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Abstract— Unauthorized entrance in a prohibited
area might create a security risk. An intelligent
surveillance system should be able to mitigate
such a problem by incorporating a sterile zone
monitoring algorithm. The algorithm is challenged
by a dual-camera sensors (color/IR), dynamic
backgrounds, illumination changes, camouflaged,
and static foreground objects, etc. This paper pro-
poses an improved change detector (ICD) to miti-
gate the above-mentioned challenges. It employs a
novel statistical decision criterion (SDC) based on
skewness patterns. The SDC helps to differentiate
time of day using the camera sensors (color/IR). The input frames are processed according to the time of day. For instance,
IR input is image-enhanced to differentiate between camouflaged intruders from the background. Then input goes through
Gaussian Mixture Models (GMM) based change detector to segment foreground (intruder). The foreground object is further
cleansed using morphological operations for possible isolated noise and holes. The ICD was tested on three datasets and
outperformed top-ranked change detection algorithms.

Index Terms— IR camera, camouflaged intruder, dual-camera sensors, intelligent surveillance systems.

I. INTRODUCTION

THE camera-based surveillance systems have become an
integral part of a smart city. They are widely applied

for security purposes in public and private domains such as
bus stops, airports, shopping malls, industrial complexes, or
border monitoring. The task involves monitoring a certain area
with the help of human input and requires a high level of
concentration.

Intelligent Surveillance Systems (ISSs) are improving con-
ventional surveillance systems. They allow autonomous de-
tection of anomalies with minimal human intervention. Sterile
zone monitoring (SZM) is an important task of the ISS, which
enables the detection of any object entering the prohibited
area. The task of SZM may seem trivial. But, it suffers due
to IR camera, dynamic backgrounds, illumination changes,
camouflaged, and static foreground objects, etc [1]–[6]. SZM
has numerous applications depending on the user’s choice.
It could be the fence of a prison or an industrial area with
expensive equipment or a rooftop of a building abstaining
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someone from committing suicide.
The task of SZM requires the change detection algorithm

to segment out an intruder (foreground) from a scene (back-
ground). It is a well-documented pre-processing task in a
multistage computer vision system [1]–[4]. Gaussian Mixture
Models (GMM) based algorithms are classified as parametric
algorithms [7]–[10]. GMM [7] can be considered as the most
employed algorithms in the field of change detection [8]–[10].
They model the background by using a Gaussian fitted with
mean and variance. Parametric based algorithms are efficient
and showed good results towards the challenge of illumination
changes. But, they are affected by the camouflage foreground
object due to color/intensity features based background mod-
eling [5]. Self-Balanced SENsitivity SEgmenter (SuBSENSE)
[11] is classified as a non-parametric algorithm. It models
background using a spatial pattern in a pixel region. Pixel-
based Adaptive Word Consensus Segmenter (PAWCS) [12]
employed an adaptive update mechanism in the SuBSENSE.
Weight Sample Background Extractor (WeSamBE) [13] im-
proved SuBSENSE by introducing a penalty weight strategy
for a misclassification. Such algorithms are promising with
high-end hardware [6].

Flux Tensor and Split Gaussian (FTSG) [14] is classified
as a hybrid algorithm. It exploits flux tensor and Gaussian to
model the background. Similarly, In Unity There Is Strength
(IUTIS) [15] proposed a genetic algorithm that handpicks the
best algorithm for the particular video sequence from a subset
of algorithms. These algorithms showed promising results
with a high computational cost. Hence, unsuitable for real-
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Fig. 1. System overview of proposed algorithm.

time applications. Subspace/low-rank based algorithms [16]–
[18] are the popular choice to segment a foreground. Multi-
Layer Robust Principal Component Analysis (ML-RPCA)
[18] extracts low-rank information using multiple dimensional
arrays. Such algorithms require high memory power to stored
input in the memory for modeling, thus, they are inefficient
as well [18].

Deep learning based algorithms showed promising prospects
with high computational complexity [19]–[23]. Braham etal.
[20] proposed training 50% of video and testing remaining
using the model [24]. DeepBS [21] trained a CNN model
with for whole Change Detection dataset using 5% training
frames [25]. CascadeCNN [22] trained multiscale input based
CNN from a video sequence. Deep learning algorithms re-
quire expensive hardware and are cost-inefficient for real-time
applications [26].

This paper proposes an improved change detector (ICD)
incorporating a dual-camera sensors for intelligent surveillance
systems. The word improved refers to the improvement built
over the GMM such as statistical decision criterion and image
enhancement scheme for the camouflage foreground object.
This work is an expanded version of the conference paper
[27] and the contributions are as follows:

• A novel statistical decision criterion (SDC) helps to
integrate a dual-camera sensors (color/IR) by detecting
a switch between them. Also, restarting the change de-
tection module.

• Cost-efficient image enhancement schema to differentiate
the camouflaged intruder from the background.

• The ICD was incorporated with top-ranked change detec-
tors such as SuBSENSE [11], PAWCS [12], WeSamBE
[13], and ML-RPCA [18] to prove effectiveness and
generalization.

• The proposed algorithm was tested on three datasets and
extensive experiments were performed to select optimal
parameter setting.

• Introducing a dataset of HD videos for sterile zone
monitoring in an industrial setting using the dual-camera
sensors (color/IR).

The rest of the manuscript is divided as: Section II describes
the improved changed detector (ICD) in detail. Section III
provides experimental analysis in support of the claims.

II. PROPOSED ALGORITHM

Figure 1 shows a system overview of the proposed algo-
rithm, which consists of three modules:

A. Decision Module (DM)

The current ISSs are equipped with a dual-camera sensors
(color/IR). The color camera is operated during the day.
As soon as the sunlight diminishes, it switches to the IR
camera (night). While such cameras are economical, they
come with drawbacks. Sudden camera switches may distort the
change detection algorithm giving false alarms. Also, strong
camouflage due to the IR sensor may result in false negatives,
leading to system failure. Such a problem can be resolved
with a manual reset of the system. However, it decreases the
autonomy of the ISS [27].

The decision module does three crucial jobs. First, it detects
a switch in the camera sensor due to the time of day or
otherwise. Secondly, it restarts the change detection module
again if there is a switch between the camera sensor. This
helps to mitigate the problem of false positives/alarms due
to a sudden switch. Lastly, it applies an image enhancement
to the IR camera frame to tackle the problem of camouflage
intruder, decreasing false negatives.

1) Statistical Decision Criterion (SDC): A novel statistical
decision criterion (SDC) is responsible for detecting the switch
between color and IR sensor. The premise of SDC is inferred
from the general characteristics of color and IR cameras [28].
The color camera gives rich detail of the scene, a more
spread on intensity range owing to RGB color space. IR
sensor gives pixel intensity as shades of gray, a much more
congested intensity range. This leads to the assumption that
the histograms of color and IR sensor should differ remarkably
and follow third order image moments (skewness). Three
skewness patterns can be defined using third order image
moments (mean µ, median m, and mode M ):

1) If µ = m = M → Symmetrical pattern
2) If µ > m > M → Left-skewed pattern
3) If µ < m < M → Right-skewed pattern
Figure 2 illustrates the three skewness patterns mentioned

above. It can be seen that the color frame (day) follows an
approximately symmetrical, while the IR frame (night) could
either left or right skewed (Fig. 2b). It was assumed that
mean µ, median m, and mode M of the color frames would
be approximately equal. |m − M | for the day time images
varies from 5-7 (Fig. 2a). Similarly, mean µ, median m, and
mode M of the IR frames would be far apart. |m−M | varies
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(a) Day frames (color) with symmetrical pattern. 1st frame (m=123, M =130,
|m-M|=7) and 2nd frame(m=110, M=105, |m−M |=5)
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(b) Night frames (IR) with left or right skewed pattern. 1st frame (m=98,
M=63, |m−M |=35) and 2nd frame(m=74, M=44, |m−M |=30).

Fig. 2. Illustration of Skewness patterns shown by the color and
IR sensor, where x- axis is pixel intensity and y-axis is frequency
respectively. It is evident that the color and IR frames exhibit patterns
defined in II.A.1.
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Fig. 3. Flow diagram of image enhancement on IR camera frames
(II.A.2).

during night time from 30-35 (Fig. 2b). The difference is large
and leads to the detection of the switch between the camera
sensors. Based on this experiment, statistical decision criterion
SDC was formulated as:

SDC =

{
IR, |m−M | ≥ T
Color, else

(1)

where T is a statistical decision threshold. The third order
image moments are averaged values over the three channels
in the Eq. 1. If |m−M | ≥T, there is a switch from the color
camera to IR. The decision module would restart the change
detection module (CDM) again. Furthermore, image enhance-
ment is incorporated to deal with a camouflage foreground
object. If |m −M | <T, there is a switch from the IR to the
color camera and CDM would be restarted again. Statistical
decision threshold T is selected heuristically as explained in
section III.B.

2) Image Enhancement (IE): Input frames from the IR
camera are enhanced using a cost-effective schema shown in
Figure 3. IE being an intensity based operation, may result
in drastic color imbalance for RGB color space. Hence, RGB
input is converted into a purely intensity-based color space
known as YCbCr. Later, YCbCr color space is split into
respective channels (Y, Cb, and Cr). The process of image
enhancement consists of calculating probability mass function
(PMF) and cumulative density function (CDF) for a pixel
intensity. PMF is the probability of a pixel intensity at frame-
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(c) Equalized input frame with camouflage intruder and
its histogram

Fig. 4. The effectiveness of image enhancement (IE), where x-axis is
pixel intensity and y-axis is frequency respectively. It can be seen that
Fig. 4a and Fig. 4b have a similar histogram with a camouflage intruder
in the background. The enhanced IR frame reveals the camouflage
intruder.

level while CDF is the summation of probabilities of the
current pixel and previous pixels. The final values are mapped
onto the histogram. Later the channels are merged and YCbCr
is converted back to RGB color space. The equalized frame
appears to have stretched the range of intensity with the
camouflaged object more visible as shown in Fig. 3.

Figure 4 shows the image enhancement (IE) improving the
contrast of IR input images, thereby, making the camouflaged
intruder/object visible. It could be seen that there is not much
difference in the histograms of the input image with the back-
ground (Fig. 4a) and the input image with the camouflaged
intruder/object without IE (Fig. 4b). Also, the intensity range
is congested and the histogram distribution appears to be quite
similar (Fig. 4a and 4b).

IE improves the contrast of the image by expanding a
pixel’s intensity range by flattening the curve (Fig. 4c). The
camouflage foreground object is distinguishable from the
background. This helps the change detection module (CDM) to
better detect the camouflaged intruder/object in the proposed
algorithm. While it is arguable that any image enhancement
can be applied. However, real-time performance can not be
guaranteed. As compared to other histogram-based methods
such as CLAHE (8.1 ms) [29] and FCCE (4.6 ms) [30],
proposed IE (3.1 ms) gave better processing time.
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TABLE I
COMPUTATIONAL ANALYSIS IN FRAMES PER SECOND (fps)

Algorithm Processing speed (fps)
GMM 25-35

SuBSENSE 4
PAWCS 2

WeSamBE 2
ML-RPCA 0.5

B. Change Detection Module (CDM)

The real-time performance of the change detector is a must
for the ISS. Extensive experiments were performed on top-
ranked change detectors on low-end hardware as shown in
Table I. The GMM and its improvement gave good process-
ing speed. While comparative algorithms are computationally
inefficient. The ICD is integrated with GMM [9] due to real-
time performance and good accuracy [5]-[7]. This section
gives an overview of GMM. There are three steps: background
modeling, foreground detection, and background model update
[9]:

1) Background Modeling: Each pixel of initial frames with-
out foreground is modeled using GMM [9]. The probability
of observing a particular pixel X at time t is:

P (Xt) =
K∑
i=1

ωi,tη(Xt;µi,t,Σi,t), (2)

where η is probability density function. K usually 2-5 de-
fines number of Gaussian needed to model the background.
While ωi,t, µi,t, and Σi,t are estimate of weight, mean, and
covariance of the ith Gaussian in the mixture at time t.

2) Foreground Detection: The decision criterion to label
particular pixel at time t as background or foreground is:

|Xt − µi,t| > λσi,t, (3)

where λ is a pixel labeling threshold equal to 2.5. Hence, A
foreground pixel is the one located at > 2.5 standard deviations
σ away from the background component [7].

3) Background Model Update: The background model needs
to be updated with new background and foreground values
after foreground detection. The new background model Mt is
updated using a weighting factor multiplied by pixel intensity
in the current frame Ct and pixel intensity in the previous
background model Mt−1:

Mt = αCt + (1− α)Mt−1, (4)

where α is a learning rate defines the weighting factor in the
above equation. The α can be set according to the background
and application. A low α value can deal with a slowly
changing background environment. Similarly, a high α value
is better for a gradual changing background environment. It
can be calculated as [25],

α =
1

τ × f
, (5)

where f is frames per second. Learning rate α and time span
τ show an inverse relationship. τ is set as per application.
For example, for τ of certain pixels more than 20 seconds

(a) Input frame (b) Foreground (c) Opening (d) Closing

Fig. 5. The effectiveness of cleansing module (CM). CM helps to get
rid of isolated noise by opening operation (c). It helps to fill holes in
foreground object by using the closing operation (d).

with f= 25 fps, substituting values gives α= 0.002. Similarly,
for τ of certain pixels more than 30 seconds with f= 25 fps,
substituting values gives α= 0.0013.

C. Cleansing Module (CM)

The foreground mask obtained from CDM has isolated noise
which may result in false positives (Fig. 5b). The cleansing
module (CM) employs the morphological opening and closing.
It has two jobs: First, getting rid of the isolated noise in
the foreground mask by opening (Fig. 5c). It is the erosion
followed by the dilation. The foreground mask obtained is
multiplied pointwise with an opening kernel Ko. First, an
erosion operation is performed which is similar to an AND
operation in image processing. The foreground value (1) is
only outputted when the kernel matches the foreground object
in the kernel mask.

Secondly, CM improves the geometry of the foreground
object by morphological closing (Fig. 5d). It is the dilation
followed by erosion. The foreground mask obtained after the
opening operation is multiplied pointwise with the closing
kernel Kc. First, dilation operation is performed which is like
an OR operation in image processing. The foreground value
(1) is outputted even when the kernel matches partially with
the foreground object in the kernel mask.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The top-ranked change detectors namely GMM [7], its im-
provements [8]-[9], SuBSENSE [11], PAWCS [12], WeSamBE
[13], and ML-RPCA [16] are employed for comparative analy-
sis. Deep learning methods are not included in the comparison
as they require ground-truth information of foreground and
background during training. Such consensus is established
within the change detection research community.

A. Datasets Description

The experiments were performed on three datasets:
1) Imagery Library for Intelligent Detection Systems (i-LIDS)

Dataset [24]: The general scenario of the dataset is that an
intruder tries to enter a prohibited area by cutting the fence.
The intruder comes with the challenges of scale-variance,
speed-variance, camouflage, and static foreground object. The
night sequences are recorded using an IR camera which is
challenging for change detectors. It comprises of 10 videos.
There are 5 videos each for day and night. Each video consists
of 1,000 frames.
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TABLE II
PARAMETER DEFINITION AND SETTING.

Definition Symbol Optimal Setting
Statistical Decision Threshold T 20

Number of Gaussian K 3
Pixel Labeling Threshold λ 2.5

Learning Rate α 0.001
Opening Kernel Ko 3×3
Closing Kernel Kc 5×5

Fig. 6. Statistical decision criterion SDC, where x-axis is number of
frames and y-axis is SDC |m −M | (II.1). First 10,000 frames are day
(color) whereas later frames are night (IR). It can be seen that |m−M |
suddenly jumps after day frames.

2) Intelligent Systems Laboratory dataset for Industrial
Sterile Zone Monitoring (ISL-ISZM) Dataset: The dataset
is constructed in an industrial setting according to the
challenges outlined by the i-LIDS benchmark. ISL-ISZM
dataset comprises of 15 videos. There are 10 videos
for the day and 5 videos for the night. Each video
varies from 1,000-2,300 frames. The dataset can be
accessed at https://drive.google.com/file/d/
1qIRUPgAQeY42zeRlTg2oTqvCC9ImYxMG/view?
usp=sharing.

3) Change Detection (CDNet) Dataset [25]: It is considered
as a realistic benchmark in the field of change detection
with 11 challenging categories and 150,000 video frames.
Each category has 4-6 videos. Experiments are performed on
five categories such as baseline, dynamic backgrounds, bad
weather, shadows, and thermal relevant to ISS. There are 25
videos in these categories with more than 80,000 video frames.

B. Parameter Setting

The parameter definition and their optimal setting is shown
in Table II. The optimal parameter values of T , K, and α
were selected through extensive experiments. The parameters
of GMM such as K, λ, and α are well defined and discussed
in the literature [5]-[9].

The variation of statistical decision criterion SDC for color
and IR frames is shown in Figure 6 to determine the threshold
T . The analysis was performed on 20,000 frames arranged as
the color (first 10,000) and IR sequences. The frames were
chosen from i-LIDS and ISL-SZM datasets with six different
background settings. It is evident that variation of |m −M |
was small (i.e., 5-7) for color (day). The value increased above

TABLE III
QUANTITATIVE ANALYSIS ON PERFORMANCE METRICS NAMELY RECALL

R, PRECISION P , AND F-MEASURE F .

i-LIDS Dataset ISL-SZM Dataset
Algorithm R P F R P F

GMM 0.20 0.20 0.20 0.00 0.00 0.00
SuBSENSE 0.60 0.60 0.60 0.20 0.20 0.20

PAWCS 0.20 0.20 0.20 0.20 0.20 0.20
WeSamBE 0.60 0.60 0.60 0.00 0.00 0.00
ML-RPCA 1.00 0.50 0.66 1.00 0.50 0.66

Proposed+GMM 1.00 1.00 1.00 1.00 1.00 1.00
Proposed+SuBSENSE 1.00 1.00 1.00 1.00 1.00 1.00

Proposed+PAWCS 1.00 1.00 1.00 1.00 1.00 1.00
Proposed+WeSamBE 1.00 1.00 1.00 1.00 1.00 1.00
Proposed+ML-RPCA 1.00 0.70 0.82 1.00 0.70 0.82

40 and varies between 35-45 for IR (night). Thus, T=20 was
selected as the optimal value which lies in the middle of
variation of |m−M | between color and IR frames.

Pixel labeling threshold λ value is implicated from the 68-
95-99.7 standard deviation σ rule from statistics [26]. The one,
two, and three σ cover 68%, 95%, and 99.7% of data points
(pixel values belonging to the background) in the Gaussian.
Thus, 2.5 σ covers roughly 99% of pixel values in a Gaussian.
The small kernel size is used for opening Ko (3×3) and
closing Kc (5×5) to avoid distortion in the foreground object.

The comparative methods were tested with the original
setting provided by the respective authors. The proposed algo-
rithm uses six parameters. It is still fewer than the SuBSENSE,
PAWCS, and WeSamBE, which employ parameters ≥ 10.

C. Quantitative Analysis
1) i-LIDS Dataset: The performance metrics namely recall

R, precision P , and F-measure F on night time sequences
were used (Table III). The i-LIDS dataset defines a frame-
level evaluation criterion. An intruder must be detected for at
least 75% of a challenge (video) to be marked as a success
[24]. Each video sequence contributes 20% of the average F .
The GMM detected intruder in one sequence. SuBSENSE,
PAWCS, and WeSamBE were able to detect and track an
intruder in 3,1, and 3 sequences respectively. ML-RPCA
detected intruders in all the videos with false positives due
to illumination changes and shadows.

2) ISL-ISZM Dataset: ISL-ISZM poses a severe camouflage
effect with illumination changes and shadows. GMM based
algorithms and WeSamBE failed to detect an intruder. SuB-
SENSE and PAWCS were able to detect an intruder in one
sequence successfully. ML-RPCA detected all the intruders.
But, it gave too many false positives decreasing overall per-
formance. The proposed algorithm when combined with all the
comparative algorithms improved their average F by 16-80%
(Table III).

3) Change Detection Dataset (CDNet): Table IV shows the
quantitative analysis of the CDNet. CDNet defines a pixel-
wise evaluation criterion to compare the foreground mask with
ground-truth. The GMM was improved 5-8% in terms of recall
R, precision P , and F-measure F by the proposed algorithm.
The SuBSENSE was also improved by the 1-3% in P and F .
The proposed algorithm improves the precision of GMM and
SuBSENSE which is crucial for the ISS.
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TABLE IV
QUANTITATIVE ANALYSIS ON THE CDNET AS AVERAGE VALUE OF THE METRICS.

Algorithm Recall Specificity False Positive Rate False Negative Rate % Wrong Classifications F-measure Precision
GMM 0.7334 0.9928 0.0071 0.2660 1.9973 0.7164 0.7663

SuBSENSE 0.8616 0.9958 0.0041 0.1383 0.4855 0.8691 0.8895
PAWCS 0.8626 0.9961 0.0039 0.137 0.7195 0.8744 0.8979

WeSamBE 0.8302 0.9963 0.0036 0.1697 0.9861 0.8484 0.8945
Proposed+SuBSENSE 0.8861 0.9966 0.0033 0.1138 0.7916 0.8988 0.9133

Proposed+GMM 0.7897 0.9946 0.0054 0.2123 1.4748 0.8028 0.8242
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Fig. 7. Qualitative analysis of the proposed algorithm with the comparative methods. GMM and its improvement had the same performance and
are shown in one row. Similarly, all of the comparative methods missed intruders except ML-RPCA. But, it gave false positives.

D. Qualitative Analysis

1) i-LIDS Dataset: Figure 7a shows the qualitative compari-
son of the i-LIDS dataset on the night sequences to validate the
effectiveness of the proposed algorithm. GMM (2nd row) were
only able to segment the distinct part of the intruder from the
background. SuBSENSE was able to segment intruder partially
or fully (3rd row). PAWCS was only able to segment intruder
in one sequence (4th row). WeSamBE had similar performance
to SuBSENSE (5th row). ML-RPCA was able to segment
foreground objects in all the sequences but it gave too many
false positives (6th row). The proposed algorithm (7th row)
detected the precise geometry of intruders.

2) ISL-ISZM Dataset: Figure 7b shows the qualitative com-
parison of the ISL-SZM dataset. The dataset is more chal-
lenging as it poses a severe camouflage effect. Also, it has
the challenge of multiple intruders. GMM (2nd row) and We-
SamBE (5th row) failed all sequences. SuBSENSE, PAWCS,
and WeSamBE which are top-ranked algorithms on CDNet
failed to cope with challenges of the camouflaged intruder.
SuBSENSE (3rd row) and PAWCS (4th row) were able to
segment an intruder in one sequence only. ML-RPCA was able
to segment foreground objects in all the sequences but it gave
too many false positives (6th row). The proposed algorithm
detected intruders with precise boundaries (7th row).
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(a) i-LIDS Dataset

(b) ISL-ISZM Dataset

(c) CDNet Dataset

Fig. 8. Final detection results of the proposed algorithm.

3) Final Detection Results: The final detection results on
the i-LIDS dataset, ISL-ISZM dataset, and CDnet dataset is
shown in Figure 8. The quantitative analysis of Figure 8 is
shown in Table V. The proposed algorithm was successfully
able to detect all the intruders and track them. It is evident that
the proposed algorithm was able to cope with multiple intrud-
ers/objects and dynamic backgrounds challenge as shown in
Figure 8b and 8c.

E. Computational Comparison

The ICD was implemented on Intel core i5 processor with
3.40 GHz and 8 GB RAM in the C++ programming language.
The videos were resized to 640×480. The proposed algorithm
integrated with GMM showed better processing speed (fps)
than the other comparative methods (Table VI). It is evident
from Table I and VI that the proposed algorithm does not
constitute much processing time. The Proposed+GMM gave
good processing speed. While comparative methods are com-
putationally inefficient due to their background modeling on
low-cost hardware.

Per-operation processing time in milliseconds (ms) is
shown in Table VII. The operations from GMM such as the
background modeling, foreground detection, and background
model update accumulate to most of the processing time. The
improvements accumulate to 5-16% of processing time only
(1.2±3.1 ms). Due to the statistical decision criterion, ample
processing time (3.1 ms) was also saved.

TABLE V
PERFORMANCE OF PROPOSED ALGORITHM ON VARIOUS CHALLENGES,
WHERE GT , TP , FP , AND F ARE GROUNDTRUTH, TRUE POSITIVE,

FALSE POSITIVE, AND F- MEASURE, RESPECTIVELY.

# Challenges GT TP FP F
i-LIDS Dataset

1 Illumination changes 1 1 0 1
2 Illumination changes 1 1 0 1
3 Illumination changes 1 1 0 1
4 Illumination changes 1 1 0 1
5 Illumination changes 1 1 0 1
6 IR, camouflaged intruder 1 1 0 1
7 IR, illumination changes 1 1 0 1
8 IR, illumination changes 1 1 0 1
9 IR, camouflaged intruder 1 1 0 1
10 IR, camouflaged intruder 1 1 0 1

ISL-SZM Dataset
11 Illumination changes 1 1 0 1
12 Illumination changes 1 1 0 1
13 Illumination changes 1 1 0 1
14 Illumination changes 1 1 0 1
15 Multiple intruders 2 2 0 1
16 Illumination changes 1 1 0 1
17 Illumination changes 1 1 0 1
18 Illumination changes 1 1 0 1
19 Dynamic backgrounds 1 1 0 1
20 Dynamic backgrounds 1 1 0 1
21 IR, camouflaged intruder 1 1 0 1
22 IR, camouflaged intruder 1 1 0 1
23 IR, camouflaged intruder 1 1 0 1
24 IR, camouflaged intruder 1 1 0 1
25 IR, multiple intruders 2 2 0 1

CDNet Dataset
26 Multiple objects, dynamic backgrounds 5 5 0 1
27 Multiple objects, dynamic backgrounds 5 5 0 1
28 Multiple objects, dynamic backgrounds 4 4 0 1
29 Multiple objects, dynamic backgrounds 3 3 0 1
30 Multiple objects, dynamic backgrounds 2 2 0 1

TABLE VI
COMPUTATIONAL ANALYSIS IN FRAMES PER SECOND (fps)

Algorithm Processing Speed (fps)
Proposed+GMM 30-33

Proposed+SuBSENSE 3.9
Proposed+PAWCS 2

Proposed+WeSamBE 2
Proposed+ML-RPCA 0.5

TABLE VII
PROCESSING TIME IN MILLI-SECONDS (ms)

Operation Processing Time (ms)
Statistical Decision Criterion 1.2

Image Enhancement ±3.1
Background Modeling 16.6
Foreground Detection 6.6

Background Model Update 5.6
Cleansing Module 0.3

Total 29.8±3.1

IV. CONCLUSION

This paper presented an improved change detector for
intelligent surveillance systems in general and sterile zone
monitoring in particular. It overcomes the inherent drawback
of change detection algorithms posed by the dual-camera sen-
sors (color/IR). It was tested on three datasets and compared
with top-ranked change detection algorithms. The proposed
algorithm might be integrated with the deep learning based
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intruder classification in the future.
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