of the output lengths are 128. This means the
shape of Pvfe is N × 128. The details are shown in Figure 4.
3D Backbone. The 3D backbone takes the feature Pvfe

and it’s corresponding index of 3D coordinates (X,Y,Z)
as inputs. The backbone is widely used in [30], [31]
and has twelve 3D sparse convolutional layers and is di-
vided into four stages according to feature resolution, as
shown in Figure 5. The four-stage feature resolutions in
the order of (W,H,D) are (1600, 1408, 41), (800, 704, 21),
(400, 352, 11), and (200, 176, 2). Specifically, each stage has
two kinds of 3D convolutional layers: the submanifold con-
volution [19] and the sparse convolution. The former does
not generate new points and shares the point coordinate
indices in each stage; hence, the submanifold convolution
runs very fast. The latter is a sparse version of the dense
3D convolution. Usually, these two convolutions are used
in conjunction to achieve the speed/accuracy balance. The
details and numbers of input and output channels are illus-
trated in Figure 5. The sparse feature map after the 3D sparse
convolution needs to be converted into the dense feature map
Fd ∈ R200×176×256. The detailed configuration is given in
Table 1.

C. DETECTION HEAD
The input data of the detection head is the dense feature
map Fd. The detection head is comprised of three con-
volution blocks. Block 1 has five 2D convolutional layers
and outputs the feature map F1 ∈ R100×88×128. Similarly,

4 VOLUME 4, 2016

X

Z

Y

Raw Point Cloud Voxelization

Pillar

Voxel 1⋯�

Fusion

Point-wise Feature
(Point Cloud)

Point-wise Feature
(RGB Image)

V
F

E
 L

ay
er

 1

V
F

E
 L

ay
er

 2
V

F
E

 L
ay

er
 2

E
le

m
en

t-
w

is
e

M
ax

po
ol

1⋯�

Point-wise
Feature 1

Point-wise
Feature 2

Voxel-wise
Feature

Point-wise Fusion VFE Module

(� × 4)

Figure 4: The details for the voxelization, pointwise fusion, and VFE module. The black circle and red circle are the centroid
of a voxel and a pillar, respectively. The black circle and red circle are only for demonstration and are all virtual. To understand
the figure more clearly, the number of points N only takes the value of five.

Stage 1

Stage 2

Stage 4

Conv3D (16, 16, 3, 1)

Submanifold convolution

Sparse convolution

Conv3D (16, 32, 3, 2)

Conv3D (32, 32, 3, 1)

Conv3D (32, 32, 3, 1)

Conv3D (32, 64, 3, 2)

Conv3D (64, 64, 3, 1)

Conv3D (64, 64, 3, 1)

Stage 3

Conv3D (64, 64, 3, 2)

Conv3D (64, 64, 3, 1)

Conv3D (64, 64, 3, 1)

Conv3D (64, 128, 3, 1)

Conv3D (128, 16, 3, 1)

Figure 5: The 3D backbone architecture. Conv3D (cin, cout,
k, s) denotes a convolutional block, where the parameters
cin, cout, k, and s represent the input-channel numbers,
the output-channel numbers, the kernel size, and the stride,
respectively. Each block consist of a 3D convolutional layer
followed by a batch normalization layer and a ReLU layer.

block 2 also has five 2D convolutional layers and takes
the feature map F1 as input and outputs the feature map
F2 ∈ R50×44×256. Block 3 has two transpose layers and
one 2D convolutional layer. F1 and F2 are transposed as the
feature map F3 ∈ R100×88×256 and the feature map F4 ∈
R100×88×256, respectively. Finally, the feature maps F3 and
F4 are concatenated as the feature map F ∈ R100×88×512.
The feature map F is mapped to three desired learning
targets: (1) a classification score map Fscore ∈ R100×88×18,
(2) a box regression map Fbox ∈ R100×88×42, and (3) a

Table 1: The network configuration for the 3D backbone and
the detection head. The output sizes (W, H, Depth) and (W,
H, Channel) are for the 3D backbone and the detection head,
respectively. The structure [type, size, stride] × Number
represents the convolutional type, filter size, stride, and the
number of layers.

Network Output Size Name Layer

3D
Backbone

(1600, 1408, 41) Stage1 S_Conv3D, 3, s1
Sub_Conv3D, 3, s1

(800, 704, 21) Stage2
S_Conv3D, 3, s2

Sub_Conv3D, 3, s1
Sub_Conv3D, 3, s1

(400, 352, 11) Stage3
S_Conv3D, 3, s2

Sub_Conv3D, 3, s1
Sub_Conv3D, 3, s1

(200, 176, 2) Stage4

S_Conv3D, 3, s2
Sub_Conv3D, 3, s1
Sub_Conv3D, 3, s1
Sub_Conv3D, 3, s1

Detection
Head

(100, 88, 128) Block1 [Conv2D, 3, s1]x4
Conv2D, 3, s2

(50, 44, 256) Block2 [Conv2D, 3, s1]x4
Conv2D, 3, s1

(100, 88, 512) Block3
DeConv2D, 3, s1
DeConv2D, 3, s2

Conv2D, 3, s1

direction regression map Fdir ∈ R100×88×12. The detailed
configuration is given in Table 1.

D. LOSS FUNCTION

This work utilizes the same loss functions in PointPillars [20]
and SECOND [19]. The 3D ground truth boxes and anchors
are parameterized as (x, y, z, l, w, h, θ), where (x, y, z) de-
note the box’s center, (l, w, h) represent the box’s size, and
θ is the yaw rotation around the Z-axis. The corresponding
regression residuals between the 3D anchors and ground truth

VOLUME 4, 2016 5

are defined as follows:

∆x =
xg − xa

da
, ∆y =

yg − ya

da
,

∆h = log(
hg

ha
), ∆θ = sin(θg − θa),

(4)

where the superscripts g and a represent the ground truth
box and the anchor, respectively. The variable da =√

(wa)2 + (la)2 is the diagonal of the base of the anchor
box.

The regression loss function is as follows:

Lreg =
∑
b

SmoothL1(∆b), (5)

where the input dimensions are b ∈ (x, y, z, w, l, h, θ) and
SmoothL1 is the smooth L1 loss function in the Fast R-CNN
module.

Since the yaw angle θ ∈ [−Π,Π] has two directions
{+,−}, and the angle regression loss cannot distinguish
the directions. A softmax classification loss is utilized to
compute the discretized direction loss [19], Ldir. If the yaw
angle θ around the Z-axis of the ground truth is greater
than zero, the direction is positive; otherwise, the direction
is negative.

For the object classification loss, the focal loss [32] is used:

Lcls = −αa(1− pa)γ log(pa), (6)

where pa is the class probability of an anchor, α = 0.25, and
γ = 2. The total loss can be formulated as follows:

Loss =
1

Npos
(β1Lbox + β2Lcls + β3Ldir), (7)

where Npos is the number of positive anchors and β1 = 2.0,
β2 = 1.0, and β3 = 0.2. For the car class, an anchor
is defined as positive if it has a 2D IoU greater than 0.60
(pedestrian/cyclist is 0.35) with its paired ground truth. If it
has a 2D IoU less than 0.45 (pedestrian/cyclist is 0.2), the
anchor is labeled as negative. The other anchors are ignored
when computing the loss.

IV. EXPERIMENTS
This section introduces the dataset, the experimental settings,
and the results in detail.

A. DATASET
The proposed model is trained and evaluated on the KITTI
dataset [18]. The KITTI object dataset possesses 7,518 test-
ing frames and 7,481 training frames. Each frame is com-
prised of a point cloud, stereo RGB images (the left image
and the right image), and calibration data. In this research,
only a point cloud and the left image with their calibration
data are used. To impartially compare the proposed approach
with existing methods, the training dataset is divided into two
subsets (training subset and validation subset) based on the
same criteria, and the ratio of the two subsets is 1:1.

For KITTI’s criteria, according to the size, truncation, and
occlusion classes of objects, all objects are grouped into

three difficulty classes: easy (E), moderate (M), and hard
(H). Before October 8th, 2019, KITTI’s object detection
metric was defined as the 11-point average precision (AP)
metric. Since then, the metric has been defined by 40 recall
positions. Compared with the 11-point AP, the 40-point AP
more properly assesses the quality of an algorithm based on
the infinite approximation. Intersection-over-Union (IoU) is
the generic evaluation criterion for object detection. In the
evaluation of 2D, 3D, and bird’s eye view (BEV) detection,
the IoU is at the threshold of 0.7 for the car class and 0.5
for the pedestrian/cyclist class. For the average orientation
similarity (AOS) we follow the approach in [18] and define
the AOS as:

AOS =
1

N

∑
r∈{0,0.1,··· ,1}

max
r̃:r̃≥r

s (r̃), (8)

s (r) =
1

|D (r)|
∑
D(r)

1 + cos∆i
θ

2
δi, (9)

where N ∈ {11, 40}, r = TP
TP+FN is the PASCAL object

detection recall, TP means the true positive, FN is the false
negative, s is the orientation similarity, D (r) represents the
set of all object detections at recall, and ∆i

θ is the difference
in angle between estimated and ground truth orientation of
detection i, δ ∈ {0, 1} is the penalty factor.

B. EXPERIMENTAL SETTINGS
The proposed model is an end-to-end 3D detector for
three classes: the car, pedestrian, and cyclist. When de-
signing the anchors for the three classes, different classes
employ different sizes (w, l, h). The sizes (1.6, 3.9, 1.56),
(0.6, 0.8, 1.73), and (0.6, 1.76, 1.73) are for the car, the
pedestrian, and the cyclist, respectively. Note that each an-
chor has two directions {0◦, 90◦}, which means that each
location has six anchors. The detection area in the point cloud
is {(x, y, z) | x ∈ [0, 70.4] , y ∈ [−40, 40] , z ∈ [−3, 1]}.

The framework is based on Pytorch and programmed by
the python language. This model is trained from scratch
based on Adam optimizer. The whole network is trained with
a batch of size 10 and the initial learning rate is 0.003 for
80 epochs on one TITAN RTX GPU. This work also adopts
the cosine annealing learning rate for the learning rate decay.
The entire training time is around 12 hours.

For data augmentation, this work employs the widely
used augmentations found in [7], [19], [20], including
global scaling [0.95, 1.05], global rotation around the Z-axis
[−45◦, 45◦], and the random flipping along the X-axis.

C. RESULTS
Most of the LiDAR-camera-based methods only provide the
results in the KITTI validation dataset for three classes,
hence, this work first compares the results in the validation
dataset. In addition, for the car class, this paper also compares
the results based on the KITTI testing dataset.

6 VOLUME 4, 2016

Table 2: Performance comparison using the KITTI validation dataset. The results are evaluated by the mean Average Precision
with 11 recall positions. For easy understanding, the top result is highlighted in bold for each column in each class and the
second best is shown in blue. I and L denote the RGB image and LiDAR, respectively.

Class Method Publish Year Input FPS 3D Performance (%) BEV Performance (%)
Easy Moderate Hard mAP Easy Moderate Hard mAP

Car

VoxelNet [7] 2017 L 4.3 81.97 65.46 62.85 70.15 89.60 84.81 78.57 84.32
SECOND [19] 2018 L 20.0 87.43 76.48 69.10 77.67 89.96 87.07 79.66 85.56

PointRCNN [33] 2018 L 10.0 88.88 78.63 77.38 81.63 - - - -
F-PointRCNN [34] 2019 L 15.4 89.12 79.00 77.48 81.87 90.12 88.10 86.24 88.15

MV3D [5] 2017 I+L 2.8 71.29 62.68 56.56 63.51 86.55 78.10 76.67 80.44
F-PointNet [22] 2017 I+L 5.9 83.76 70.92 63.65 72.78 88.16 84.02 76.44 82.87

PC-CNN [35] 2018 I+L 2.0 57.63 51.74 51.39 53.59 83.61 77.36 69.61 76.86
AVOD [6] 2018 I+L 12.5 83.11 74.02 67.84 74.99 - - - -

AVOD-FPN [6] 2018 I+L 10.0 84.41 74.44 68.65 75.83 89.37 86.09 79.13 84.86
ContFusion [23] 2018 I+L 16.7 86.32 73.25 67.81 75.79 95.44 87.34 82.43 88.40

MVX-Net [17] 2019 I+L 6.7 85.50 73.30 67.40 75.40 89.50 84.90 79.00 84.47
MCF3D [24] 2019 I+L 6.3 84.11 75.19 74.23 77.84 88.82 86.11 79.31 84.75
TAO3D [10] 2020 I+L 9.0 85.12 76.23 74.46 78.60 89.64 86.23 85.60 87.16
KDA3D [36] 2020 I+L 7.7 88.45 78.85 78.46 81.92 90.18 87.69 86.93 88.27

Proposed - I+L 17.8 88.04 77.60 76.23 80.62 89.75 86.97 85.42 87.38

Ped.

VoxelNet [7] 2017 L 4.3 57.86 53.42 48.87 53.38 65.95 61.05 56.98 61.33
AVOD-FPN [6] 2018 I+L 10.0 - 58.80 - - - - - -
F-PointNet [22] 2018 I+L 5.9 70.00 61.32 53.59 61.64 72.38 66.39 59.57 66.11

MCF3D [24] 2019 I+L 7.7 68.54 64.93 59.47 64.31 68.56 64.98 59.55 64.36
KDA3D [36] 2020 I+L 8.3 63.34 60.12 54.36 59.27 70.21 67.34 61.24 66.26

Proposed - I+L 17.8 66.65 60.49 54.51 60.55 71.67 64.22 61.03 65.64

Cyc.

VoxelNet [7] 2017 L 4.3 67.17 47.65 45.11 53.31 74.41 52.18 50.49 59.02
AVOD-FPN [6] 2018 I+L 10.0 - 49.70 - - - - - -
F-PointNet [22] 2018 I+L 5.9 77.15 56.49 53.37 62.34 81.82 60.03 56.32 66.06

MCF3D [24] 2019 I+L 7.7 78.18 51.06 50.43 59.89 78.18 51.09 50.45 59.91
KDA3D [36] 2020 I+L 8.3 77.19 57.43 54.56 63.06 79.39 60.31 57.14 65.61

Proposed - I+L 17.8 75.87 60.07 55.87 63.94 81.03 63.50 61.06 68.53

Table 3: Performance comparison using the KITTI testing dataset. The results of cars are evaluated by the mean Average
Precision with 40 recall positions. The top performance is highlighted in bold only for themAP columns and FPS column, and
the second-best is shown in blue.

Method FPS APBEV (IoU = 0.7) AP3D (IoU = 0.7) AP2D(IoU = 0.7)
Easy Moderate Hard mAP Easy Moderate Hard mAP Easy Moderate Hard mAP

MV3D [5] 2.8 86.00 76.90 68.50 77.13 71.10 62.40 55.10 62.87 96.47 90.83 78.63 88.64
F-PointNet [22] 5.9 88.70 84.00 75.30 82.67 81.20 70.40 62.20 71.27 95.85 95.17 85.42 92.15

AVOD [6] 12.5 86.80 85.40 77.70 83.30 73.60 65.80 58.40 65.93 95.17 89.88 82.83 89.29
AVOD-FPN [6] 10.0 88.50 83.80 77.90 83.40 81.90 71.90 66.40 73.40 94.70 88.92 84.13 89.25

ContFusion [23] 16.7 94.07 85.35 75.88 85.10 83.68 68.78 61.67 71.38 - - - -
MVX-Net [17] 6.7 89.20 85.90 78.10 84.40 83.20 72.70 65.20 73.70 - - - -

Proposed 17.8 89.61 85.08 80.42 85.04 81.11 72.93 67.24 73.76 95.37 92.15 87.54 91.69

This work achieves competitive results compared with
other state-of-the-art methods, the details are illustrated in
Table 2. The results are mainly compared with the LiDAR
and RGB camera-based methods. Usually, the LiDAR-based
methods run much faster than the LiDAR-camera-based ap-
proaches. To show the superiority of the proposed model in
speed, the classic LiDAR-based methods are also listed in
Table 2. As can be seen, the proposed model mainly competes
with MCF3D [22] and KDA3D [36] in comprehensive per-
formance. For the cyclist class, the proposed model outper-
forms the KDA3D [36]. In the car class, our model is slightly
inferior to the KDA3D [36]. However, the speed of our model
runs 2× faster than KDA3D. Note that the proposed model
is an end-to-end multi-class detector, however MCF3D [24]
and KDA3D [36] train two models for the car class, and
the pedestrian/cyclist classes, respectively. F-PointNet [22] is
actually a LiDAR-based method that utilizes the location of

the object in the 2D RGB image to quickly guide the model
convergence.

The proposed model is also evaluated using the more
challenging dataset: the KITTI testing dataset. In Table 3,
this part only compares the proposed method with state-of-
the-art methods in three aspects: BEV, 3D, and 2D. Since
it requires a great deal of data to compare these three per-
formances, here, the results are simply compared based on
the mean average precision (mAP). For the 3D performance,
the proposed model has the best performance. For the BEV
and 2D performances, the proposed method is the second-
best, but the overall performance of the proposed method
outperforms state-of-the-art methods when taking accuracy
and speed into account. The results of the proposed method
can be retrieved on the KITTI website based on the name of
the proposed method, PFF3D.

Figure 6 presents some qualitative results. As can be seen

VOLUME 4, 2016 7

Table 4: Effect of the point feature fusion module. The results are from the ’Moderate’ difficulty category. The best result is
highlighted in bold for each column.

Method Cars (%) Pedestrians (%) Cyclists (%)
Addition Concatenation FC 2D AOS BEV 3D 2D AOS BEV 3D 2D AOS BEV 3D

89.27 88.72 85.04 77.00 70.69 33.91 62.74 56.20 64.13 59.55 59.19 55.71√
89.74 89.39 85.84 76.60 70.26 56.75 62.80 57.65 64.64 58.40 61.34 59.72√
89.54 85.84 89.14 77.01 69.99 56.59 62.71 57.74 65.19 62.08 61.74 60.51√ √
89.72 89.29 86.97 77.60 71.87 60.20 64.22 60.16 67.21 63.95 63.50 60.07√ √
89.70 89.27 86.27 77.12 69.51 58.02 65.89 59.74 64.74 61.50 60.87 59.37

Table 5: Effect of the proposed framework. The ’Time’ col-
umn denotes the training time and the ’Memory’ is the mem-
ory needed when the model is run for four batch sizes. The
’Rtime’ column denotes the runtime. ’R’ and ’V1’ represent
ResNet and ResNetV1d, respectively. ’2D Image Branch’
denotes that if the model use a full 2D image detection
branch. The results of the cars are in the ’Moderate’ difficulty
category for the BEV and 3D.

2D Image
Branch Method Time

(hour)
Memory

(MB)
Rtime
(FPS)

BEV
(%)

3D
(%)

Yes

R101 28.0 19,500 9.5 85.95 76.82
R50 23.5 12,550 11.0 86.29 76.92

V1-50 25.0 12,700 10.6 85.51 76.48
VGG11 16 11900 12.0 85.96 76.44

No Ours 11.5 4200 17.8 86.17 76.93

in the figures, each object can be detected by the proposed
model and the predicted bounding boxes are well-matched
with their corresponding ground truth boxes. Even in very
complex scenes, the proposed model can detect objects quite
well, as shown in the last two rows of Figure 6.

V. ABLATION STUDIES
This section analyzes the proposed methods individually by
conducting ablation experiments using the KITTI validation
dataset.

1) Effect of the Point Feature Fusion Module

This section analyzes the point feature fusion module based
on the three classes in detail. In Table 4, the ’Addition’
and ’Concatenation’ represent the respective addition and
concatenation fusion methods. The parameter’FC’ means the
fully connected layer followed after the fusion operation, as
shown in Figure 3. The experimental results show that the
combination of the addition operation and FC of the proposed
module is best for the three classes: the car, pedestrian,
and cyclist. The data in the first row give the results of
the proposed method when only taking a point cloud as
input. Compared with the LiDAR-based method (the first
row), the proposed method (the fourth row) achieves 0.45%,
0.57%, 1.83%, and 0.6% gains in the 2D, AOS, BEV, and 3D
performance, respectively. Compared with the performance
improvement of cars, the proposed model is more helpful for
improving the identification of pedestrians and cyclists.

2) Effect of the Proposed Framework

The proposed 3D object detection framework is the first
to directly project the raw RGB point features to a point
cloud, as shown in Figure 2. The proposed approach is not
without precedent but was discovered through experiments.
Inspired by MVX-Net [17], we simply wanted to implement
a lightweight design based on two backbones. One backbone
was intended for 2D detection and the other one for 3D
detection. First, ResNet-101 [37] was chosen as the backbone
to extract features from RGB images. The results were as ex-
pected but the testing model ran very slowly. Then, ResNet-
101 was replaced by ResNet-50 [37], and the model ran a
little faster but the accuracy was almost the same. When
using ResNetV1d-50 [38], the result was almost the same
as the result for ResNet-50 [37]. These results are thought-
provoking. Hence, we boldly propose to map the raw point
features of the RGB image to the point cloud without the
2D detection branch. The experimental results in Table 5
demonstrate that the proposed method is feasible. As can be
seen in Table 5, the proposed approach not only drastically
reduces the memory requirements for model operation, but
also reduces the time of model training by half. It can be said
that the proposed framework is lightweight, memory-saving,
and energy-saving.

3) Effect of RGB+

Table 6: Effect of RGB+. The results of the car class are in
the ’Moderate’ difficulty category.

Class Input 2D (%) AOS (%) BEV (%) 3D (%)

Car
RGB 89.67 89.25 86.62 77.48

RGBI 89.51 88.90 86.27 76.92
RGBD 89.72 89.29 86.97 77.60

Ped.
RGB 70.38 46.09 65.89 58.99

RGBI 69.75 54.80 65.66 58.91
RGBD 72.42 60.64 64.22 60.16

Cyc.
RGB 62.19 58.33 57.83 55.53

RGBI 67.52 62.19 62.87 61.37
RGBD 67.21 63.95 63.50 60.07

The RGB+ construct includes two representations: the
RGBI and RGBD. In Table 6, there are three sets of experi-
ments each for the car, pedestrian, and cyclist. The variable
for each set of experiments is the input image. For the car
class, the results of RGBD outperform the results of RGB and
RGBI in all aspects. For the pedestrian and cyclist classes,
the results of RGBD surpasses both the results of RGB and

8 VOLUME 4, 2016

Figure 6: Qualitative results of the proposed method using the KITTI validation dataset. In the RGB images, the red, cyan,
and yellow color represent the predictions for the car, pedestrian, cyclist, respectively. In the point cloud images, the green
color denotes the ground truth, and the red color represents the prediction. The results in the point cloud images are used for a
qualitative comparison.

RGBI in some aspects. Hence, the RGBD image is beneficial
for improving 3D object detection.

VI. CONCLUSION
This paper is the first to propose a lightweight, memory-
saving, and energy-saving framework for 3D object detection
based on LiDAR and an RGB camera. Different from the
existing frameworks, the proposed framework only employs
one backbone to extract features from a point cloud and RGB
image. The framework benefits from the proposed module,
i.e., the point feature fusion module. The fusion module
directly extracts the point features of RGB images and fuses
them with the corresponding point cloud features. The ex-
perimental results using both the KITTI validation dataset
and testing dataset demonstrate that the proposed method sig-
nificantly improves the speed (17.8 FPS) of LiDAR-camera-
based 3D object detection compared with other state-of-the-
art approaches. Note that the proposed native model can
achieve an inferring speed 17.8 FPS.

In the future, the proposed method will be directly used
in the point-based methods [13], thereby achieving break-
throughs in both accuracy and speed.

References
[1] D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang,

“More diverse means better: Multimodal deep learning meets remote-
sensing imagery classification,” IEEE Transactions on Geoscience and
Remote Sensing, pp. 1–15, 2020.

[2] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph
convolutional networks for hyperspectral image classification,” IEEE
Transactions on Geoscience and Remote Sensing, pp. 1–13, 2020.

[3] X. Wu, D. Hong, J. Chanussot, Y. Xu, R. Tao, and Y. Wang, “Fourier-based
rotation-invariant feature boosting: An efficient framework for geospatial
object detection,” IEEE Geoscience and Remote Sensing Letters, vol. 17,
no. 2, pp. 302–306, 2020.

[4] X. Wu, W. Li, D. Hong, J. Tian, R. Tao, and Q. Du, “Vehicle detection of
multi-source remote sensing data using active fine-tuning network,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 167, pp. 39–53,
2020.

[5] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection
network for autonomous driving,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 6526–6534.

VOLUME 4, 2016 9

[6] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d
proposal generation and object detection from view aggregation,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 1–8.

[7] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4490–4499.

[8] L. Wen and K.-H. Jo, “Fully convolutional neural networks for 3d vehicle
detection based on point clouds,” in Intelligent Computing Theories and
Application, 2019, pp. 592–601.

[9] L. Wen and J. Kang-Hyun, “Lidar-camera-based deep dense fusion for
robust 3d object detection,” in Intelligent Computing Methodologies.
Springer International Publishing, 2020, pp. 133–144.

[10] L. Wen and K. H. Jo, “Three-attention mechanisms for one-stage 3d object
detection based on lidar and camera,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2020.

[11] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 77–85.

[12] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 5099–5108.

[13] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage
object detector,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 11 037–11 045.

[14] L. Wen, X. T. Vo, and K.-H. Jo, “3d saccadenet: A single-shot 3d object
detector for lidar point clouds,” in 2020 20th International Conference on
Control, Automation and Systems (ICCAS), 2020, pp. 1225–1230.

[15] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 1708–1716.

[16] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor fusion for 3d
bounding box estimation,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 244–253.

[17] V. A. Sindagi, Y. Zhou, and O. Tuzel, “Mvx-net: Multimodal voxelnet for
3d object detection,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 7276–7282.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition, 2012, pp. 3354–3361.

[19] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, Oct 2018.

[20] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 12 689–12 697.

[21] M. P. Muresan, S. Nedevschi, and I. Giosan, “Real-time object detection
using a sparse 4-layer lidar,” in 2017 13th IEEE International Conference
on Intelligent Computer Communication and Processing (ICCP), 2017,
pp. 317–322.

[22] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for
3d object detection from rgb-d data,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 918–927.

[23] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in Computer Vision – ECCV 2018,
2018, pp. 663–678.

[24] J. Wang, M. Zhu, D. Sun, B. Wang, W. Gao, and H. Wei, “Mcf3d: Multi-
stage complementary fusion for multi-sensor 3d object detection,” IEEE
Access, vol. 7, pp. 90 801–90 814, 2019.

[25] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task multi-
sensor fusion for 3d object detection,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7337–7345.

[26] J. Yoo, Y. Kim, J. Kim, and J. Choi, “3d-cvf: Generating joint camera
and lidar features using cross-view spatial feature fusion for 3d object
detection,” in Computer Vision – ECCV 2020 - 16th European Conference,
2020, Proceedings, 2020, pp. 720–736.

[27] M. H. Daraei, A. Vu, and R. Manduchi, “Velocity and shape from tightly-
coupled lidar and camera,” in 2017 IEEE Intelligent Vehicles Symposium
(IV), 2017, pp. 60–67.

[28] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial
transformer networks,” in Advances in Neural Information Processing
Systems, vol. 28, 2015, pp. 2017–2025.

[29] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo,
J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for 3d object
detection in lidar point clouds,” in Proceedings of the Conference on Robot
Learning, ser. Proceedings of Machine Learning Research, vol. 100, 30
Oct–01 Nov 2020, pp. 923–932.

[30] C. He, H. Zeng, J. Huang, X. S. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 11 870–11 879.

[31] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-
rcnn: Point-voxel feature set abstraction for 3d object detection,” in
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10 526–10 535.

[32] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 42, no. 2, pp. 318–327, 2020.

[33] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and
detection from point cloud,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 770–779.

[34] Y. Chen, S. Liu, X. Shen, and J. Jia, “Fast point r-cnn,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 9774–
9783.

[35] X. Du, M. H. Ang, S. Karaman, and D. Rus, “A general pipeline for 3d
detection of vehicles,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 3194–3200.

[36] J. Wang, M. Zhu, B. Wang, D. Sun, H. Wei, C. Liu, and H. Nie, “Kda3d:
Key-point densification and multi-attention guidance for 3d object detec-
tion,” Remote Sensing, vol. 12, no. 11, p. 1895, 2020.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[38] K. He, X. Zhang, S. Ren, e. B. Sun, Jian", J. Matas, N. Sebe, and
M. Welling, “Identity mappings in deep residual networks,” in Computer
Vision – ECCV 2016, 2016, pp. 630–645.

LI-HUA WEN (S’15) received a bachelor’s de-
gree in vehicle engineering from the School of
Automotive Engineering, Shanghai University of
Engineering Science, Shanghai, in 2015. He is
currently working toward the Ph.D. degree in elec-
trical and computer engineering with the Graduate
School of Electrical Engineering, University of
Ulsan, Ulsan, South Korea.

Since 2013, he was an engineer with Shang-
hai Automobile Gear Works, Commercial Aircraft

Corporation of China, Ltd., and Hyundai Commercial Vehicle (China) Com-
pany, Ltd, Ziyang, China. His research interests include image processing,
pattern recognition, computer vision, machine learning, and 3-D object
detection for intelligent vehicles.

10 VOLUME 4, 2016

KANG-HYUN JO (Senior Member, IEEE) re-
ceived a Ph.D. degree in computer controlled ma-
chinery from Osaka University, Osaka, Japan, in
1997. After a year of experience with Electron-
ics and Telecommunications Research Institute
(ETRI), Daejeon, Korea, as a Postdoctoral Re-
search Fellow, he joined the School of Electrical
Engineering, University of Ulsan, Ulsan, South
Korea. He is currently serving as the Faculty Dean
with the School of Electrical Engineering, Univer-

sity of Ulsan, Ulsan, South Korea. His research interests include computer
vision, robotics, autonomous vehicle, and ambient intelligence.

Dr. Jo has served as the Director or an AdCom Member with the Institute
of Control, Robotics and Systems, The Society of Instrument and Control
Engineers, and the IEEE IES Technical Committee on Human Factors
Chair, AdCom Member, and the Secretary until 2019. He has also been
involved in organizing many international conferences, such as International
Workshop on Frontiers of Computer Vision, International Conference on
Intelligent Computation, International Conference on Industrial Technology,
International Conference on Human System Interactions, and the Annual
Conference of the IEEE Industrial Electronics Society. He is currently an
Editorial Board Member for international journals, such as the International
Journal of Control, Automation, and Systems and Transactions on Compu-
tational Collective Intelligence.

VOLUME 4, 2016 11

	Introduction
	Related Work
	LiDAR-based 3D Object Detection
	Multi-modal 3D object detection

	Proposed Approach
	Point Feature Fusion Module
	Voxel Feature Encoder Module and 3D Backbone
	Detection Head
	Loss Function

	Experiments
	Dataset
	Experimental Settings
	Results

	Ablation Studies
	Effect of the Point Feature Fusion Module
	Effect of the Proposed Framework
	Effect of RGB+

	Conclusion
	References
	Li-Hua Wen
	Kang-Hyun Jo

