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DilateFormer: Multi-Scale Dilated Transformer
for Visual Recognition

Jiayu Jiao , Yu-Ming Tang , Kun-Yu Lin , Yipeng Gao, Andy J. Ma ,
Yaowei Wang , Member, IEEE, and Wei-Shi Zheng

Abstract—As a de facto solution, the vanilla Vision Transformers
(ViTs) are encouraged to model long-range dependencies between
arbitrary image patches while the global attended receptive field
leads to quadratic computational cost. Another branch of Vision
Transformers exploits local attention inspired by CNNs, which only
models the interactions between patches in small neighborhoods.
Although such a solution reduces the computational cost, it
naturally suffers from small attended receptive fields, which
may limit the performance. In this work, we explore effective
Vision Transformers to pursue a preferable trade-off between the
computational complexity and size of the attended receptive field.
By analyzing the patch interaction of global attention in ViTs, we
observe two key properties in the shallow layers, namely locality
and sparsity, indicating the redundancy of global dependency
modeling in shallow layers of ViTs. Accordingly, we propose Multi-
Scale Dilated Attention (MSDA) to model local and sparse patch
interaction within the sliding window. With a pyramid architecture,
we construct a Multi-Scale Dilated Transformer (DilateFormer) by
stacking MSDA blocks at low-level stages and global multi-head
self-attention blocks at high-level stages. Our experiment results
show that our DilateFormer achieves state-of-the-art performance
on various vision tasks. On ImageNet-1 K classification task,
DilateFormer achieves comparable performance with 70% fewer
FLOPs compared with existing state-of-the-art models. Our
DilateFormer-Base achieves 85.6% top-1 accuracy on ImageNet-
1 K classification task, 53.5% box mAP/46.1% mask mAP on
COCO object detection/instance segmentation task and 51.1%
MS mIoU on ADE20 K semantic segmentation task. The code is
available at https://isee-ai.cn/˜jiaojiayu/DilteFormer.html.

Index Terms—Vision transformer.
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I. INTRODUCTION

IN THE past years, Convolution Neural Networks (CNNs)
have dominated a wide variety of vision tasks such as clas-

sification [1], [2], [3], [4], [5], [6], [7], object detection [8], [9],
[10], [11], [12] and semantic segmentation [13], [14], [15], at-
tributing to the inductive bias of convolution operations, i.e., lo-
cal connections and weight sharing. However, convolution only
models local dependencies of pixels, which ignores the depen-
dency modeling between distant pixels to some extent [16]. In-
spired by sequence modeling tasks [17], [18] in natural language
processing (NLP) [18], [19], [20], pioneer works [21], [22], [23],
[24], [25] introduce Transformers with long-range dependency
modeling ability into computer vision, achieving exciting results
in various vision tasks.

With global attention, the vanilla Vision Transformers
(ViTs) [21], [22] can conduct dependency modeling between
arbitrary image patches. However, the global attended receptive
field of ViTs leads to quadratic computational cost, and model-
ing dependencies among all patches may be redundant for main-
stream vision tasks. To reduce the computational cost and redun-
dancy of global attention, some works [26], [27], [28], [29], [30]
introduce inductive bias explored in CNNs, performing local at-
tention only in small neighborhoods. However, local attention
naturally suffers from small attended receptive fields, which re-
sults in a lack of capability to model long-range dependencies.

In this work, we explore an effective Vision Transformer to
pursue a preferable trade-off between the computational com-
plexity and the size of the attended receptive field. By analyzing
the patch interaction of global attention in ViTs [21], [22], we
find that the attention matrix in shallow layers has two key prop-
erties, namely locality and sparsity. As shown in Fig. 2, in the
third attention block of ViT-Small, relevant patches are sparsely
distributed in the neighborhood of the query patch. Such a local-
ity and sparsity property indicates that distant patches in shallow
layers are mostly irrelevant in semantics modeling for main-
stream vision tasks, and thus there is much redundancy to be
reduced in the costly global attention module.

Based on the above analysis, we propose a Sliding Win-
dow Dilated Attention (SWDA) operation, which performs
self-attention among patches sparsely selected in the surround-
ing field. To make further use of the information within the
attended receptive field, we propose Multi-Scale Dilated Atten-
tion (MSDA), which simultaneously captures semantic depen-
dencies at different scales. MSDA sets different dilation rates for
different heads, enabling the ability of multi-scale representation
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Fig. 1. Performance comparisons with respect to FLOPs on ImageNet-1 K
classification. Without extra training data, our DilateFormer variants achieve
comparable or even better performance with fewer FLOPs.

learning. Following PVT [31] and Swin [26], we adopt a pyra-
mid architecture to develop a new effective Transformer model,
namely Multi-Scale Dilated Transformer (DilateFormer),
which stacks MSDA in shallow stages to capture low-level
information and global Multi-Head Self-Attention [21], [22] in
deeper stages to model high-level interaction.

For model evaluation, we design variants of DilateFormer
with different capacities and apply them to different vision tasks.
Experimental results show that our proposed DilateFormer out-
performs state-of-the-art Vision Transformers [21], [22], [26],
[27], [28], [30] on various datasets across different model sizes.
As depicted in Fig. 1, we demonstrate the performance of
our DilateFormers on ImageNet-1 K classification task. With-
out extra training data, our Dilate-S (4.8 GFLOPs) achieves
comparable performance with Swin-B (15.4 GFLOPs) [26] on
ImageNet-1 K using only 1/3 FLOPs. With the assistance of
Token Labeling [32], our DilateFormers achieve better perfor-
mance than LV-ViTs [32] at different model sizes. Specifically,
our Dilate-S� (4.9 GFLOPs) and our Dilate-B� (10.0 GFLOPs)
achieve 83.9% and 84.9% respectively, surpassing LV-ViT-
S [32] (6.6 GFLOPs) and LV-ViT-M [32] (16 GFLOPs). Besides,
our Dilate-B achieves 85.6% top-1 accuracy on ImageNet-1 K
classification [33] task, 53.5% box mAP/46.1% mask mAP on
COCO [34] object detection/instance segmentation task and
51.1% MS mIoU on ADE20K [35] semantic segmentation
task.

II. RELATED WORK

A comparison of technical details with various models is
shown in Table I. We summarize and classify our DilateFormer
and related vision transformer models from the perspectives of
overlapping tokenizer/downsampler, positional embedding, at-
tention type and multi-scale. In the following section, we detail
some related works.

A. Global Attention in Vision Transformers

Inspired by the success in NLP [17], [19], [45], the vanilla Vi-
sion Transformers (ViTs) [21], [22] directly apply self-attention
mechanisms to patches split from images. By utilizing suf-
ficient training data [21], [46] and strong data augmentation
strategies [22], [47], [48], [49], [50], [51], Transformer-based
methods [25], [52], [53], [54], [55], [56], [57], [58] achieve
exciting performance improvements on various vision tasks,
i.e., image classification [22], [26], [41], [44], [59], [60], ob-
ject detection [25], [28], [30], [60], [61], [62], [63], [64], se-
mantic segmentation [29], [42], [58], [65], [66], [67], [68],
and re-identification [69], [70], [71]. Since the computational
complexity of the self-attention mechanism is quadratic w.r.t.
the number of patches, global attention is difficult to apply in
high-resolution image encoding. Furthermore, according to our
analysis in Section I, the long-range modeling capability of the
global attention mechanism in shallow layers of ViTs is redun-
dant. To reduce the redundancy and computational cost of the
self-attention mechanism, some works [29], [31], [36] introduce
sub-sampling operations in self-attention blocks while preserv-
ing the global receptive field. Such sub-sampling operations re-
quire complex designs and introduce extra parameters or com-
putational cost. Different from these works, our Sliding Window
Dilated Attention (SWDA) is easy to implement for reducing the
redundancy of self-attention mechanism in a dilated manner.

B. Local Attention in Vision Transformers

In order to make the self-attention mechanism applicable for
high-resolution image encoding, some works [26], [60], [72]
apply the self-attention mechanism to patches in a fixed local
region to reduce computational cost. For example, Swin [26]
applies self-attention to the patches within fixed windows
and then adopts a window-shifting strategy in the next layer
for information exchange between the patches in different
windows. CSwin [60] improves the window-fixed setting in
Swin [26], performing self-attention to cross-shaped windows.
Other works [37], [38], [39] use grouped sampling or spatial
shuffling operation for information exchange between differ-
ent local windows. Inspired by the convolution operation in
CNNs [1], [3], [4], [5], [73], ViL [28] and NAT [30] propose
sliding window attention, which models dependencies only with
neighboring patches in the window centering each query patch.
Moreover, some works [40], [41], [74], [75], [76], [77], [78]
combine CNNs and Transformers for introducing the locality
prior, and they usually design hand-crafted and complex mod-
ules for interaction between CNNs and Transformers features,
leading to a lack of scalability to large-scale parameters [79],
[80]. However, some works [26], [28], [30], [60] above only
consider the locality of the self-attention mechanism and lack
consideration of the sparsity. Although some works [36], [37],
[38], [39] above perform self-attention in a sparse and uniform
manner, they are designed to approximate the global attended re-
ceptive field. In comparison, our Sliding Window Dilated Atten-
tion (SWDA) takes both the locality and sparsity of self-attention
mechanism into consideration. Our SWDA introduces a prior
to reduce the redundancy of self-attention mechanism, which
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Fig. 2. Visualization of attention maps of the third Multi-Head Self-Attention block of ViT-Small.1 We visualize the activations in attention maps of the query
patches (in the red box). The attention maps show that patches with high attention scores sparsely scatter around the query patch, and other patches have low
attention scores.

TABLE I
COMPARISON OF TECHNICAL DETAILS WITH OTHER MODELS

performs self-attention in a dilated window centered on query
patch.

C. Multi-Scale Vision Transformer

The vanilla Vision Transformer [21], [22] is a “columnar”
structure for visual tasks. Since multi-scale information [1],
[3], [4], [81], [82], [83], [84], [85] is beneficial for dense pre-
diction tasks such as object detection, instance and semantic
segmentation, recent works [25], [26], [28], [30], [31], [37],
[39], [42], [60], [65], [86], [87] introduce multi-scale modeling
capability by using a pyramid structure to design their trans-
former backbones. Several works [27], [39], [40], [41], [42],
[43], [65], [88] introduce multi-scale information in patch em-
bedding layers [39] or self-attention blocks [27], [42], [65] or

1We use the official checkpoint from https://github.com/google-research/
vision_transformer

add extra branches [40], [41], [43] to perform convolution op-
eration. CrossFormer [39] utilizes different convolution oper-
ations or different patch sizes for designing patch embedding.
Shunted Transformer [42] uses multi-scale token aggregation for
obtaining keys and values of various sizes. MPViT [65] con-
sists of multi-scale patch embedding and multi-path transformer
blocks. Conformer [41], Mobile-Former [40] and ViTAE [43]
design additional convolution branches outside or inside the
self-attention blocks to integrate multi-scale information. The
above methods all require complex design, which inevitably
introduce additional parameters and computational cost. Our
Multi-Scale Dilated Attention (MSDA) extracts multi-scale fea-
tures by setting different dilation rates, which is simple and does
not need to introduce extra parameters and computational cost.

D. Dilated Convolution

Traditional Convolution-based networks [1], [3], [4], [5]
usually use downsampling or convolution with a large stride
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to increase the receptive field and reduce computational cost.
However, these approaches [1], [3], [4], [5] result in reduced
resolution of feature maps, affecting model performance in
many tasks such as object detection [8], [9], [10], [11], [12]
and semantic segmentation [13], [14], [15]. Therefore, Cohen
et al. [89], [90] propose dilated convolution [91], [92], which
increases the receptive field without reducing the resolution and
extracts the information of the feature map at different scales by
setting different dilation rates. Dilated convolution with dynamic
weights [93], namely Dynamic Dilated Convolution (DDC),
uses the entire feature map to generate the kernel parameter of
convolution, which is data-specific at the feature-map level.

Different from existing works, we propose a simple yet effec-
tive Dilated Attention operation by introducing various dilation
rates at the same semantic level into a single self-attention op-
eration, which more flexibly models multi-scale interaction. Al-
though ours is a sliding window based dilated attention, ours dif-
fers from DDC because our modelling performs self-attention on
keys and values sparsely selected in a sliding window centered
on the query patch, which is data-specific at the token level. In
addition, we also notice a concurrent work, DiNAT [94], which
uses a single-scale and fixed dilation rate in each block of the
same stage, lacking multi-scale interaction. In contrast, our Di-
lateFormer uses a multi-scale strategy in each block i.e., setting
different dilation rates for different heads, which can capture
and fuse multi-scale semantic feature.

III. MULTI-SCALE DILATED TRANSFORMER

In this section, we introduce our proposed Multi-Scale Di-
lated Transformer (DilateFormer) in details. In Section III-A,
we introduce our Sliding Window Dilated Attention (SWDA)
operation, towards effective long-range dependency modeling
in feature maps. In Section III-B, we design Multi-Scale Dilated
Attention (MSDA), which simultaneously captures contextual
semantic dependencies at different scales to make good use of
the information inside the block. The overall framework and
variants of the proposed Multi-Scale Dilated Transformer (Di-
lateFormer) are illustrated in Section III-C.

A. Sliding Window Dilated Attention

According to the locality and sparsity properties observed in
the global attention of shallow layers in vanilla Vision Trans-
formers (ViTs), we propose a Sliding Window Dilated Atten-
tion (SWDA) operation, where the keys and values are sparsely
selected in a sliding window centered on the query patch. Self-
attention is then performed on these representative patches. For-
mally, our SWDA is described as follows:

X = SWDA(Q,K, V, r), (1)

where Q, K and V represent the query, key and value matrix,
respectively. Each row of the three matrices indicates a single
query/key/value feature vector. For the query at location (i, j)
in the original feature map, SWDA sparsely selects keys and
values to conduct self-attention in a sliding window of size w ×
w centered on (i, j). Furthermore, we define a dilation rate r ∈
N+ to control the degree of sparsity. Particularly, for the position

(i, j), the corresponding component xij of the output X from
SWDA operation is defined as follows:

xij = Attention(qij ,Kr, Vr),

= Softmax

(
qijK

T
r√

dk

)
Vr, 1 ≤ i ≤ W, 1 ≤ j ≤ H, (2)

where H and W are the height and width of the feature map.
Kr and Vr represent keys and values selected from the feature
maps K and V . Given the query positioned at (i, j), keys and
values positioned at the following set of coordinate (i,′ j ′) will
be selected for conducting self-attention:{

(i,′ j ′)
∣∣∣i′ = i+ p× r, j ′ = j + q × r

}
,

− w

2
≤ p, q ≤ w

2
. (3)

Our SWDA conducts the self-attention operation for all query
patches in a sliding window manner. For the query at the edge
of the feature map, we simply use the zero padding strategy
commonly used in convolution operations to maintain the size of
the feature map. By sparsely selecting keys and values centered
on queries, the proposed SWDA explicitly satisfies the locality
and sparsity property and can model the long-range dependency
effectively.

B. Multi-Scale Dilated Attention

To exploit the sparsity at different scales of the self-attention
mechanism in block-level, we further propose a Multi-Scale Di-
lated Attention (MSDA) block to extract multi-scale semantic
information. As shown in Fig. 4, given a feature map X , we
obtain corresponding queries, keys and values by linear projec-
tion. After that, we divide the channels of the feature map to
n different heads and perform multi-scale SWDA in different
heads with different dilation rates. Specifically, our MSDA is
formulated as follows:

hi = SWDA(Qi,Ki, Vi, ri), 1 ≤ i ≤ n, (4)

X = Linear (Concat [h1, . . ., hn]) , (5)

where ri is the dilation rate of the i-th head and Qi, Ki and
Vi represent slices of feature maps fed into the i-th head. The
outputs {hi}ni=1 are concatenated together and then sent to a
linear layer for feature aggregation.

By setting different dilation rates for different heads, our
MSDA effectively aggregates semantic information at various
scales within the attended receptive field and efficiently reduces
the redundancy of self-attention mechanism without complex
operations and extra computational cost.

C. Overall Architecture

With a pyramid structure, we propose the Multi-Scale Dilated
Transformer (DilateFormer) as shown in Fig. 3. According to
the locality and sparsity property of shallow layers in ViTs,
the first two stages of DilateFormer use Multi-Scale Dilated
Attention (MSDA) proposed in Section III-B while the latter
two stages utilize ordinary Multi-Head Self-Attention (MHSA).
What’s more, we use the overlapping tokenizer [74] for patch
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Fig. 3. The overall architecture of our DilateFormer. The top part shows the proposed Multi-Scale Dilated Attention (MSDA) block, consisting of DwConv,
Multi-Scale Sliding Window Dilated Attention operation (SWDA) and MLP. The bottom part shows DilateFormer, consisting of Overlapping Tokenizer, Overlapping
Downsampler, Multi-Scale Dilated Attention (MSDA) block and Multi-Head Self-Attention (MHSA) block.

Fig. 4. Illustration of Multi-Scale Dilated Attention (MSDA). First, the
channels of the feature map are split into different heads. Then, the self-attention
operation is performed among the colored patches in the window surrounding
the red query patch, using different dilation rates in different heads. Besides,
features in different heads are concatenated together and then fed into a linear
layer. By default, we use a 3× 3 kernel size with dilation rates r = 1, 2 and 3,
and the sizes of attended receptive fields in different heads are 3× 3, 5× 5 and
7× 7.

embedding, which uses multiple overlapping 3× 3 convolution
modules with zero-padding. The resolution of the output feature
map can be adjusted by controlling the stride size of convolution
kernels to be 1 or 2 alternately. To merge patches in the previous
stage, we utilize the overlapping downsampler [30], a convolu-
tion module with an overlapping kernel size of 3 and a stride of
2. To make the position encoding adaptive to inputs of differ-
ent resolutions, we use Conditional Position Embedding (CPE)
proposed in CPVT [24] whenever inputs are fed into MSDA or
MHSA blocks. Specifically, our overall architecture is described
as follows:

X = CPE(X̂) + X̂ = DwConv(X̂) + X̂, (6)

Y =

{
MSDA(Norm(X)) +X, at low-level stages,

MHSA(Norm(X)) +X, at high-level stages,
(7)

Z = MLP(Norm(Y )) + Y, (8)

where X̂ is the input of the current block, i.e., the image patches
or the output from the last block. In practice, we implement
CPE as a depth-wise convolution (DwConv) module with zero-
padding and 3× 3 kernel size. We add MLP following prior
works [22], [26], which consists of two linear layers with the
channel expansion ratio of 4 and one GELU activation.

Based on the above network structure, we introduce three
variants of the proposed DilateFormer (i.e., Tiny, Small, and
Base), and the specific model settings are given in Table II.

IV. EXPERIMENTS

To evaluate the performance of our Multi-Scale Dilated Trans-
former (DilateFormer), we take our model as a vision backbone
for ImageNet-1K [33] classification, COCO [34] object detec-
tion and instance segmentation, and ADE20K [35] semantic seg-
mentation. Furthermore, we evaluate the effectiveness of our key
modules via ablation studies. All experiments are conducted on
a single server node with 8 A100 GPUs.

A. Image Classification on ImageNet-1 K

1) Dataset and Implementation Details: ImageNet-1k [33] is a
large-scale 1000-classes dataset that contains 1.28 million train-
ing images and 50,000 validation images. We conduct classifica-
tion experiments on ImageNet-1 K dataset to evaluate our vari-
ants, following the same training strategies of baseline Trans-
formers as DeiT [22] and PVT [31] for a fair comparison. We
use the AdamW optimizer [105] with 300 epochs including the
first 10 warm-up epochs and the last 10 cool-down epochs and
adopt a cosine decay learning rate scheduler decayed by a factor
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TABLE II
MODEL VARIANTS OF OUR DILATEFORMER

Fig. 5. Performance comparisons with respect to model parameters on
ImageNet-1 K classification. Without extra training data, our DilateFormer
variants achieve comparable or even better performance with fewer model
parameters.

of 10 every 30 epochs with a base learning rate of 0.001, a batch
size of 1024, and a weight decay of 0.05. To further demonstrate
the performance of DilateFormer, Token Labeling [32] is used to
auxiliarily train DilateFormer. We add an extra fully connected
layer and an auxiliary loss to DilateFormer and follow the train-
ing strategy of LV-ViT [32] where CutMix [47] and Mixup [48]
are replaced by MixToken [32]. For fine-tuning our models on a
larger resolution, i.e., 384×384, the special hyperparameters are
set as follows: weight decay, learning rate, batch size, warm-up
epoch and total epoch are set to 1e-8, 5e-6, 512, 5 and 30.

2) Results and Analysis: As shown in Table III, Figs. 1 and
5, our proposed DilateFormer outperforms previous state-of-
the-art models at different model sizes. Specifically, Dilate-S
achieves 83.3% top-1 accuracy on ImageNet-1 K with a resolu-
tion of 224, surpasses Swin-T [26], ViL-S [28] by 2.0% and 1.3%
respectively and has fewer parameters and FLOPs than these

models. With the assistance of Token Labeling [32] (denoted by
‘�’), our models achieve better performance than LV-ViTs [32]
at different model sizes, i.e., Dilate-S� (4.9 GFLOPs) and Dilate-
B� (10.0 GFLOPs) achieve 83.9% and 84.9% respectively, sur-
passing LV-ViT-S [32] (6.6 GFLOPs) and LV-ViT-M [32] (16
GFLOPs). The results in Table III also show the efficiency and
effectiveness of the proposed model. Without extra assistance or
high-resolution finetuning, Dilate-T consumes only 3.2 GFLOPs
and achieves 82.1% accuracy, which is comparable to the per-
formance of ViL-S [28] (4.9 G, 82.0%), Focal-T [27] (4.9 G,
82.2%) and PVT-L [31] (9.8 G, 81.7%). Similar conclusions
can be found in larger models: our Dilate-S (83.3%) with 4.8
GFLOPs outperforms ViL-B [28] (13.4 G, 83.2%), Swin-B [26]
(15.4 G, 83.4%), and DeiT-B [22] (17.5 G, 81.8%), indicat-
ing that our MSDA can effectively capture long-range depen-
dencies as previous methods but save up to 70% FLOPs. To
demonstrate the strong learning capability of DilateFormer, our
Dilate-B fine-tuned on 384 × 384 images obtains 85.6% top-1
accuracy and outperforms LV-ViT-M [32] (85.4%) which needs
1.37 times more FLOPs.

B. Object Detection and Instance Segmentation on COCO

1) Dataset and Implementation Details: We evaluate our
variants on object detection and instance segmentation on
COCO2017 dataset [34]. COCO2017 dataset contains 118 K
images for training, 5 K images for validation and 20 K im-
ages for testing. We utilize two representative frameworks: Mask
R-CNN [12] and Cascade Mask R-CNN [108] implemented in
mmdetection [109] and adopt the ImageNet-1 K pre-trained vari-
ants as backbones. For Mask R-CNN and Cascade Mask R-CNN
frameworks, we use the AdamW optimizer with a base learn-
ing rate of 0.0001, a weight decay of 0.05, and a batch size
of 16. For a fair comparison, we train our variants Dilate-S
and Dilate-B via two strategies: (1) 1 × schedule with 12
epochs where the shorter side of the image is resized to 800
and the longer side is less than 1333; (2) 3 × schedule with 36
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART ON IMAGENET-1 K

epochs where the multi-scale training strategy is adopted and the
shorter side of the image is resized in [480, 800]. Because image
resolution in object detection and instance segmentation is gen-
erally larger than that in image classification, we use a combi-
nation of local window attention, local window attention with
shifted operation [26] and global attention in stage3 of Dilate-
Former to reduce computational cost.

2) Results and Analysis: Table IV and Table V report box
mAP (APb) and mask mAP (APm) of Mask R-CNN frame-
work and Cascade Mask R-CNN framework, respectively. Our
DilateFormer variants outperform recent Transformers on both
object detection and instance segmentation in two frameworks.
For Mask R-CNN 1× schedule, DilateFormer surpasses Swin
Transformer [26] by 2.8-3.6% of box mAP and 2.5-2.6% mask
mAP at comparable settings, respectively. For 3× + MS sched-
ule, Dilate-B achieves 49.9% box mAP and 43.7% mask mAP
in Mask R-CNN framework, 53.3% box mAP and 46.1% mask
mAP in Cascade Mask R-CNN framework. Furthermore, our
Dilate-S outperforms PVT-M [31] by 2.2% box mAP, 2.7% mask
mAP at 1× schedule with 13.2% fewer FLOPs.

C. Semantic Segmentation on ADE20 K

1) Dataset and Implementation Details: ADE20 K
dataset [35] contains 150 semantic categories, and there are
20,000 images for training, 2000 images for validation and
3000 images for testing. We evaluate the proposed variants
for DilateFormer on semantic segmentation on ADE20 K and
utilize two representative frameworks: Upernet [110] and Se-
mantic FPN [111] implemented in mmsegmentation [112] with
our ImageNet-1 K pre-trained variants as backbones. For train-
ing Upernet, we follow the configuration of Swin Transformer
and train our variants for 160 K iterations. We employ the
AdamW [105] optimizer with a base learning rate of 0.00006, a
weight decay of 0.01, a batch size of 16, and a linear scheduler
with a linear warmup of 1,500 iterations. As for Semantic FPN
80 K iterations, we follow the same configuration of PVT with
a cosine learning rate schedule with an initial learning rate of
0.0002 and a weight decay of 0.0001.

2) Results and Analysis: Table VI shows the results of Dilate-
Former equipped with UperNet and Semantic FPN frameworks.
Our variants DilateFormer-Small/Base equipped with Uper-
Net framework achieve 47.1/50.4% mIoU and 47.6/50.5% MS
mIoU, outperforming Swin [26] by at least 2.6% of mIoU and
1.0% of MS mIoU respectively. For Semantic FPN framework,
our variants achieve 47.1/48.8% mIoU, and exceed Swin [26]
by 3.6-5.6%.

D. Ablation Studies

We conduct ablation studies from the perspectives of sparse
and local patterns, dilation scale, block setting, stage setting
and overlapping tokenizer/downsampler. More ablation studies
about the kernel size are given in the supplementary material.

1) SWDA vs. Other Sparse and Local Patterns: We replace
Sliding Window Dilated Attention (SWDA) in the first two
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TABLE IV
OBJECT DETECTION AND INSTANCE SEGMENTATION WITH MASK R-CNN ON COCO VAL2017

TABLE V
OBJECT DETECTION AND INSTANCE SEGMENTATION WITH CASCADE MASK R-CNN ON COCO VAL2017

stages with other sparse and local patterns, i.e., Dilated Con-
volution (DC) [89], Dynamic Dilated Convolution (DDC) [93],
Window Attention with Spatial Shuffle (WASS2) [37] and Slid-
ing Window Attention (SWA) [73].

As shown in Table VII, our SWDA outperforms other sparse
and local patterns in various vision tasks. SWDA achieves 82.1%
Top-1 accuracy on ImageNet-1 K, 44.9% box mAP/40.9% mask
mAP on COCO and 45.84% mIoU on ADE20 K. SWDA outper-
forms DC (+0.4%, +1.4%/+0.6%, +1.69%) because attention is
data-specific compared to conventional convolution. Although
DDC is local, sparse and data-specific like SWDA, SWDA

2The WASS is an approximate sparse sampling operation which divides
patches into local Windows like Swin [26] and then shuffles keys and values
between different windows.

still outperforms DDC (+0.3%, +0.6%/+0.3%, +0.94%). DDC
uses the entire feature map to generate the kernel parameter
of convolution, which is data-specific at the feature-map level;
and in comparison, SWDA performs self-attention on keys and
values sparsely selected in a sliding window centered on the
query patch, which is data-specific at the token level. Therefore,
SWDA has a stronger modeling capability than DDC. SWDA
also outperforms WASS (+0.3%, +0.8%/+0.5%, +1.18%) and
SWA (+0.3%, +0.5%/+0.1%, +2.21%), which demonstrates the
importance of considering locality and sparsity in self-attention
of the shallow layers.

2) Dilation Scale: Since the number of heads must be multiple
of the number of dilation scales, we change the number of heads
and feature dimensions in each head, keeping the same total
length according to the number of dilation scales. We analyze
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TABLE VI
SEMANTIC SEGMENTATION EXPERIMENTAL RESULTS ON ADE20 K VALIDATION SET

TABLE VII
EXPERIMENT RESULTS WITH LOCAL AND SPARSE PATTERNS IN

THE FIRST TWO STAGES

TABLE VIII
TOP-1 ACCURACY ON IMAGENET-1 K OF DIFFERENT DILATION SCALES

the effects of dilation scales according to the performance on
ImageNet-1 K classification task. The number of heads in stage
1 or 2, dilation scales and top-1 accuracy are shown in Table VIII.
With the same number of heads in the block, the top-1 accuracy
(82.1%) of multi-scale dilated attention, i.e., [1, 2, 3], is better
than that of single-scale, i.e., [1], [2], and [3], because multi-scale
can provide richer information than single-scale. What is more,

the dilation rates in the block need to be moderate so that it can
simultaneously model both locality and sparsity of attention,
without introducing redundant information modeling due to the
large receptive field such as global attention. Therefore, we set
the dilation scale of the model to 3, i.e., [1, 2, 3] by default.

3) MSDA vs. Other Blocks Setting: In our DilateFormer, we
stack Multi-Scale Dilated Attention (MSDA) blocks in the first
two stages. To demonstrate the effectiveness of our proposed
MSDA, we replace MSDA in the first two stages of the de-
fault setting (D-D-G-G) with local attention in a shifted window
(L-L-G-G) [26] and global attention (G-G-G-G) [21] for com-
parison. We also compare with the global attention cooperated
with a naïve downsampling technique, namely global attention
with spatial reduction (G-G-G-G + sr.) [31], which reduces the
redundant interaction between patches by decreasing the num-
ber of patches. The maximum size of attended receptive field in
MSDA is 7× 7 with dilation, the size of attended receptive field
in local attention is 7× 7, and the size of attended receptive field
in global attention is the size of the entire feature map.

Table IX summarizes the comparison results. By using the
same size of maximum attended receptive field, our MSDA
(82.1%) outperforms local attention with shifted window (L-L-
G-G) [26] (81.7%) with fewer FLOPs, which demonstrates the
effectiveness of sparse and local attention mechanisms in shal-
low layers. Compared with the global attention (G-G-G-G) [21],
our MSDA achieves an improvement of 0.3% with half of
FLOPs, which further demonstrates the effectiveness and ef-
ficiency of the proposed local and sparse attention mechanism.
Also, the superiority of MSDA against the global attention shows
the redundancy of modeling dependencies among all image
patches. To reduce the redundant interaction, the global attention
with spatial reduction utilizes downsampling by convolution but
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TABLE IX
EXPERIMENT RESULTS WITH DIFFERENT BLOCKS IN STAGE1/2

TABLE X
ANALYSIS OF MULTI-SCALE DILATED ATTENTION

BLOCKS IN DIFFERENT STAGES ON IMAGENET-1 K

TABLE XI
TOP-1 ACCURACY ON IMAGENET-1 K OF USING OVERLAPPING

TOKENIZER AND DOWNSAMPLER

introduces extra parameters. By contrast, our MSDA exploits the
locality and sparsity property without extra parameters. The re-
sults show that our MSDA surpasses the global attention with
spatial reduction by 0.5%, which indicates the effectiveness of
redundancy reduction of the proposed MSDA. In downstream
tasks, our MSDA block also outperforms other types of blocks,
indicating that MSDA has a stronger modeling capability.

4) Stage Setting: To demonstrate the modeling capability of
the MSDA block at shallow stages, we conduct a set of exper-
iments to explore the performance of using MSDA in different
stages. In the four stages of the model, we progressively replace
the global MHSA block in each stage with the MSDA block.
Table X shows FLOPs and top-1 accuracy of models with dif-
ferent structures. The model performance shows a decreasing
trend, from 82.2% down to 80.5%, as the proportion of MSDA
blocks in the model stage increases. The results show that it is
more effective to consider the locality and sparsity property of
the self-attention mechanism in shallow stages rather than in
deeper stages. What’s more, the model with MSDA block only
in stage1 (82.2%) performs slightly better than the model with
MSDA blocks in both stage1 and stage2 (82.1%), but the former
has larger FLOPs (+ 0.35 G). Therefore, we use MSDA blocks
in both stage1 and stage2 by default.

TABLE XII
COMPARISON OF MODEL INFERENCE

5) Overlapping Tokenizer/Downsampler: We further study
how the overlapping tokenizer or downsampler affect the per-
formance. While keeping the same settings, we replace our
overlapping tokenizer or downsampler with a simple non-
overlapping tokenizer or downsampler, i.e., convolution with
kernel size 4 and stride 4 or convolution with kernel size 2 and
stride 2. As shown in Table XI, our model achieves a slight im-
provement (+0.4%) with overlapping tokenizer/downsampler,
indicating that the main improvement of our model does not
rely on these two modules.

6) Comparisons of Real Running Times: We provide a com-
parison of model inference about FPS, peak memory about our
DilateFormers and current SOTA models in Table XII. FPS and
peak memory usage are measured from forward passes with a
batch size of 256 on a single A100 GPU. With comparable model
parameters and FLOPs, our DilateFormers have comparable FPS
and better performance than current SOTA models.

7) Grad-CAM Visualization: To further illustrate the recog-
nition ability of the proposed DilateFormer, we apply Grad-
CAM [114] to visualize the areas of the greatest concern in
the last layer of DeiT-Tiny [22], Swin-Tiny [26] and Dilate-
Tiny. As shown in Fig. 6, our Dilate-Tiny model performs
better in locating the target objects and attends to seman-
tic areas more continuously and completely, suggesting the
stronger recognition ability of our model. Such ability yields
better classification performance compared with DeiT-Tiny and
Swin-Tiny.

8) More Visualization Results on Global Attention: In Sec-
tion I, we discuss two key properties i.e., locality and sparsity of
global attention in shallow layers. To further analyze these two
properties, we visualize more attention maps in the shallow lay-
ers of ViT-Small [21]. As shown in Fig. 7, the attention maps in
the shallow layers of ViT-Small show that activated key patches
are sparsely distributed in the neighborhood of the query patch.
Specifically, the patches with high attention scores sparsely scat-
ter around the query patch and other patches have low attention
scores.
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Fig. 6. Grad-CAM Visualization of the last layer of DeiT-Tiny, Swin-Tiny and
Dilate-Tiny. Images are from the validation set of ImageNet-1 k.

Fig. 7. More Visualization of attention maps of shallow layers of ViT-Small.
We visualize the activations in attention maps of the query patches (in the red
box). The attention maps show that patches with high attention scores sparsely
scatter around the query patch, and other patches have low attention scores.

V. CONCLUSION

In this work, we propose a strong and effective Vision Trans-
former, called DilateFormer, which can provide powerful and
general representations for various vision tasks. Our proposed
Multi-Scale Dilated Attention (MSDA) takes both the locality
and sparsity of the self-attention mechanism in the shallow lay-
ers into consideration, which can effectively aggregate semantic
multi-scale information and efficiently reduce the redundancy
of the self-attention mechanism without complex operations and
extra computational cost. Extensive experiment results show that
the proposed method achieves state-of-the-art performance in
both ImageNet-1 k classification and down-stream vision tasks
such as object detection and semantic segmentation.
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