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Abstract While originally designed for natural
language processing tasks, the self-attention mechanism
has recently taken various computer vision areas by
storm. However, the 2D nature of images brings three
challenges for applying self-attention in computer vision:
(1) treating images as 1D sequences neglects their 2D
structures; (2) the quadratic complexity is too expensive
for high-resolution images; (3) it only captures spatial
adaptability but ignores channel adaptability. In this
paper, we propose a novel linear attention named large
kernel attention (LKA) to enable self-adaptive and
long-range correlations in self-attention while avoiding
its shortcomings. Furthermore, we present a neural
network based on LKA, namely Visual Attention
Network (VAN). While extremely simple, VAN achieves
comparable results with similar size convolutional neural
networks (CNNs) and vision transformers (ViTs) in
various tasks, including image classification, object
detection, semantic segmentation, panoptic segmentation,
pose estimation, etc. For example, VAN-B6 achieves
87.8% accuracy on ImageNet benchmark, and sets new
state-of-the-art performance (58.2% PQ) for panoptic
segmentation. Besides, VAN-B2 surpasses Swin-T 4%
mIoU (50.1% vs. 46.1%) for semantic segmentation
on ADE20K benchmark, 2.6% AP (48.8% vs. 46.2%)
for object detection on COCO dataset. It provides a
novel method and a simple yet strong baseline for the
community. The code is available at https://github.
com/Visual-Attention-Network.
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1 Introduction

As the basic feature extractor, vision backbone
is a fundamental research topic in the computer
vision field. Due to remarkable feature extraction
performance, convolutional neural networks (CNNs)
[1–3] are indispensable topic in the last decade. After
the AlexNet [3] reopened the deep learning decade, a
number of breakthroughs have been made to get more
powerful vision backbones, by using deeper network
[4, 5], more efficient architecture [6–8], stronger multi-
scale ability [9–11], and attention mechanisms [12, 13].
Due to translation invariance property and shared
sliding-window strategy [14], CNNs are inherently
efficient for various vision tasks with arbitrary sized
input. More advanced vision backbone networks
often result in significant performance gain in various
tasks, including image classification [5, 13, 15], object
detection [16], semantic segmentation [17], and pose
estimation [18].

Based on observed reaction time and estimated
signal transmission time along biological pathways
[23], cognitive psychology [24] and neuroscience
[25] researchers believe that human vision system
processes only parts of possible stimuli in detail,
while leaving the rest nearly unprocessed. Selective
attention is an important mechanism for dealing with
the combinatorial aspects of complex search in vision
[26]. Attention mechanism can be regarded as an
adaptive selecting process based on the input feature.
Since the fully attention network [27] has been
proposed, self-attention models (i.e., transformer)
quickly become the dominated architecture [28, 29]
in natural language processing (NLP). Recently,
Dosovitskiy et al. [13] proposed the vision transformer
(ViT), which introduces transformer backbone into
computer vision and outperforms well-known CNNs
on image classification tasks. Benefited from its
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Fig. 1 Results of different models on ImageNet-1K validation set,
comparing the performance of recent models DeiT [19], PVT [20],
Swin Transformer [15], ConvNeXt [21], Focal Transformer [22], and
our VAN. Above: accuracy–parameters trade-off diagram. Under:
accuracy–FLOPs trade-off diagram.

powerful modeling capabilities, transformer-based
vision backbones quickly occupy the leaderboards
of various tasks, including object detection [15],
semantic segmentation [17], etc.

Even with remarkable success, convolution operation
and self-attention still have their shortcomings.
Convolution operation adopts static weight and lacks
adaptability, which has been proven critical [12, 16].
As originally designed for 1D NLP tasks, self-attention
[13] regards 2D images as 1D sequences, which destroys
the crucial 2D structure of the image. It is also difficult
to process high-resolution images due to its quadratic
computational and memory overhead. Besides, self-
attention is a special attention that only considers
the adaptability in spatial dimension but ignores
the adaptability in channel dimension, which is also
important for visual tasks [12, 30–32].

In this paper, we propose a novel linear attention
mechanism dubbed large kernel attention (LKA),
which is tailored for visual tasks. LKA absorbs
the advantages of convolution and self-attention,
including local structure information, long-range
dependence, and adaptability. Meanwhile, it avoids
their disadvantages such as ignoring adaptability in
channel dimension. Based on the LKA, we present
a novel vision backbone called Visual Attention
Network (VAN) that significantly surpasses well-
known CNN-based and transformer-based backbones.
The contributions of this paper are summarized as
follows:
• We design a novel linear attention mechanism

named LKA for computer vision, which considers
the pros of both convolution and self-attention,
while avoiding their cons. It presents a large
kernel structure, which is different from previous
common architectures. Based on LKA, we further
introduce a simple vision backbone called VAN.

• We show that VANs achieve comparable results
with similar level CNNs and ViTs in extensive
experiments on various tasks, including image
classification, object detection, semantic segmentation,
instance segmentation, pose estimation, etc.

2 Related work

2.1 Convolutional neural networks

How to effectively compute powerful feature
representations is the most fundamental problem
in computer vision. Convolutional neural networks
(CNNs) [1, 2], utilize local contextual information and
translation invariance properties to greatly improve
the effectiveness of neural networks. CNNs quickly
become the mainstream framework in computer
vision since AlexNet [3]. To further improve the
usability, researchers put lots of effort in making
the CNNs deeper [4, 5, 9, 10, 33, 34] and lighter
[6, 8, 35]. Our work has similarity with MobileNet
[6], which decouples a standard convolution into
two parts, a depthwise convolution and a pointwise
convolution (i.e., 1 × 1 Conv [36]). Our method
decomposes a convolution into three parts: depthwise
convolution, depthwise and dilated convolution
[37, 38], and pointwise convolution. Benefiting from
this decomposition, our method is more suitable for
efficiently decomposing large kernel convolutions. We
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also introduce attention mechanism into our method
to obtain adaptive property.

Parallel work. We notice some parallel works,
which also adopt large kernel convolution such as
ConvNeXt [21], and RepLKNet [39]. Different from
them, our work not only focuses on large kernel
convolution, but also makes effort on introducing
attention mechanism and decomposing a large
convolution kernel.
2.2 Visual attention methods

Attention mechanism can be regarded as an adaptive
selection process according to the input feature, which
is introduced into computer vision in RAM [40]. It
has provided benefits in many visual tasks, such as
image classification [12, 30], object detection [16, 41],
and semantic segmentation [42, 43]. Attention in
computer vision can be divided into four basic
categories [44], including channel attention, spatial
attention, temporal attention, and branch attention,
and their combinations such as channel & spatial
attention. Each kind of attention has a different
effect in visual tasks.

Originating from NLP [27, 28], self-attention is
a special kind of attention mechanism. Due to its
effectiveness of capturing the long-range dependence
and adaptability, it is playing an increasingly
important role in computer vision [45–53]. Various
deep self-attention networks (i.e., vision transformers)
[13, 15, 20, 54–70] have achieved significantly better
performance than the mainstream CNNs on different
visual tasks, showing the huge potential of attention-
based models. However, self-attention is originally
designed for NLP. It has three shortcomings when
dealing with computer vision tasks: (1) it treats
images as 1D sequences which neglects the 2D
structure of images; (2) the quadratic complexity
is too expensive for high-resolution images; (3) it
only achieves spatial adaptability but ignores the
adaptability in channel dimension. For vision
tasks, different channels often represent different
objects [44, 71]. Channel adaptability is also proven
important for visual tasks [12, 30, 31, 71, 72]. To
solve these problems, we propose a novel visual
attention method, namely, LKA. It involves the pros
of self-attention such as adaptability and long-range
dependence. Besides, it benefits from the advantages
of convolution such as making use of local contextual
information.

2.3 Vision MLPs

Multilayer Perceptrons (MLPs) [73, 74] were a
popular tool for computer vision before CNNs
appearing. However, due to high computational
requirements and low efficiency, the capability of
MLPs was been limited in a long time. Some
recent research successfully decouple standard MLP
into spatial MLP and channel MLP [75–78]. Such
decomposition allows significant computational cost
and parameter reduction, which releases the amazing
performance of MLP. Readers are referred to recent
surveys [79, 80] for a more comprehensive review of
MLPs. The most related MLP to our method is the
gMLP [78], which not only decomposes the standard
MLP but also involves the attention mechanism.
However, gMLP has two drawbacks. On the one
hand, gMLP is sensitive to input size and can only
process fixed-size images. On the other hand, gMLP
only considers the global information of the image and
ignores their local structure. Our method can make
full use of its advantages and avoid its shortcomings.

3 Method

3.1 Large kernel attention (LKA)

Attention mechanism can be regarded as an adaptive
selection process, which can select the discriminative
features and automatically ignore noisy responses
according to the input features. The key step of
attention mechanism is producing attention map
which indicates the importance of different parts.
To do so, we should learn the relationship between
different features.

There are two well-known methods to build
relationship between different parts. The first one
is adopting self-attention mechanism [13, 46, 50, 51]
to capture long-range dependence. There are three
obvious shortcomings for self-attention applied in
computer vision which have been listed in Section
2.2. The second one is to use large kernel convolution
[30, 81–83] to build relevance and produce attention
map. There are still obvious cons in this way.
Large-kernel convolution brings a huge amount of
computational overhead and parameters.

To overcome above listed cons and make use of the
pros of self-attention and large kernel convolution,
we propose to decompose a large kernel convolution
operation to capture long-range relationship. As
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shown in Fig. 2, a large kernel convolution can
be divided into three components: a spatial local
convolution (depth-wise convolution), a spatial long-
range convolution (depth-wise dilation convolution),
and a channel convolution (1×1 convolution).
Specifically, we can decompose a K ×K convolution
into a dK

d e × d
K
d e depth-wise dilation convolution

with dilation d, a (2d − 1) × (2d − 1) depth-wise
convolution, and a 1×1 convolution. Through the
above decomposition, we can capture long-range
relationship with slight computational cost and
parameters. After obtaining long-range relationship,
we can estimate the importance of a point and
generate attention map. As demonstrated in Fig. 3(a),
the LKA module can be written as
Attention = Conv1×1(DW-D-Conv(DW-Conv(F )))

(1)
Output = Attention⊗ F (2)

Here, F ∈RC×H×W is the input feature. Attention∈
RC×H×W denotes the attention map. The value in

Fig. 2 Decomposition diagram of large-kernel convolution. A
standard convolution can be decomposed into three parts: a depth-wise
convolution (DW-Conv), a depth-wise dilation convolution (DW-D-
Conv), and a pointwise convolution (1×1 Conv). The colored grids
represent the location of convolution kernel and the yellow grid means
the center point. The diagram shows that a 13×13 convolution is
decomposed into a 5×5 depth-wise convolution, a 5×5 depth-wise
dilation convolution with dilation rate 3, and a pointwise convolution.
Note: zero paddings are omitted in the figure.

attention map indicates the importance of each
feature. ⊗ means element-wise product. Different
from common attention methods, LKA dose not
require an additional normalization function like
sigmoid and softmax, which is demonstrated in
Table 3. We also believe the key characteristics of
attention methods is adaptively adjusting output
based on input feature, but not the normalized
attention map. As shown in Table 1, our proposed
LKA combines the advantages of convolution and self-
attention. It takes the local contextual information,
large receptive field, linear complexity, and dynamic
process into consideration. Furthermore, LKA not
only achieves the adaptability in the spatial dimension
but also the adaptability in the channel dimension. It
worth noting that different channels often represent
different objects in deep neural networks [44, 71]
and adaptability in the channel dimension is also
important for visual tasks.

3.2 Visual attention network (VAN)

Our VAN has a simple hierarchical structure, i.e., a
sequence of four stages with decreasing output spatial
resolution, i.e., H

4 ×
W
4 , H

8 ×
W
8 , H

16 ×
W
16 , and H

32 ×
W
32 .

Here, H and W denote the height and width of the

Table 1 Desirable properties belonging to convolution, self-attention,
and LKA

Property Conv Self-attention LKA
Local receptive field 3 7 3

Long-range dependence 7 3 3

Spatial adaptability 7 3 3

Channel adaptability 7 7 3

Computational complexity O(n) O(n2) O(n)

Fig. 3 Structure of different modules: (a) the proposed large kernel attention (LKA); (b) non-attention module; (c) replace multiplication in
LKA with addition; (d) self-attention. It is worth noting that (d) is designed for 1D sequences.
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Fig. 4 A stage of VAN. d means depth-wise convolution. k × k

denotes k × k convolution.

Table 2 Number of parameters for different forms of a 21 × 21
convolution. For instance, when the number of channels C = 32,
standard convolution and MobileNet decomposition use 133× and
4.5× more parameters than our decomposition respectively

Channel Standard Decomposition type
number convolution MobileNet [6] Ours
C = 32 451,584 15,136 3,392
C = 64 1,806,336 32,320 8,832
C = 128 7,225,344 72,832 25,856
C = 256 28,901,376 178,432 84,480
C = 512 115,605,504 487,936 300,032

Table 3 Ablation study of different modules in LKA. Top-1 accuracy
(Acc) on ImageNet validation set suggests that each part is critical.
w/o Attention means we adopt Fig. 3(b)

VAN-B0 Params. (M) FLOPs (G) Acc (%)
w/o DW-Conv 4.1 0.9 74.9
w/o DW-D-Conv 4.0 0.9 74.1
w/o Attention 4.1 0.9 74.3
w/o Attention (add) 4.1 0.9 74.6
w/o 1 × 1 Conv 3.8 0.8 74.6
w/ Sigmoid 4.1 0.9 75.2
w/ (21 × 21 Conv) 124.7 23.2 76.0
VAN-B0 4.1 0.9 75.4

input image, respectively. With the decreasing of
resolution, the number of output channels is increasing.
The change of output channel Ci is presented in Table 5.

Table 4 Throughput of Swin Transformer and VAN on RTX 3090

Method FLOPs (G) Throughput (images/s) Acc (%)
Swin-T 4.5 821 81.3
Swin-S 8.7 500 83.0
Swin-B 15.4 376 83.5
VAN-B0 0.9 2140 75.4
VAN-B1 2.5 1420 81.1
VAN-B2 5.0 762 82.8
VAN-B3 9.0 452 83.9
VAN-B4 12.2 341 84.2

For each stage as shown in Fig. 4, we firstly
downsample the input and use the stride number to
control the downsample rate. After the downsample,
all other layers in a stage stay the same output size,
i.e., spatial resolution and the number of channels.
Then, L groups of batch normalization [84], 1 × 1
Conv, GELU activation [85], large kernel attention,
and feed-forward network (FFN) [86] are stacked
in sequence to extract features. We design seven
architectures VAN-B0, VAN-B1, VAN-B2, VAN-
B3, VAN-B4, VAN-B5, VAN-B6 according to the
parameters and computational cost. The details of
the whole network are shown in Table 5.

Complexity analysis. We present the parameters
and floating point operations (FLOPs) of our
decomposition. Bias is omitted in the computation
process for simplifying format. We assume that
the input and output features have the same size
H ×W ×C. The number of parameters P (K, d) and
FLOPs F (K, d) can be denoted as

P (K, d) = C

[⌈K
d

⌉2
+ (2d− 1)2 + C

]
(3)

F (K, d) = P (K, d)×H ×W (4)
Here, d means the dilation rate and K is the
kernel size. According to the formula of FLOPs and
parameters, the ratio of budget saving is the same
for FLOPs and parameters.

Hyperparameter selection. It is worth noting
that Eq. (3) has a minimum value independent of C
when K is fixed. We adopt K = 21 by default.
For K = 21, Eq. (3) takes the minimum value
when d = 3, which corresponds to 5× 5 depth-wise
convolution and 7 × 7 depth-wise convolution with
dilation 3. For different number of channels, we
show the specific parameters in Table 2. It shows
that our decomposition owns significant advantages
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Table 5 Detailed setting for different versions of the VAN. e.r. represents expansion ratio in the feed-forward network

Stage Output size e.r.
VAN-

B0 B1 B2 B3 B4 B5 B6

1 H
4 ×

W
4 × C 8 C = 32

L = 3
C = 64
L = 2

C = 64
L = 3

C = 64
L = 3

C = 64
L = 3

C = 96
L = 3

C = 96
L = 6

2 H
8 ×

W
8 × C 8 C = 64

L = 3
C = 128

L = 2
C = 128

L = 3
C = 128

L = 5
C = 128

L = 6
C = 192

L = 3
C = 192

L = 6

3 H
16 ×

W
16 × C 4 C = 160

L = 5
C = 320

L = 4
C = 320
L = 12

C = 320
L = 27

C = 320
L = 40

C = 480
L = 24

C = 384
L = 90

4 H
32 ×

W
32 × C 4 C = 256

L = 2
C = 512

L = 2
C = 512

L = 3
C = 512

L = 3
C = 512

L = 3
C = 768

L = 3
C = 768

L = 6
Parameters (M) 4.1 13.9 26.6 44.8 60.3 90.0 200

FLOPs (G) 0.9 2.5 5.0 9.0 12.2 17.2 38.4

in decomposing large kernel convolution in terms of
parameters and FLOPs.

Coverage. Here, we adopt a formal expression
to show how our decomposition covers the whole
area. We take 21 × 21 convolution as example.
For a standard 21 × 21 convolution, we can build
connection between p(i, j) and p(i + x, j + y)
directly, where p(i, j) is the center point and x, y ∈
{−10,−9, · · · 0, · · ·, 9, 10} is offset coordinate. As for
our decomposition, we also can build this connection
via information passing. As shown in Fig. 2, the first
two steps transfer information in spatial dimension,
and the third step passes information in channel
dimension. The third step is easy to understand
because the interactions in the channel dimension are
dense. Here, we present the information passing in
spatial dimension between p(i, j) and p(i+ x, j + y).
The first step is the interaction between p(i+x, j+y)
and p(i + 3bx

3 c, j + 3by
3c). The second step is the

interaction between p(i, j) and p(i+ 3bx
3 c, j + 3by

3c).
The above two steps correspond to DW-Conv and
DW-D-Conv to finish interaction in spatial dimension.
After completing the spatial interaction, a 1 × 1
convolution follows them and completes the channel
interaction.

4 Experiments

In this section, quantitative and qualitative
experiments are exhibited to demonstrate the
effectiveness and efficiency of the proposed VAN. We
conduct quantitative experiments on ImageNet-1K
[88] and ImageNet-22K image classification dataset,
COCO [89] benchmark for object detection, instance
segmentation, panoptic segmentation, and pose

estimation, and ADE20K [90] semantic segmentation
dataset. Furthermore, we visualize the experimental
results and class activation mapping (CAM) [91] by
using Grad-CAM [87] on ImageNet validation set.
Experiments are based on PyTorch [92] and Jittor [93].

4.1 Image classification

4.1.1 ImageNet-1K experiments
Settings. We conduct image classification on
ImageNet-1K [88] dataset. It contains 1.28M training
images and 50k validation images from 1000 different
categories. The whole training scheme mostly follows
Ref. [19]. We adopt random clipping, random horizontal
flipping, label-smoothing [94], mixup [95], cutmix
[96], and random erasing [97] to augment the training
data. In the training process, we train our VAN
for 300 epochs by using AdamW [98, 99] optimizer
with momentum=0.9, weight decay=5 × 10−2, and
batch size = 1024. Cosine schedule [100] and warm-
up strategy are employed to adjust the learning rate
(LR). The initial LR is set to 5× 10−4. We adopt a
variant of LayerScale [101] in attention layer which
replaces xout = x + diag(λ1, λ2, · · ·, λd)f(x) with
xout = x+ diag(λ1, λ2, · · ·, λd)(f(x) + x) with initial
value 0.01. Exponential moving average (EMA) [102]
is also applied to improve training process. During the
eval stage, we report the Top-1 accuracy on ImageNet
validation set under single crop setting.

Ablation study. We conduct an ablation study
to prove that each component of LKA is critical.
In order to obtain experimental results quickly,
we choose VAN-B0 as our baseline model. The
experimental results in Table 3 indicate that all
components in LKA are indispensable to improve
performance.
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• DW-Conv. DW-Conv can make use of the local
contextual information of images. Without it,
the classification performance will drop by 0.5%
(74.9% vs. 75.4%), showing the importance of
local structural information in image processing.

• DW-D-Conv. DW-D-Conv denotes depth-
wise dilation convolution which plays a role
in capturing long-range dependence in LKA.
Without it, the classification performance will
drop by 1.3% (74.1% vs. 75.4%) which confirms
our viewpoint that long-range dependence is
critical for visual tasks.

• Attention mechanism. The introduction of the
attention mechanism can be regarded as making
network achieve adaptive property. Benefited
from it, the VAN-B0 achieves about 1.1% (74.3%
vs. 75.4%) improvement. Besides, replacing attention
with adding operation is also not achieving a lower
accuracy.

• 1×1 Conv. Here, 1×1 Conv captures relationship
in channel dimension. Combining with attention
mechanism, it introduces adaptability in channel
dimension. It brings about 0.8% (74.6% vs.
75.4%) improvement which proves the necessity
of the adaptability in channel dimension.

• Sigmoid function. Sigmoid function is a common
normalization function to normalize attention map
from 0 to 1. However, we find it is not necessary
for LKA module in our experiment. Without
sigmoid, our VAN-B0 achieves 0.2% (75.4% vs.
75.2%) improvement and less computation.

Through the above analysis, we can find that our
proposed LKA can utilize local information, capture
long-distance dependencies, and have adaptability in
both channel and spatial dimension. Furthermore,
experimental results prove that all properties are
positive for recognition tasks. Although standard
convolution can make full use of the local contextual
information, it ignores long-range dependencies and
adaptability. As for self-attention, although it can
capture long-range dependencies and has adaptability
in spatial dimensions, it neglects the local information
and the adaptability in the channel dimension.
Meanwhile, We also summarize above discussion in
Table 1.

Besides, we also conduct ablation study to
decompose different size convolution kernels in
Table 6. We can find that decomposing a 21×21

convolution works better than decomposing a 7×7
convolution which demonstrates that large kernel is
critical for visual tasks. Decomposing a larger 28×28
convolution, we find that the gain is not obvious
comparing with decomposing a 21×21 convolution.
Thus, we choose to decompose a 21×21 convolution
by default.

Comparison with existing methods. Table 7
presents the comparison of VAN with other MLPs,
CNNs and ViTs. VAN outperforms common CNNs
(ResNet [5], ConvNeXt [21], etc.), and ViTs (PVT
[20] and Swin Transformer [15], etc.) with similar
parameters and computational cost. We visually
show the comparison of our method with similar level
classical methods on different tasks in Fig. 7, which
clearly reveals the improvement of our method. In the
following discussion, we will choose a representative
network in each category.

ConvNeXt [21] is a special CNN which absorbs
the some advantages of ViTs such as large receptive
field (7×7 convolution) and advanced training strategy
(300 epochs, data augmentation, etc). Comparing VAN
with ConvNeXt [21], VAN-B2 surpasses ConvNeXt-
T by 0.7% (82.8% vs. 82.1%) since VAN has larger
receptive field and adaptive ability. Swin Transformer
is a well-known ViT variant that adopts local attention
and shifted window manner. Due to that VAN is
friendly for 2D structural information, has larger
receptive field, and achieves adaptability in channel
dimension, VAN-B2 surpasses Swin-T by 1.5% (82.8%
vs. 81.3%). Considering the some methods do not
adopt LayerScale, we also conduct experiments without
LayerScale for fair comparison. As shown in Table 7,
we find that LayerScale has a weak change on VAN’s
performance. It may be because LayerScale is designed
for original self-attention and not suitable for LKA.

Throughput. We test the throughput of the
Swin Transformer [15] and VAN on some hardware
environment with the RTX 3090. Results are
shown in Table 4. Besides, we also plot the
accuracy–throughput diagram in Fig. 5, which clearly
demonstrates that VAN achieves a better accuracy–
throughput trade-off than Swin Transformer [15].
4.1.2 Visualization
Class activation mapping (CAM) is a popular
tool to visualize the discriminative regions (attention
maps). We adopt Grad-CAM [87] to visualize the
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Fig. 5 Accuracy–throughput diagram. It claerly shows that VAN
achieves a better trade-off than Swin Transformer [15].

Table 6 Ablation study of different kernel size K in LKA. Acc means
Top-1 accuracy on ImageNet validation set

Method K Dilation Params. (M) FLOPs (G) Acc (%)
VAN-B0 7 2 4.03 0.85 74.8
VAN-B0 14 3 4.07 0.87 75.3
VAN-B0 21 3 4.11 0.88 75.4
VAN-B0 28 4 4.14 0.90 75.4

attentions on the ImageNet validation set produced
by VAN-B2 model. Results in Fig. 6 show that
VAN-B2 can clearly focus on the target objects.
Thus, the visualizations intuitively demonstrate the
effectiveness of our method. Furthermore, we also
compare different CAM produced by Swin-T [15],
ConvNeXt-T [21], and VAN-B2. We can find that

Fig. 6 Visualization results. All images come from different categories
in ImageNet validation set. CAM is produced by using Grad-CAM [87].
We compare different CAMs produced by Swin-T [15], ConvNeXt-T
[21], and VAN-B2.

the activation area of VAN-B2 is more accurate. In
particular, our method shows obvious advantages
when the object is dominant in an image (last 3 lines

Fig. 7 Comparing with similar level PVT [20], Swin Transformer [15], and ConvNeXt [21] on various tasks, including image classification,
object detection, semantic segmentation, instance segmentation, and pose estimation.
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Fig. 8 Visualization results of effective receptive field (ERF), which is visualized by using Ref. [106]. We randomly select 100 images and
visualize their averaged ERF in an image. We compare different ERF produced by different methods.

Table 7 Comparision with the state-of-the-art methods on ImageNet
validation set. Params means parameter. FLOPs denotes floating
point operations. Top-1 Acc represents Top-1 accuracy. w/o LS means
without LayerScale

Method Params. (M) FLOPs (G) Top-1 Acc (%)
Tansformer-based methods

DeiT-Tiny/16 [19] 5.7 1.3 72.2
DeiT-Small/16 [19] 22.1 4.6 79.8
PVT-Tiny [20] 13.2 1.9 75.1
PVT-Small [20] 24.5 3.8 79.8
PVT-Medium [20] 44.2 6.7 81.2
PVT-Large [20] 61.4 9.8 81.7
Swin-T [15] 28.3 4.5 81.3
Swin-S [15] 49.6 8.7 83.0
Focal-T [22] 29.1 4.9 82.2
Focal-S [22] 51.1 9.1 83.5

CNN-based methods
ResNet18 [5] 11.7 1.8 69.8
ResNet50 [5] 25.6 4.1 76.5
ResNet101 [5] 44.7 7.9 77.4
ResNet152 [5] 60.2 11.6 78.3
ConvNeXt-T [21] 28.6 4.5 82.1
ConvNeXt-S [21] 50.1 8.7 83.1
ConvNeXt-B [21] 89.0 15.4 83.8
VAN-B0 4.1 0.9 75.4
VAN-B0 w/o LS 4.1 0.9 75.2
VAN-B1 13.9 2.5 81.1
VAN-B1 w/o LS 13.9 2.5 81.0
VAN-B2 26.6 5.0 82.8
VAN-B2 w/o LS 26.6 5.0 82.9
VAN-B3 44.8 9.0 83.9
VAN-B3 w/o LS 44.8 9.0 83.8
VAN-B4 60.3 12.2 84.2
VAN-B4 w/o LS 60.3 12.2 84.2

in Fig. 6), which demonstrates its ability to capture
long-range dependence.

Effective receptive field (ERF) is proposed
by Ref. [106]. To demonstrate the capability of
our method to capture long-range dependencies, we
visualize the ERF by adopting Ref. [106]. Here, we
randomly select 100 images in ImageNet val dataset

Table 8 Comparision with the state-of-the-art methods on ImageNet
validation set. Params means parameter. FLOPs denotes floating
point operations. Top-1 Acc represents Top-1 accuracy. All models
are pretrained on ImageNet-22K dataset

Method Params. (M) Input
size FLOPs (G) Top-1

Acc (%)
Tansformer-based methods

ViT-B/16 [13] 87 3842 55.5 85.4
Swin-S [15] 50 2242 8.7 83.2
Swin-B [15] 88 2242 15.4 85.2
Swin-B [15] 88 3842 47.0 86.4
Swin-L [15] 197 2242 34.5 86.3
Swin-L [15] 197 3842 103.9 87.3
CoAtNet-3 [103] 168 3842 107.4 87.6

CNN-based methods
EffNetV2-L [104] 120 4802 53.0 86.8
EffNetV2-XL [104] 208 4802 94.0 87.3
ConvNeXt-S [21] 50 2242 8.7 84.6
ConvNeXt-S [21] 50 3842 25.5 85.8
ConvNeXt-B [21] 89 3842 45.1 86.8
ConvNeXt-B [21] 89 2242 15.4 85.8
ConvNeXt-L [21] 198 2242 34.4 86.6
ConvNeXt-L [21] 198 3842 101.0 87.5
ConvNeXt-XL [21] 350 3842 179.0 87.8
FocalNet-L [105] 197.1 2242 34.2 86.5
FocalNet-L [105] 197.1 3842 100.6 87.3
RepLKNet-B [39] 79 2242 15.3 85.2
RepLKNet-B [39] 79 3842 45.1 86.0
RepLKNet-L [39] 172 3842 96.0 86.6
VAN-B4 60 2242 12.2 85.7
VAN-B4 60 3842 35.9 86.6
VAN-B5 90 2242 17.2 86.3
VAN-B5 90 3842 50.6 87.0
VAN-B6 200 2242 38.9 86.9
VAN-B6 200 3842 114.3 87.8

and resize them to 1120× 1120. Then, we visualize
their ERF and average them in a single image. As
shown in Fig. 8, we compare the ERF of different
methods, including ResNet [5], Swin Transformer [15],
ConvNeXt [21], DeiT [19], and our VAN. It clearly
shows VAN-B2 has a larger ERF than Swin-T [15]
and ConvNeXt [21]. Deit-S has a global ERF and
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VAN-B2 shows a similar ability to capture long-range
dependencies for 1120× 1120 images.

Attention map. Besides CAM and ERF, we
also visualize the attention map in LKA directly.
The visualization method follows FocalNet [105],
which visualizes the absolute value of attention map.
We choose images with single or multi objects in
ImageNet val set. As shown in Fig. 9, it demonstrates
that the attention of LKA focuses on the main objects,
which is a meaningful result.
4.1.3 Pretraining on ImageNet-22K
Settings. ImageNet-22K is a large-scale image
classification dataset, which contains about 14M
images and 21,841 categories. Following Swin
Transformer [15] and ConvNeXt [21], we use it to
pretrain our VAN for 90 epochs without EMA. The
batch size is set as 8196. Other training details are the
same with ImageNet-1K settings. After pretrained on
ImageNet-22K, we fine-tune our model on ImageNet-
1K for 30 epochs. We pretrain our model with
224×224 input and fine-tune our model with 224×224
and 384× 384 respectively.

Results. We compare current state-of-the-art
CNNs (e.g., ConvNeXt [21], EFFNetV2 [104]) and
ViTs (e.g., Swin Transformer [15], ViT [13], and
CoAtNet [103]). As shown in Table 8, VAN achieves
87.8% Top-1 accuracy with 200M parameters and
surpasses the same level ViT [13], Swin Transformer
[15], EFFNetV2 [104], and ConvNeXt [21] on different
resolution, which proves the strong capability to
adapt large-scale pretraining.

4.2 Object detection

Settings. We conduct object detection and instance
segmentation experiments on COCO 2017 benchmark
[89], which contains 118k images in training set and
5k images in validation set. MMDetection [117]
is used as the codebase to implement detection
models. For fair comparison, we adopt the same
training/validating strategies with Swin Transformer
[15] and PoolFormer [108]. Many kinds of detection
models (e.g., Mask R-CNN [110], RetinaNet [107],
Cascade Mask R-CNN [112], Sparse R-CNN [118],
etc.) are included to demonstrate the effectiveness
of our method. All backbone models are pre-trained
on ImageNet training set. For object detection task,
AdamW [98] optimizer with initial learning rate 0.0001

and weight decay 0.05 is adopted to train related
models. The batch size is set as 16. There are two
training schedule 1× (12 epochs) and 3× (36 epochs),
which we illustrate in specific experiments. For fair
comparsion, we also adopt multi-scale training like Swin
Transformer [15] and ConvNeXt [21] for 3× schedule.

Results. According to Table 9 and Table 10, we
find that VAN surpasses CNN-based method ResNet
[5] and transformer-based method PVT [20] with a
large margin under RetinaNet [107] 1× and Mask
R-CNN [110] 1× settings. Besides, we also compare

Table 9 Object detection on COCO 2017 dataset. #P means
parameter. RetinaNet 1× denotes models based on RetinaNet [107]
and we train them for 12 epochs. PF represents PoolFormer

Backbone
RetinaNet 1×

#P
(M)

AP
(%)

AP50
(%)

AP75
(%)

APS
(%)

APM
(%)

APL
(%)

VAN-B0 13.4 38.8 58.8 41.3 23.4 42.8 50.9
ResNet18 [5] 21.3 31.8 49.6 33.6 16.3 34.3 43.2
PF-S12 [20] 21.7 36.2 56.2 38.2 20.8 39.1 48.0
PVT-T [20] 23.0 36.7 56.9 38.9 22.6 38.8 50.0
VAN-B1 23.6 42.3 63.1 45.1 26.1 46.2 54.1
ResNet50 [5] 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PVT-S [20] 34.2 40.4 61.3 43.0 25.0 42.9 55.7
PF-S24 [108] 31.1 38.9 59.7 41.3 23.3 42.1 51.8
PF-S36 [108] 40.6 39.5 60.5 41.8 22.5 42.9 52.4
CMT-S [109] 44.3 44.3 65.5 47.5 27.1 48.3 59.1
VAN-B2 36.3 44.9 65.7 48.4 27.4 49.2 58.7
ResNet101 [5] 56.7 38.5 57.8 41.2 21.4 42.6 51.1
PVT-M [20] 53.9 41.9 63.1 44.3 25.0 44.9 57.6
VAN-B3 54.5 47.5 68.4 51.2 30.9 52.1 62.4

Table 10 Object detection and instance segmentation on COCO
2017 dataset. #P means parameter. Mask R-CNN 1× denotes models
based on Mask R-CNN [110] and we train them for 12 epochs. APb

and APm refer to bounding box AP and mask AP respectively. PF
means PoolFormer

Backbone
Mask R-CNN 1×

#P
(M)

APb

(%)
APb

50
(%)

APb
75

(%)
APm

(%)
APm

50
(%)

APm
75

(%)
VAN-B0 23.9 40.2 62.6 44.4 37.6 59.6 40.4
ResNet18 [5] 31.2 34.0 54.0 36.7 31.2 51.0 32.7
PF-S12 [108] 31.6 37.3 59.0 40.1 34.6 55.8 36.9
PVT-T [20] 32.9 36.7 59.2 39.3 35.1 56.7 37.3
VAN-B1 33.5 42.6 64.2 46.7 38.9 61.2 41.7
ResNet50 [5] 44.2 38.0 58.6 41.4 34.4 55.1 36.7
PVT-S [20] 44.1 40.4 62.9 43.8 37.8 60.1 40.3
PF-S24 [108] 41.0 40.1 62.2 43.4 37.0 59.1 39.6
PF-S36 [108] 50.5 41.0 63.1 44.8 37.7 60.1 40.0
CMT-S [109] 44.5 44.6 66.8 48.9 40.7 63.9 43.4
VAN-B2 46.2 46.4 67.8 51.0 41.8 65.2 44.9
ResNet101 [5] 63.2 40.4 61.1 44.2 36.4 57.7 38.8
PVT-M [20] 63.9 42.0 64.4 45.6 39.0 61.6 42.1
VAN-B3 64.4 48.3 69.6 53.3 43.4 67.0 46.8
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Fig. 9 Visualization results of attention map. We select images in ImageNet val set and visualize their attention maps directly. The
visualization method follows FocalNet [105], which visualizes the absolute value of attention map.

the state-of-the-art methods Swin Transformer [15]
and ConvNeXt [21] in Table 11. Results show that
VAN achieves the state-of-the-art performance with
different detection methods such as Mask R-CNN
[110] and Cascade Mask R-CNN [112].

4.3 Semantic segmentation

Settings. We conduct experiments on ADE20K [90],
which contains 150 semantic categories for semantic
segmentation. It consists of 20,000, 2000, and 3000
respectively for training, validation, and testing.
MMSEG [119] is used as the base framework and
two famous segmentation heads, Semantic FPN [115]
and UperNet [116], are employed for evaluating our
VAN backbones. For a fair comparison, we adopt

Table 11 Comparison with the state-of-the-art vision backbones on
COCO 2017 benchmark. All models are trained for 36 epochs. We
calculate FLOPs with input size of 1280 × 800. #F means FLOPs.
#P denotes parameters

Backbone Method APb

(%)
APb

50
(%)

APb
75

(%)
#P
(M)

#F
(G)

Swin-T [5]
Mask

R-CNN [110]

46.0 68.1 50.3 48 264
ConvNeXt-T [15] 46.2 67.9 50.8 48 262
MPViT-T [111] 48.4 70.5 52.6 43 268
VAN-B2 48.8 70.0 53.6 46 273
ResNet50 [5] Cascade

Mask
R-CNN [112]

46.3 64.3 50.5 82 739
Swin-T [15] 50.5 69.3 54.9 86 745
ConvNeXt-T [21] 50.4 69.1 54.8 86 741
VAN-B2 52.0 70.9 56.4 84 752
ResNet50 [5]

ATSS [113]
43.5 61.9 47.0 32 205

Swin-T [15] 47.2 66.5 51.3 36 215
VAN-B2 50.2 69.3 55.1 34 221
ResNet50 [5]

GFL [114]
44.5 63.0 48.3 32 208

Swin-T [15] 47.6 66.8 51.7 36 215
VAN-B2 50.8 69.8 55.7 34 224

two training/validating schemes following Refs. [108]
and [15] and quantitative results on the validation
set are shown in the upper and lower part in Table
12, respectively. All backbone models are pre-trained
on ImageNet-1K or ImageNet-22K training set. For
segmentation experiments, we adopt some common
data augmentations, including random horizontal
flipping, random scaling, and random cropping. We
choose AdamW with initial learning 0.00006 and
weight decay 0.01 as optimizer. The batch size is
set as 16. We adopt poly-learning rate decay policy.
We train our model 40k or 160k iterations respectively
for fair comparison.

Results. From the upper part in Table 12,
compared with different backbones using FPN [115],
VAN-based methods are superior to CNN-based
(ResNet [5], ResNeXt [7]) or transformer-based (PVT
[20], PoolFormer [108], PVTv2 [86]) methods. For
instance, we surpass four PVTv2 [86] variants by
+1.3% (B0), +0.4% (B1), +1.5% (B2), +0.8% (B3)
mIoU under comparable parameters and FLOPs. In
the lower part in Table 12, when compared with
previous state-of-the-art CNN-based methods and
Swin-Transformer-based methods, four VAN variants
also show excellent performance with comparable
parameters and FLOPs. For instance, based on
UperNet [116], VAN-B2 is +5.2% and +4.0% mIoU
higher than ResNet-101 and Swin-T, respectively. For
ImageNet-22K pretrained models, VAN also performs
better than Swin Transformer [15] and ConvNeXt [21]
with less computational overhead, which is shown in
Table 13.
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Table 12 Results of semantic segmentation on ADE20K [90] validation
set. The upper and lower parts are obtained under two different
training/validation schemes following Refs. [108] and [15]. We calculate
FLOPs with input size 512× 512 for Semantic FPN [115] and 2048×
512 for UperNet [116]. #P means parameters. #F denotes FLOPs

Method Backbone #P (M) #F (G) mIoU (%)
PVTv2-B0 [86] 8 25 37.2

VAN-B0 8 26 38.5
ResNet18 [5] 16 32 32.9

PVT-Tiny [20] 17 33 35.7
PoolFormer-S12 [108] 16 31 37.2

PVTv2-B1 [86] 18 34 42.5
VAN-B1 18 35 42.9

ResNet50 [5] 29 46 36.7
Semantic PVT-Small [20] 28 45 39.8
FPN [115] PoolFormer-S24 [108] 23 39 40.3

PVTv2-B2 [86] 29 46 45.2
VAN-B2 30 48 46.7

ResNet101 [5] 48 65 38.8
PVT-Medium [20] 48 61 43.5

PoolFormer-S36 [108] 35 48 42.0
PVTv2-B3 [86] 49 62 47.3

VAN-B3 49 68 48.1

UperNet [116]
ResNet-101 [5]

86 1029 44.9
OCRNet [42] 56 923 45.3
HamNet [43] 69 1111 46.8

UperNet [116]

Swin-T [15] 60 945 46.1
ConvNeXt-T [21] 60 939 46.7
MPViT-S [111] 52 943 48.3

VAN-B2 57 948 50.1
Swin-S [15] 81 1038 49.3

ConvNeXt-S [21] 82 1027 49.5
VAN-B3 75 1030 50.6

Swin-B [15] 121 1188 49.7
ConvNeXt-B [21] 122 1170 49.9
RepLKNet-B [39] 112 1170 50.6

VAN-B4 90 1098 52.2

Table 13 Comparision with the state-of-the-art methods on ADE20K
validation set. Params means parameter. FLOPs denotes floating point
operations. All models are pretrained on ImageNet-22K dataset. We
calculate FLOPs with input size 2560× 640 for 640 input image and
2048× 512 for 512 input image

Method Params. (M) Input
size FLOPs (G) mIoU (%)

Swin-B [15] 121 6402 1841 51.7
ConvNeXt-B [21] 122 6402 1828 53.1
VAN-B5 117 5122 1208 53.9
Swin-L [15] 234 6402 2468 53.5
ConvNeXt-L [21] 235 6402 2458 53.7
VAN-B6 231 5122 1658 54.7

4.4 Panoptic segmentation

Settings. We conduct our panoptic segmentation
on COCO panoptic segmentation dataset [89] and
choose Mask2Former [120] as our segmentation head.

For fair comparison, we adopt the default settings in
MMDetection [117] and the same training/validating
scheme as Mask2Former [120]. All backbone models
are pre-trained on ImageNet-1K or ImageNet-22K set.
For fair comparsion, we follow the training settings of
Mask2Former [120]. We choose AdamW with initial
learning rate 0.0001 and weight decay. We adopt
step learning rate schedule to adjust learning rate.
The total epochs and batch size are set as 50 and
16 respectively. Besides, we adopt the same data
augmentations with Mask2Former [120], including
random scale, large-scale jittering, etc.

Results. As shown in Table 14, we observe that
VAN outperforms Swin Transformer for both large
and small models. Here, VAN-B2 exceeds Swin-T
+1.7% PQ. Besides, it is worth noting that VAN-B6
achieves 58.2% PQ, which sets new state-of-the-art
performance for panoptic segmentation task.

Table 14 Experimental results on COCO panoptic segmentation.
∗ means that model is pretrained on ImageNet-22K dataset. All
methods are based on Mask2Former [120]. PQ means panoptic quality

Backbone Query type Epochs PQ (%) PQTh (%) PQSt (%)
Swin-T 100 queries 50 53.2 59.3 44.0
VAN-B2 100 queries 50 54.9 61.2 45.3
Swin-L∗ 200 queries 50 57.8 64.2 48.1
VAN-B6∗ 200 queries 50 58.2 64.8 48.2

4.5 Pose estimation

Settings. We conduct pose estimation experiments
on COCO human pose estimation dataset, which
contains 200k images with 17 keypoints. Models are
trained on COCO train 2017 set and tested on COCO
val 2017 set. We adopt SimpleBaseline [121] as our
decoder part, which is the same with Swin Transformer
[15] and PVT [20]. All experiments are based on
MMPose [122]. For fair comparison, we follow the
training strategy of Swin Transformer. We adopt
Adam as optimizer with initial learning rate 5× 10−4.
We adopt step learning rate schedule to adjust
learning rate. The total epochs and batch size are
set as 210 and 64 respectively.

Results. Experimental results are shown in Table 15.
For 256× 192 input, VAN-B2 outperforms Swin-T and
PVT-S [20] 2.5% AP (74.9% vs. 72.4%) and 3.5% AP
(74.9% vs. 71.4%) and with simliar computing and
parameters. Furthermore, VAN-B2 exceeds Swin-
B 2% AP (74.9% vs. 72.9%) and 1.8% AP (76.7%
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Table 15 Comparison with the state-of-the-art vision backbones
on COCO benchmark for pose estimation. Models are based on
SimpleBaseline [121]

Backbone Input size AP
(%)

AP50

(%)
AP75

(%)
AR
(%)

#P
(M)

FLOPs
(G)

HRNet-W32 [18] 256 × 192 74.4 90.5 81.9 78.9 28.5 7.1
PVT-S [20] 256 × 192 71.4 89.6 79.4 77.3 28.2 4.1
Swin-T [15] 256 × 192 72.4 90.1 80.6 78.2 32.8 6.1
Swin-B [15] 256 × 192 72.9 89.9 80.8 78.6 93.2 18.6
VAN-B2 256 × 192 74.9 90.8 82.5 80.3 30.3 6.1

HRNet-W32 [18] 384 × 288 75.8 90.6 82.7 81.0 28.5 16.0
Swin-B [15] 384 × 288 74.9 90.5 81.8 80.3 93.2 39.2
VAN-B2 [15] 384 × 288 76.7 91.0 83.1 81.7 30.3 13.6

vs. 74.9%) for 256× 192 and 384× 288 respectively
with less computation and parameters. In addition
to transformer-based models, VAN-B2 also surpasses
popular CNN-based model HRNet-W32 [18].
4.6 Fine-grain classification

We conduct fine-grain classification on CUB-200
dataset [123], which is a common fine-grain
classification benchmark and contains 11,788 images
of 200 subcategories belonging to birds. We do not
design specific algorithm for this task and only replace
the last linear layer for 200 categories. We implement
our model based on mmclassification [124]. For fine-
grain classification, we choose AdamW as optimizer
with initial learning rate 5× 10−5 and weight decay
5 × 10−4. We adopt cosine learning rate schedule
to adjust learning rate. The batch size and total
epochs are set as 16 and 100 respectively. Results in
Table 16 show that VAN-B4 achieves 91.3% Top-1
accuracy without any specially designed algorithms,
which exceeds DeiT [19] and ViT-B [13].
4.7 Saliency detection

We conduct saliency detection based on EDN [125].
We replace the backbone with VAN and hold
experiments on common saliency detection benchmarks,
including DUTS [126], DUT-O [127], and PASCAL-
S [128]. All input images are resized to 384 × 384.

Table 16 Experimental results on CUB-200 fine-grain classification
dataset. ∗ means that model is pretrained on ImageNet-22K dataset

Method Backbone Top-1 Acc (%)

ResNet-50 [5] ResNet-101 84.5
ViT [13] ViT-B 16∗ 90.3
DeiT [19] DeiT-B∗ 90.0
VAN VAN-B4∗ 91.3

We train model by using Adam optimizer with initial
learning rate of 5×10−5. Step learning rate is adopted
for adjusting learning rate. The batch size and epoch
are set as 24 and 30 respectively. Results in Table
17 show that VAN clearly surpasses other backbones
ResNet [5] and PVT [20] on all datasets.

Table 17 Comparing with different backbones on saliency detection
task

Backbone
DUTS-TE DUT-O PASCAL-S

Fmax MAE Fmax MAE Fmax MAE
ResNet18 [5] 0.853 0.044 0.769 0.056 0.854 0.071
PVT-T [20] 0.876 0.039 0.813 0.052 0.868 0.067
VAN-B1 0.912 0.030 0.835 0.046 0.893 0.055
ResNet50 [5] 0.873 0.038 0.786 0.051 0.864 0.065
PVT-S [20] 0.900 0.032 0.832 0.050 0.883 0.060
VAN-B2 0.919 0.028 0.844 0.045 0.897 0.053

5 Discussion

Recently, transformer-based models quickly conquer
various vision leaderboards. As we know that self-
attention is just a special attention mechanism.
However, people gradually adopt self-attention by
default and ignore underlying attention methods.
This paper proposes a novel attention module LKA
and CNN-based network VAN, which surpasses state-
of-the-art transformer-based methods for vision tasks.
We hope this paper can promote people to rethink
whether self-attention is irreplaceable and which kind
of attention is more suitable for visual tasks.

6 Future work

In the future, we will continue perfecting VAN in
followings directions:
• Continuous improvement of the structure

itself. In this paper, we only demonstrate an
intuitive structure. There are a lot of potential
improvements such as adopting different kernel
size, introducing multi-scale structure [11], and
using multi-branch structure [10].

• Large-scale self-supervised learning and
transfer learning. VAN naturally combines the
advantages of CNNs and ViTs. On the one
hand, VAN can make use of the 2D structure
information of images. On the other hand, VAN
can dynamically adjust the output according to
the input image which is suit for self-supervised
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learning and transfer learning [63, 68]. Combining
the above two points, we believe that VAN
can achieve better performance in image self-
supervised learning and transfer learning field.

• More application areas. Due to the limited
resource, we only show excellent performance in
visual tasks. Whether VANs can perform well in
other areas like TCN [129] in NLP is still worth
exploring. Besides, for more complex 3D or video
data, this decomposition idea of VAN may also
be suitable. We look forward to seeing VANs
becoming a general model for multiple modalities.

7 Conclusions

In this paper, we present a novel visual attention
LKA which combines the advantages of convolution
and self-attention. Based on LKA, we build a
vision backbone VAN that achieves the state-of-
the-art performance in some visual tasks, including
image classification, object detection, semantic
segmentation, etc. In the future, we will continue
to improve this framework from the directions
mentioned in Section 6.
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