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Abstract
Deep learning models have demonstrated remark-
able success in object detection, yet their complex-
ity and computational intensity pose a barrier to de-
ploying them in real-world applications (e.g., self-
driving perception). Knowledge Distillation (KD)
is an effective way to derive efficient models. How-
ever, only a small number of KD methods tackle
object detection. Also, most of them focus on mim-
icking the plain features of the teacher model but
rarely consider how the features contribute to the
final detection. In this paper, we propose a novel
approach for knowledge distillation in object de-
tection, named Gradient-guided Knowledge Distil-
lation (GKD). Our GKD uses gradient information
to identify and assign more weights to features that
significantly impact the detection loss, allowing the
student to learn the most relevant features from the
teacher. Furthermore, we present bounding-box-
aware multi-grained feature imitation (BMFI) to
further improve the KD performance. Experiments
on the KITTI and COCO-Traffic datasets demon-
strate our method’s efficacy in knowledge distilla-
tion for object detection. On one-stage and two-
stage detectors, our GKD-BMFI leads to an average
of 5.1% and 3.8% mAP improvement, respectively,
beating various state-of-the-art KD methods.

1 Introduction
Over the past few years, deep learning models have achieved
remarkable success in a variety of domains, including com-
puter vision [He et al., 2016; He et al., 2017; Ronneberger
et al., 2015]. Object detection is one of the most critical
tasks in computer vision and has seen growing demand in
various applications, such as autonomous driving, surveil-
lance, and medical imaging. However, high detection per-
formance often comes at the cost of large and complex
neural architectures, which results in slow inference speed
on devices without powerful GPUs. To address this prob-
lem, various neural network compression techniques have
been proposed, such as pruning [Frankle and Carbin, 2018;
Tian et al., 2021], quantization [Nagel et al., 2019; Li et
al., 2019], and knowledge distillation [Hinton et al., 2015;

Li et al., 2017]. In Knowledge Distillation (KD), a smaller,
lightweight student model mimics the behavior of an un-
wieldy pre-trained teacher model to achieve comparable or
even superior results. The information transferred across the
models is usually referred to as “dark knowledge” due to its
blackbox nature. Feature-based KD is one of the most popu-
lar KD types, which aims to minimize the difference between
the teacher’s intermediate feature representations and those
of the student.

Most of the existing knowledge distillation methods in
computer vision are designed for image classification [Hin-
ton et al., 2015; Li et al., 2017; Tian et al., 2021; Zagoruyko
and Komodakis, 2016]. In the past few years, researchers
have started to explore how KD can be effectively applied to
object detection. Most state-of-the-art KD methods in ob-
ject detection use feature-based approaches where the stu-
dent is trained to mimic the teacher’s plain or human-selected
features. These methods aim to explore which parts of
the teacher’s features provide the most informative knowl-
edge for the student to distill. For example, [Sun et al.,
2020] and [Wang et al., 2019] respectively use the Gaus-
sian Mask and the “fine-grained” imitation mask to select a
broader distillation area. [Guo et al., 2021] distills the fore-
ground and background separately. [Zhang and Ma, 2021;
Yang et al., 2022] leverage highly activated features and non-
local modules to guide the student and distill the global rela-
tion of pixels, respectively. However, few studies have con-
sidered how these features contribute to the final detection
outcome. Unlike previous approaches, we propose a novel
gradient-guided knowledge distillation (GKD) method that
incorporates gradient information to weigh the importance of
features. The gradients of the detection loss function with
respect to the model’s features provide information about
the features’ contribution to the final detection performance.
By using the task gradients to weigh the importance of fea-
tures during knowledge distillation, we can effectively trans-
fer knowledge that is more relevant to the task at hand and
has a greater impact on the model’s performance. To the best
of our knowledge, this is the first work that utilizes gradients
to weight the importance of features for knowledge distilla-
tion in object detection tasks. Moreover, we argue that fore-
ground objects, including their surrounding pixels with abun-
dant contextual information, should receive special attention
during KD. Unlike [Wang et al., 2019] that distills pixels
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around the foreground object with fixed weights, we use a
top-flattened Gaussian mask to assign the highest weight to
the pixels within the ground truth bounding boxes and gradu-
ally decrease the weight of surrounding pixels as the distance
from the center point increases. We also find that feature im-
itation at multiple granularities help with the KD.

In summary, the main contributions of this paper are as
follows:

• We introduce a novel gradient-guided knowledge distil-
lation (GKD) method that utilizes gradient information
to weigh the importance of features so that the student
model can focus on the more valuable knowledge that is
relevant to the final detection. As far as we know, this is
the first time that gradients are leveraged as a knowledge
filter in knowledge distillation for object detectors.

• We present bounding-box-aware multi-grained feature
inmitation that takes bounding boxes and their contex-
tual information into consideration during KD and per-
forms distillation along different feature dimensions.

• Our KD method’s efficacy is tested on both one-stage
and two-stage detectors with different backbones on the
KITTI and COCO Traffic datasets. GKD outperforms
state-of-the-art knowledge distillation methods, achiev-
ing an average 4.3 and 3.1 mAP improvement for single-
stage and two-stage detectors, respectively. Addition-
ally, when combined with the proposed Boundary-aware
Multi-Feature Imitation (BMFI) method, GKD-BMFI
achieves an average 4.7 and 3.7 mAP boost on the KITTI
and COCO Traffic datasets, respectively.

2 Related Works
2.1 Object Detection
Object Detection is a fundamental task in computer vision
and is more challenging than classification since it involves
both localization and classification of objects in an image.
Over the past decade, convolutional neural networks (CNNs)
have achieved remarkable success in this domain. There
are three main categories of CNN-based object detection
methods: two-stage detectors, anchor-based one-stage detec-
tors, and anchor-free one-stage detectors. Two-stage detec-
tors, such as [Cai and Vasconcelos, 2018; He et al., 2017;
Ren et al., 2015], first generate region proposals using a
region proposal network (RPN) and then classify and re-
fine the bounding boxes in a second stage. Two-stage de-
tectors tend to have higher accuracy compared to one-stage
detectors at the expense of longer inference time. Anchor-
based one-stage detectors [Lin et al., 2017b; Liu et al., 2016;
Redmon and Farhadi, 2018] directly predict the category and
bounding box of targets from feature maps and are thus more
efficient than two-stage detectors. That being said, they use a
large number of pre-defined anchor boxes as reference points,
which results in additional computation. To reduce such com-
putation, anchor-free one-stage detectors [Duan et al., 2019;
Tian et al., 2019; Yang et al., 2019] directly predict the criti-
cal points and placements of objects without the use of anchor
boxes, at the risk of sacrificing accuracy.

2.2 Knowledge Distillation

Knowledge distillation is a model compression technique
proposed by [Hinton et al., 2015]. In its original version,
the output probabilities or logits of a pre-trained teacher
network serve as soft labels to guide the learning of a
smaller student network for classification tasks. Since then,
there have been many KD works (e.g., [Heo et al., 2019;
Tung and Mori, 2019; Zagoruyko and Komodakis, 2016])
that further improve the vanilla KD’s performance in classi-
fication tasks. Relatively speaking, fewer works have applied
knowledge distillation to object detection. [Chen et al., 2017]
first apply knowledge distillation to object detection by dis-
tilling knowledge from the neck features, the classification
head, and the regression head. Nevertheless, not all features
in the teacher model are useful and relevant. Naively dis-
tilling all the features may mislead the student model. How
to select the most valuable features for knowledge distilla-
tion in object detection is an active research area. [Li et al.,
2017] choose the features sampled from the region proposal
network (RPN) to improve the performance of the student
model. [Wang et al., 2019] propose the fine-grained mask
to distill the regions near the ground-truth bounding boxes.
[Sun et al., 2020] utilize Gaussian masks to assign more im-
portance to bounding boxes and surrounding regions for dis-
tillation. Such methods attempt to find the most informative
spatial locations while ignoring the channel-wise feature se-
lection. [Guo et al., 2021] show that both the foreground and
background play important roles for distillation, and distilling
them separately benefits the student. [Dai et al., 2021] dis-
till the locations where the performances of the student and
teacher differ most. All the above-mentioned methods try to
infer the most informative spatial regions for knowledge dis-
tillation (e.g., the foreground or background). However, they
do not consider the differences in importance across different
feature channels and how the features contribute to the final
detection. [Zhang and Ma, 2021] and [Yang et al., 2022] in-
corporate non-local modules and consider both spatial and
channel attention. However, their feature importance is only
based on the magnitude of activation, which is not directly
related to final detection, either. In contrast to those works,
we propose gradient-guided knowledge distillation, which as-
signs larger weights to features that contribute more to the
final detection.

3 Methodology

Most state-of-the-art feature-based KD methods have the stu-
dent model directly mimic the teacher model’s plain features.
Recently, some works like [Yang et al., 2022] and [Zhang
and Ma, 2021] direct more focus to channels/locations that
are highly activated. Unlike previous approaches, we propose
gradient-guided knowledge distillation (GKD) that gives spe-
cial attention to knowledge contributing to the final detection
performance. In addition, we will present how to incorpo-
rate bounding box and context information in multi-grained
feature-based knowledge distillation.
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Figure 1: Illustration of the proposed Gradient-Guided Knowledge Distillation (GKD) method.

3.1 Gradient-Guided Knowledge Distillation

We propose to utilize the gradients of the detection loss with
respect to features to represent the features’ contribution to
the final detection. The features corresponding to larger gra-
dients are more influential on the decision making and thus
they deserve more attention during the knowledge distillation
process. Fig. 1 illustrates the general idea of our GKD and
how it guides the student model to better learn the most valu-
able and relevant knowledge from the teacher.

Mathematically, we define the importance/weight of the k-
th feature map in layer l of a detector as:

wl
k =

1

WH

W∑
i=1

H∑
j=1

∂Ltask

∂Al
i,j,k

(1)

where Ltask denotes the total detection loss (including
bounding box regression loss and classification loss),Ai,j,k is
the single activation value at location (i, j) in the kth feature
map of the lth layer. We first calculate the gradients of Ltask,
with respect to feature Al

i,j,k. These gradients flowing back
are global-average-pooled over the width and height dimen-
sions (indexed by i and j, with max value W and H , respec-
tively) to obtain the feature channel importancewl

k. Then, we
use wl

k to weigh the kth activation map Al
k:

Ãl
k = wl

kA
l
k (2)

where Ãl
k is the kth gradient-weighted activation map of the

lth layer. These maps are then linearly combined along the
channel dimension (before ReLU and Norm) to obtain the

final target map for distillation:

M l = Norm(ReLU(

C∑
k=1

Ãl
k)) (3)

where Norm represents the min-max normalization function
and the ReLU function removes negative values because we
are only interested in the features that have a positive influ-
ence on the detection task. Negative pixels are likely those
that belong to the background. Combining Eq. 1, 2, and 3,
we get:

M l = Norm(ReLU(

C∑
k=1

Al
k

1

WH

W∑
i=1

H∑
j=1

∂Ltask

∂Al
i,j,k

)) (4)

The same process can be applied to both the teacher model
and the student model. The resulting target maps for the
teacher and the student are M l

T and M l
S , respectively. The

goal of our gradient-guided knowledge distillation is to min-
imize the difference between the two target maps:

LGKD =
1

HW

L∑
l=1

W∑
i=1

H∑
j=1

|M l
i,j,T −M l

i,j,S | (5)

where l indicates an intermediate layer. It ranges from 1 to
L, with L being the total number of intermediate layers of the
student and teacher models being considered for distillation.
We sum the absolute difference between M l

i,j,T and M l
i,j,S .

We use L1-norm loss instead of L2-norm loss because L2 can
be more susceptible to outliers when there is a large discrep-
ancy between the teacher and student models at the beginning
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Figure 2: Popular attention regions for knowledge distillation in object detection. Different colors indicate different weights for different
areas, with the red color representing the highest weights and the blue color representing the lowest. In contrast to other methods (a)-(c) [Guo
et al., 2021; Wang et al., 2019; Sun et al., 2020], our approach (d) focuses on foreground objects and their surrounding pixels with gradually
diminishing weights.

(a) 3D View (b) Top View

Figure 3: Views of our top-flattened Gaussian Mask. Different col-
ors indicate different weights for different areas, with the red color
representing the highest weights (ground truth area) and the blue
color representing the lowest.

of training. Using L1-norm loss encourages teacher-student
consistency in more locations.

To handle objects of various scales, most state-of-the-art
object detectors employ Feature Pyramid Networks (FPN)
[Lin et al., 2017a] or its variant [Qiao et al., 2021]. In our
experiments, to enhance the transfer of knowledge across dif-
ferent scales, we choose the output layers of FPN as the target
layers for distillation.

3.2 Bounding-box-aware Multi-grained Feature
Imitation

For KD of object detectors, the foreground and the back-
ground usually contain different amounts of useful informa-
tion. The overwhelming amount of background information
may mislead the knowledge distillation process. [Guo et
al., 2021] (Fig. 2a) and [Yang et al., 2022] assign different
weights to the foreground and the background. [Wang et al.,
2019] (Fig. 2b) distills the anchor-covered regions around the
foreground object. [Sun et al., 2020] (Fig. 2c) uses a Gaus-
sian Mask to cover the ground truth bounding box for dis-
tillation. They either ignore the surrounding pixels or cover

too many unnecessary regions. Unlike these approaches, we
propose a top-flattened Gaussian maskMi,j , which is defined
as:

Mi,j =


1, if (i, j) ∈ o
e−

1
2 ( x−x̄

x̄ + y−ȳ
ȳ )

2

, elif (i, j) ∈ ô
0, otherwise

(6)

where o and ô represent the regions inside ground truth
bounding boxes and the regions surrounding them, respec-
tively. x and y denote the width and height of the distillation
region, which are set to be twice the width and height of the
ground truth bounding box. (Fig. 3 show the 3D view and
top view of our top-flattened Gaussian distribution). (x̄, ȳ)
represents the center point of the ground truth bounding box.
Eq. 6 directs enough attention to the foreground while tak-
ing the surrounding pixels/regions into consideration as well.
The surrounding pixels provide valuable contextual informa-
tion for localizing the foreground object. Figure 2 illustrates
the differences between our top-flattened Gaussian mask and
previous methods.

To further improve the KD performance, we also incorpo-
rate spatial and channel attention (based on highly-activated
features) [Yang et al., 2022] when distilling features. The
spatial and channel attention masks can be defined as follows:

MS = WH · softmax(

∑C
k−1 |Ak|
CT

) (7)

MC = C · softmax(

∑W
i=1

∑H
j=1 |Ai,j |

WHT
) (8)

where A represents the plain feature, and W,H,C are the
width, height, and channel number ofA indexed by i, j, k, re-
spectively. T is the temperature hyper-parameter introduced
by [Hinton et al., 2015] to modulate the distribution. Based
on Eq. 6, 7, and 8, we propose our Bounding-box-aware
Multi-grained Feature Imitation (BMFI) loss as follow:



LBMFI =

C∑
k=1

H∑
i=1

W∑
j=1

Mi,jM
SMC(ATi,j,k −ASi,j,k)2

+α(|MS
T −MS

S |+ |MC
T −MC

S |) (9)

where the subscript T ,S denotes the teacher and student de-
tector, respectively. α is the hyper-parameters to balance the
loss terms.

By adding our Gradient-guided knowledge distillation loss
from Sec. 3.1, our total distillation loss is formulated as:

LKD = LGKD + βLBMFI (10)
where β is the hyperparameter that balances the contribution
of two loss terms. alpha and beta are empirically set in our
experiments to achieve the best validation results.

4 Experiments and Results
4.1 Dataset
KITTI [Geiger et al., 2012] is a 2D-object detection dataset
that includes seven different types of road objects. As sug-
gested in [KIT, 2017], we group similar categories into one.
Specifically, we perform the following modification to the
original KITTI dataset:

• Car← car, van, truck, tram
• Pedestrian← pedestrian, person
• Cyclist← cyclist
It includes 7481 images with annotations. We split it into a

training set and a validation set in the ratio of 8:2.
COCO-Traffic is a dataset containing 13 traffic-related

categories. This dataset is obtained by selecting categories re-
lated to self-driving from MS COCO 2017 [Lin et al., 2014].
The COCO-Traffic dataset includes the following categories:

• Road-related: bicycle, car, motorcycle, bus, train,
truck, traffic light, fire hydrant, stop sign, parking me-
ter

• Others: person, cat, dog
We keep only images containing at least one road-related ob-
ject to filter out those images that only contain indoor objects.
The selection is applied to both the training and validation
sets.

4.2 Implementation Details
All the detection experiments are conducted in the MMDe-
tection framework [Chen et al., 2019] using Pytorch [Paszke
et al., 2019]. We employed Faster-RCNN [Ren et al., 2015]
as a representative of two-stage detectors and chose Gener-
alized Focal Loss (GFL) [Li et al., 2020] as an example of
one-stage detectors. The teacher and student models (without
any knowledge distillation) were trained directly using the
default configuration of MMDetection [Chen et al., 2019].
The teacher models were based on a ResNet-101 backbone,
and we tested two different student backbone architectures
(i.e., ResNet-50 and ResNet-18). For comparison, we re-
implemented the following state-of-the-art KD methods:

• FGFI by [Wang et al., 2019], CVPR’19

• FKD by [Zhang and Ma, 2021], ICLR’21

• GID by [Dai et al., 2021], CVPR’21

• DeFeat by [Guo et al., 2021], CVPR’21

• FGD by [Yang et al., 2022], CVPR’22

All the competing knowledge distillation methods and our
method are applied to FPN output layers. The temperature
hyper-parameter T is set to 0.5. We adopt the inheriting strat-
egy proposed in [Kang et al., 2021], where the student model
is initialized with the teacher’s neck and head parameters.
All the models are sufficiently trained to convergence with
a SGD optimizer, an initial learning rate of 0.2, momentum
of 0.9, and weight decay of 0.0001. All models are evaluated
in terms of mean averaged precision (mAP) with 0.5 as the
Intersection over Union (IoU) threshold.

4.3 Experiment Results
In our experiments, we evaluated the performance of our pro-
posed gradient-guided knowledge distillation (GKD) method
against several state-of-the-art knowledge distillation meth-
ods on the KITTI and COCO-Traffic datasets using both
single-stage (e.g., GFL) and two-stage (e.g., Faster RCNN)
object detectors. The results on the single-stage and two-
stage detectors are shown in Table 1 and Table 2, respectively.

According to Table 1, we can see that our GKD method
provides a significant boost in mAP for single-stage stu-
dent detectors. Specifically, when using a ResNet-50 back-
bone, our GKD method achieved 4.9 and 2.3 mAP improve-
ment on the KITTI and COCO-Traffic datasets, respectively.
Similarly, when using a ResNet-18 backbone, our GKD
method achieved 6.2 and 4.3 mAP improvement on the KITTI
and COCO-Traffic datasets, respectively. Our GKD-BMFI,
which incorporates Bounding-box-aware Multi-grained Fea-
ture Imitation, outperforms all student baseline models and
other state-of-the-art distillation methods. For example, on
the KITTI dataset, our GKD-BMFI outperforms FGD [Yang
et al., 2022] by 1.1 mAP with a ResNet-50 backbone and
2.3 mAP with a ResNet-18 backbone. On the COCO-Traffic
dataset, it surpasses other five different KD methods by an av-
erage of 4.4 mAP with a ResNet-50 backbone and 1.7 mAP
with a ResNet-18 backbone.

As shown in Table 2, our proposed GKD method is also ef-
fective for two-stage detectors. Specifically, when utilizing a
ResNet-50 backbone on the COCO-Traffic dataset, our GKD
method demonstrates a remarkable improvement of 2 mAP
over the student-baseline and outperforms other state-of-the-
art distillation methods, including [Zhang and Ma, 2021] and
[Yang et al., 2022], by an average of 1.75 mAP. In addition,
our GKD-BMFI can further improve the distillation perfor-
mance. For example, when comparing to the student-baseline
with a ResNet-18 backbone on the KITTI dataset, our GKD-
BMFI method demonstrates an impressive improvement of 5
mAP.

4.4 Qualitative Analysis
In this subsection, we visualize the gradient-guided masks
from the teacher detector and different stages of the student



KD methods
Student backbones ResNet-50 ResNet-18

KITTI COCO Traffic KITTI COCO Traffic
Teacher (w ResNet-101) 89.4 71.8 89.4 71.8

Student-baseline 85.1 67.7 81.9 61.9
FKD [Zhang and Ma, 2021] 86.4 69.5 84.4 62.6

GID [Dai et al., 2021] 86.1 69.3 84.6 63.7
DeFeat [Guo et al., 2021] 85.4 69.3 83.3 62.7
FGD [Yang et al., 2022] 89.2 71.0 86.7 65.9
FGFI [Wang et al., 2019] 84.4 68.6 82.6 62.4

Our GKD 90.0 69.5 88.1 66.2
Our GKD-BMFI 90.3 71.2 88.7 66.6

Table 1: Performance (mAP) of different distillation methods with GFL detector [Li et al., 2020] on the KITTI and COCO traffic datasets.
(The teacher model and the student-baseline are non-distillation GFL models with ResNet-101 and ResNet-50/18 as backbones, respectively.)
The highest mAP in each column is highlighted.

KD methods
Student backbones ResNet-50 ResNet-18

KITTI COCO Traffic KITTI COCO Traffic
Teacher (w ResNet-101) 89.3 67.9 89.3 67.9

Student-baseline 88.9 67.5 84.1 63.1
FKD [Zhang and Ma, 2021] 89.0 67.8 87.2 65.3

FGD [Yang et al., 2022] 88.9 67.7 87.0 64.1
Our GKD 90.6 69.8 89.0 66.5

Our GKD-BMFI 90.8 70.3 89.1 66.9

Table 2: Performance (mAP) of different distillation methods with Faster R-CNN detector [Ren et al., 2015] on the KITTI and COCO
traffic datasets. (The teacher model and the student-baseline are non-distillation Faster-RCNN models with ResNet-101 and ResNet-50/18
backbones, respectively.) The highest mAP in each column is highlighted.

Detector GFL-ResNet-50

Modules
GKD × × × X X

MASK × × X X ×
MFI × X X X ×

Results mAP 85.1 88.5 89.7 90.3 90.0

Table 3: Ablation study of the three different components of
our GKD-BMFI. This ablation study is conducted on the KITTI
dataset using GFL with a ResNet-50 backbone. GKD: gradient-
guided knowledge distillation (with no bells and whistles), MASK:
bounding-box-aware Gaussian mask, MFI: multi-grained feature
imitation (MS and MC related).

detector, as shown in Fig. 4. This example from our experi-
ments on the KITTI dataset using the GFL detector. By com-
paring the gradient-guided masks between the teacher and the
students at different training stages, we can observe the stu-
dent’s gradual learning process and see how it tries to follow
the teacher’s guidance. According to the figure, the teacher
detector (Fig. 4 (b)) focuses on the objects in the image (e.g
cars and pedestrians) more accurately than the student de-
tector that has only been trained for one epoch (Fig. 4 (c)).
However, as our gradient-guided knowledge distillation pro-
cess goes on, we can see that the student’s attention gradually
becomes more similar to the teacher’s, as seen in Fig. 4 (d).
In Fig. 4 (e), we can see that the student even develops some
new high-attention areas (e.g., the smaller-scale car in front of
the vehicle). This potentially explains why our much smaller
distilled model even surpasses the teacher model in this case

(90.3 mAP vs. 89.4 mAP).

4.5 Ablation Study

As we see from previous subsections, our GKD-based meth-
ods can improve the performance of the student baseline by
large margins. To analyze which components of our method
contributes most to the mAP boost, we perform an ablation
study in this subsection. We perform the ablation study on the
KITTI dataset using the GFL [Li et al., 2020] detector with a
ResNet-50 backbone. We consider the following three com-
ponents in this study: our Gradient-guided Knowledge Dis-
tillation (GKD, without bells and whistles), bounding-box-
aware mask (MASK), and Multi-grained Feature Imitation
(MFI) methods. The results are shown in Table 3. According
to the table, all three components play a positive role in the
mAP boost, but the GKD with no bells and whistles makes the
most contribution. To be more specific, GKD alone can im-
prove the baseline mAP from 85.1 to 90.0. The combination
of the three components results in the highest mAP of 90.3
(a 5.2 mAP improvement). From Table 3, we can also see
that using only the MFI component results in a 3.4 mAP im-
provement. By incorporating the bounding-box-aware mask
(MASK) into MFI, we get BMFI (as described in Eq. 9),
which results in a 4.6 mAP improvement over the student de-
tector.



(a)Input image (b) Teacher

(c) Student Epoch-1 (d) Student Epoch-6 (e) Student Epoch-12

Figure 4: Visualization of the gradient-guided masks from the teacher detector and different training stages of the student detector using
GKD. This experiment is conducted on the KITTI dataset using the GFL detector. Different colors indicate different attention levels, with the
red color representing the highest attention and the blue color representing the lowest.

Model Backbones Parames(M) GFLOPs

GFL [Li et al., 2020] ResNet-101 51.03 13.79
ResNet-50 32.04 10.05
ResNet-18 19.09 7.61

Faster R-CNN [Ren et al., 2015] ResNet-101 60.13 27.09
ResNet-50 41.13 23.36
ResNet-18 28.13 20.77

Table 4: Model complexity (with 224×224 input resolution)

4.6 Complexity
In addition to mAP performance, we also compared different
architectures’ efficiency in terms of FLOPs1 and the number
of parameters. The results are shown in Table 4. Accord-
ing to the table, our distilled models with the smaller back-
bones (ResNet-50 or ResNet-18) are more efficient than the
corresponding teacher models with larger ResNet-101 back-
bones. In addition to the previously mentioned promising
mAPs, our ResNet-50/18 distillation model enjoys an aver-
age of 34.41%/67.90% reduction in model size (number of
parameters) and an average of 20.22%/33.70% savings in
FLOPs.

5 Conclusion
In this paper, we have proposed a novel gradient-guided
knowledge distillation (GKD) method. It leverages the gra-
dients of the detection loss w.r.t. feature maps to identify
valuable and relevant knowledge for knowledge distillation.
Our GKD gives special attention to feature maps contributing
more to the final detection. In addition, we have presented
bounding-box-aware multi-grained feature imitation (BMFI)
to further improve the distilled model’s performance. Ex-
periments on the KITTI and COCO-Traffic datasets, using
various detectors and backbones, demonstrate our method’s

1we count one multiplication and one addition operation as one
FLOP.

efficacy. The qualitative analysis shows that our gradient-
guided knowledge distillation allows the student to get similar
or even more informative attention maps than the teacher.
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