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Abstract. 3D human pose estimation can be handled by encoding the geomet-
ric dependencies between the body parts and enforcing the kinematic constraints.
Recently, Transformer has been adopted to encode the long-range dependencies
between the joints in the spatial and temporal domains. While they had shown
excellence in long-range dependencies, studies have noted the need for improv-
ing the locality of vision Transformers. In this direction, we propose a novel pose
estimation Transformer featuring rich representations of body joints critical for
capturing subtle changes across frames (i.e., inter-feature representation). Specif-
ically, through two novel interaction modules; Cross-Joint Interaction and Cross-
Frame Interaction, the model explicitly encodes the local and global dependen-
cies between the body joints. The proposed architecture achieved state-of-the-art
performance on two popular 3D human pose estimation datasets, Human3.6 and
MPI-INF-3DHP. In particular, our proposed CrossFormer method boosts perfor-
mance by 0.9% and 0.3%, compared to the closest counterpart, PoseFormer, us-
ing the detected 2D poses and ground-truth settings respectively.4

1 Introduction

Automatic reconstruction of the 3D human pose from 2D images is a fundamental
problem in computer vision. 3D human pose estimation solution provides a geomet-
ric representation that is important to many applications including human-computer
interaction [13], [21], action understanding [28], [14], healthcare [1], and motion anal-
ysis [2]. The recently developed solutions to this problem can be categorised into two
main groups:(1) Two-stage approaches such as [50] and [4], where the input is firstly
extracted using 2D human pose estimation (HPE) architectures (for instance, [7], [15],
[39]), and (2) End-to-end methods [36], [34], where 3D reconstruction is inferred di-
rectly from input images or videos. Owing to the recent advances in the area of 2D pose
detectors, the two-stage approaches currently outperform their end-to-end counterparts.

Despite research spanning decades, 3D human pose estimation remains very chal-
lenging. It is an ill-posed problem caused by the ambiguity and high degree of freedom
in the input space [38]. Tackling the problem requires accounting the associated chal-
lenges. 2D to 3D pose regression is an under determined problem where many 3D poses

4 Codes and models will be publicly available on github.com

github.com
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Fig. 1: Conceptual Illustration of CrossFromer Architecture. This augments the
PoseFormer[51]’s architecture with the proposed cross-feature (joints) and cross-frame
interaction modules.

might correspond to almost identical 2D projections. In this setting, even the slightest
changes in joints positions and appearances can be informative. Given this, the problem
calls for two natural requirements for successful regression. First, capturing rich per-
joint feature representations to help mitigate the ambiguity and improve the accuracy
(R1:cross-feature interaction). A potentially promising direction is lever-
aging cross-joints features correlations at a detailed level. Second, leveraging informa-
tion across the Spatio-Temporal steam by attending carefully to features most relevant
to the preformed pose (R2:cross-frame interaction). In this work, we draw
on the recent advances of Vision Transformer and design an explicit mechanism for
meeting those requirements.

The recent advent of transformers [40] have progressed many visual recognition
tasks. Transformers have been used to encode the long-range relationships between in-
put tokens. As pose estimation is one of the fundamental computer vision problems, it
has been approached by many Transformer-based architecture. Yet, one of most notable
addition to this line of work is PoseFromer, [51]. Despite its great success, whose core
is ViT [11], it inherits some of the ViT limitations pointed out in the literature [25],
Namely, poor locality. This issue manifests itself in the fact that attention module at-
tends to all tokens. While this design contributed to Transformer excellence in natural
language domains, in vision applications it desirable attend to local information. As
this limitation can be linked to R2, one can expect an improvement in PoseFormer by
addressing it. More superficially, in this paper, we address the following question: is it
possible to improve Pose Transformers by improving locality and inter-feature repre-
sentations?.

To answer the above question, we propose to integrate locality and rich inter-features
interaction (as in Fig. 1), while retaining the key advantages of the original PoseFormer[51]
(i.e., capacity to handle large number of tokens and Spatio-Temporal modelling). To
this end, we design novel interaction modules to account for the above requirements as
follows:

R1) To capture rich feature that highlights potentially feeble but effective details,
we further integrate Bi-linear Pooling [48] in the locality attention module by modify-
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ing the cross terms in the attention using outer product. Hence , expanding the atten-
tion to all channels (unlike the original inner product that merges information across
channels dimension). Bi-linear Pooling was originally motivated by a similar goals of
a fine-grained visual classification and has demonstrated success in many applications
[47] from fine-grained recognition to semantic segmentation and video classification.

R2) There is a growing research that thrives for improving locality of Transformers
using various approaches such as local attention [10] and regional attention maps [5].
Our work shares the same motivation, albeit using novel methodology. Inspired by non-
local Neural Networks [43], [48], we opt for locality attention 5 to leverage the feature
representations of the joints across frames. This generalises the vanilla self-attention
[43], module [41], and can be interpreted as seeking a favourable middle ground be-
tween the locality-insensitive approaches (vanilla self-attention) and the purely local
(stationary convolutional) approaches.

To summarise, we combine the locality and inter-feature interaction in a transformer-
based approach for 3D pose estimation. Our architecture realises the needed require-
ments and provides two novel cross interaction modules to encode both the local and
global dependencies. More specifically, a cross-joint interaction (CJI) module is plugged
in the spatial encoder of the Transformer architecture to encode the kinematic con-
straints between the body parts within a frame. This module (see Sec. 3.2) is composed
of depth-wise convolutions followed by group normalization and non-linearity layer
(GELU). In addition to the cross-joint interaction module, we also propose a cross-
frame interaction (CFI) module to handle interactions between the joints across frames.
As opposed to PoseFormer [51], where the inner-product is used to compute the cor-
relation between frames, the CFI module explicitly learns the correlations between the
frames by using the outer-product between feature representations across the frames.
This helps in turn model the fine-grained temporal dynamics of the body parts.

Experiments were performed on Human3.6 [19] and MPI-INF-3DHP [31] datasets.
Reported results demonstrate the superiority of proposed method over the state-of-the-
art. Moreover, qualitative comparisons show that our method is efficient in capturing
hardly-visible body parts.

The main contributions of this paper are :

– A cross-joint interaction module CJI for spatial transformer architectures to encode
the kinematic dependencies between body joints while taking into account the local
connections of each joint.

– A cross-frame interaction module CFI for temporal transformer architectures to
capture the explicit correlations between body joints across frames.

– State-of-the-art performance achieved on two popular benchmark datasets; Hu-
man3.6 and MPI-INF-3DHP.

5 originally named “non-local operation” [43] after the “non-local” mean operation [3] and to
set it apart for the local convolution. Here, we use “locality attention” to signify its role in our
architecture and avoid confusion.
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2 Related Work

3D Human pose estimation methods are commonly used as the second stage to 2D
detection methods. First, the input image is passed to detection frameworks [15], [8] to
infer 2D poses. Then, 2D poses are lifted to 3D using other methods [51], [37]. Martinez
et al. [30] used a fully-connected residual network to predict the 3D poses. Fang et al.
[12] lifted to 3D poses using a grammar model for body joints configuration. Several
other methods used the temporal information to overcome the occlusion in the input
images [24], [37]. Pavllo et al. [37] proposed a dilated temporal convolution approach
to exploit the temporal information. Cai et al. [4] used a graph method to choose the
center frame and then refine the final estimated 3D pose. Wang et al. [42] customized
graph convolution network (GCN) in a U-shape as they involved motion modeling to
learn the 3D poses. In [50], a variant of a non-local module is customized to include the
semantics of the input images.

Recently, vision transformers advanced all the visual recognition tasks [40]. Fol-
lowing [11], transformer has been used to lift 2D poses to the corresponding 3D poses.
In [27], Lin et al. used convolutions and transformer together without temporal infor-
mation to predict 3D poses. In order to eliminate the redundancy in the sequence with
temporal information, Li et al. [24] proposed a strided transformer network. In [51],
spatial-temporal transformer is used for 3D HPE tasks. Using transformers in HPE
showed significant improvement overall. However, a pre-training on a large dataset is
required to learn more representative and effective representations for the sequence
HPE data. Our proposed method is different from the previous methods in leveraging
the cross-interaction between the joints of the body parts in the spatial and the temporal
domains.

3 Method

This section presents the proposed architecture to estimate 3D human pose from 2D. In-
spired by recently developed transformer approach, namely, Poseformer [51], we pro-
pose interaction modules inside the spatial and temporal encoders to make the trans-
former more efficient when lifting the 2D to 3D poses. The 2D input poses can be
inferred from any 2D pose detection approach such as [7], [15]. The poses of the con-
secutive frames in an input video are concatenated to form the input to the proposed
architecture. Suppose, {x1, x2, ..., xN} denotes the set of the 2D input frames, where
xi ∈ RJ×2 is composed of the 2D positions of the body joints for frame i, N is the total
number of frames in the input video and J is the number of joints. The output of each
frame is the 3D body joints, y ∈ RJ×3. The proposed architecture incorporates cross-
interaction modules into a vanilla spatial and temporal transformer [11]. Incorporating
these modules with the transformer helps to capture both long-range relationships and
local interactions between the body joints and across frames in both the spatial and
temporal domains, respectively.
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Fig. 2: The proposed architecture is composed of two main modules: a spatial trans-
former along with the Cross-Joint Interaction module (CJI), and a temporal transformer
with the proposed Cross-Frame Interaction (CFI).

3.1 Transformers

Despite the great success achieved by transformers in computer vision tasks [11], they
focus mostly on global dependencies between frames in the input sequence (as observed
by [51]). Motivated by this, we augment the proposed transformer with modules to
capture more joints-related context information within-frame and corss-frames. Below
we formulate our problem and review vision Transformer.

The input corresponds to the 2D poses in subsequent frames {xi ∈ RJ×2|i =
1, ..., N}. The initial layer of the transformer embeds the high dimensional features
of each patch and their positional information. This step is called patch embedding, and
is achieved by the following projection operation:

Z0 = [x1E; x2E; ..., xPE],

E ∈ R(J×2)×D, Z0 ∈ RP×D
(1)

where D is the embedding dimension, P is the number of patches that is equivalent to
the number of input body joints in the case of spatial processing and to the number of
frames in the case of temporal processing.

The output of the patch embedding step, Z0, is then passed into the most important
step of the transformer, i.e. the self-attention. It implicitly correlates the input patches
in the form of attention scores. This step is mainly based on mapping three learnable
weight matrices Q,K, V ∈ RP×D to attend for the output features.

The self-attention operation is computed as a scaled dot-product between these ma-
trices as follows:

A(Q ,K ,V ) = Softmax(
Q.KT

√
P

).V (2)

This attention operation is applied through a multi-head attention (MHA), which com-
bines various representations with different positions in parallel. The multi-head atten-
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tion operation is simply achieved by concatenating all heads as follows:

MHA = Concat(Aj(.)).W, j ∈ 1, ...,H (3)

where W is a learnable weight matrix and H is the number of heads.
The self-attention module is then combined with other layers such as layer nor-

malisation [44] and multi-layer perceptron (MLP). The steps in a transformer layer (l),
which are following the patch embedding step can be listed, in general, as follows:

Zl = MHA(LN (Zl−1)) + Zl−1,

Zl = MLP(LN (Zl)) + Zl,

Zl = LN (Zl),

where l = 1, 2, ..., L

(4)

where LN(.) represents the layer normalization and L is the layer indicator of the
transformer. Both the spatial and temporal parts of the transformer consist of identical
layers. However, the output feature space for the spatial encoders ∈ RJ×D and for the
temporal encoders is in RF×D, where F is number of frames in the input patch. The
final layer is another linear projection step that maps the output space to RJ×3 for each
frame.

3.2 Spatial Interaction

The spatial encoders of the transformer learn the relationships between the body joints
within the frame. The input is represented as x ∈ RJ×2, where each joint is considered
as an independent patch, and the output is the feature representation of each joint with
respect to the other joints. Inspired by [51], the 2D coordinates of each joint are firstly
transformed using a linear operation. The output of this step, Z0 ∈ RP×D is then passed
forward to compute the self-attention scores. This encodes the dependencies between
the different joints. However, these operations disregard the low-score relationships.
This is due to the non-local nature of the transformer operations listed in Eq. 4.

In order to tackle this issue, we propose the Cross-Joints Interaction (CJI) module
that we integrate inside the spatial encoders with an aim to achieve two characteristics;
1) getting the transformer to consider the locality nature of the human body parts and
their local interactions the same as encoding their non-local interactions (i.e. long-range
dependencies), and 2) explicitly encoding the interaction between the joints of the body
parts across the channels, which enriches the representation of the joints with low atten-
tion scores. Achieving these two characteristics improves the scores of the Multi-Head
Attention for the 3D human pose estimation task.

Cross-Joints Interaction (CJI) Module
This module is inserted between the MHA layer and MLP for each block. The CJI mod-
ule consists of two depth-wise convolutions with kernel size 5, group normalization and
non-linearity GELU. Also, the residual connection is added to the output of the mod-
ule to avoid overfitting. The operations within the CJI module are performed using the
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sequence of the following operations on outpout of the patch embedding step Z0:

Z = CONV (GN (GELU (CONV (Z )))) + Z (5)

where GELU refers to the non-linear layer in [16], CONV is the standard convolution
layer with kernel 5 and GN indicates the group normalization used in [44]. Since the
focus of the CJI module is on the cross-interaction between the joints, the output of
the MHA part in Eq. 4 has been transposed. That is, it becomes Z0 ∈ RD×P . The
spatial encoders for a transformer layer l can then be represented by the following list
of operations:

Zl = MHA(LN (Zl−1)) + Zl−1,

Zl = CONV (GN (GELU (CONV (Zl)))) + Zl

Zl = MLP(LN (Zl)) + Zl

Zl = LN (Zl),

(6)

3.3 Temporal Interaction

In contrast to the spatial encoders, which encode the long-range dependencies between
the joints within each frame, the temporal counterparts aim at learning rich representa-
tions across frames. These encoders are stacked on top of the spatial ones. Their input
is firstly flattened from RJ×D to R1×(J×D) leading to RF×(J×D) for all frames in a
patch. Similar to the vanilla transformers [40], the temporal positional information are
added to the input space. Apart from that, the remaining settings including self-attention
modules and MLP blocks are just as in the case of spatial encoders. The input size of
the transformer is maintained all over the transformers layers, which is RF×(J×D).

Cross-Frames Interaction (CFI) Module
The whole attention in temporal encoders is based on the dependencies between the
channels (i.e., Rf×(J×D)), where the explicit interaction between the frames is dis-
regarded. Depending on the scores produced by SoftMax calculation, joints with low
scores might be ignored in the process. For example, partially visible or occluded joint
won’t be properly represented and reflected in the 3D space. In order to resolve this
problem, we propose a Cross-Frame Interaction Module, CFI, to explicitly encode the
relationships between the same joint across frames using Bi-Linear Pooling operations
[48] instead of the traditional SoftMax. This helps in learning the correlations between
the channels explicitly as in [18] and reflects the the kinematic constraints on the output
space.

Briefly, the Bi-Linear Pooling learns pairwise feature correlations using the outer
product. Each element of the correlation matrix Cij =

∑
F ZiZj is a Bi-Linear product

of the corresponding embedded features of frames i and j and then it is sum-pooled,
where Zi ∈ RJ×D is the input feature of frame i. More precisely, the input is trans-
formed by combining the positional information with the frames where Z ∈ RF×(J×D)

and then using convolutions we extract K, Q, and V such that:
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K = ZWk, Q = ZWq, V = ZWv (7)

The bilinear matrix multiplication is performed between matrices Q, K and V as fol-
lows:

C = K ⊗Q ∈ RF×F

Z = C ⊗ V ∈ RD×F
(8)

where ⊗ refers to the bilinear pooling operation. Then, the output is added to the in-
put after performing convolution and group normalization. Compared to self-attention
modules in Equation 4, CFI module uses a bilinear pooling to learn pairwise interactions
between the same joint across different frames. This highlights the discriminativeness
of each frame which leads to rich representation. For example, one frame will focus
on the top joints of the body and another on the lower part, while CFI will focus on
combining both parts. Finally, CFI is merged with temporal transformer between MHA
layer and MLP blocks. The updated sequence of the temporal transformer operations
for a layer l can be listed as follows:

Zl = MHA(LN (Zl−1)) + Zl−1,

K = ZlWk, Q = ZlWq, V = ZlWv

Zl = GN (CONV (((K ⊗Q)⊗ V ))) + Zl

Zl = MLP(LN (Zl)) + Zl

Zl = LN (Zl),

(9)

The sequence of transformer encoders is combined in a compact form, which enables
an end-to-end training. Moreover, following the vanilla transformers [51] on using the
three embedding matrices with the input i.e., Q,K, and V allows CJI and CFI to serve
as generalised modules, which can be plugged in many other transformer architectures
for other various visual recognition tasks.

3.4 Regression Head

The spatial and temporal transformers are stacked together as in Fig. 2, where their
input is passed to the spatial encoders and then to the temporal ones. The output of the
temporal transformer is RF×(J×D), which requires to be reduced to R1×(J×3). First, 1D
convolution is applied as a weighted average for the frames to transform to R1×(J×D).
Then, a linear layer is used to learn the 3D geometries from the D dimension followed
by the normlisation layer. The final output is the estimated 3D position for each joint
R1×(J×3).

3.5 Loss function

Following the recent work in [37], the MPJPE loss function is employed to optimise the
parameters of the whole architecture:

L =
1

J

J∑
k=1

∥gk − pk∥2, (10)

where gk represents the ground-truth 3D joint position of joint k and pk is the 3D
output of the proposed architecture of the k-th joint.
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Table 1: Comparison between our proposed method and the state-of-the art approaches
for 3D human pose estimation. Mean Per Joint Position Error(MPJPE) is used to mea-
sure the mean error between the estimated 3D pose and the ground truth 3D pose on
Human3.6M under Protocols 1&2 where 2D pose detection is used as input. The top
shows results of Protocol 1 (MPJPE), whereas the bottom part shows the results of Pro-
tocol 2 (P-MPJPE). f refers to the number of frames used in each method, ∗ denotes
that the input 2D pose detection method used is the cascaded pyramid network (CPN),
and † refers to a transformer-based model. (Red: best; Blue: second best)
Protocol 1 Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average
Debral et al. [9] ECCV’18 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 52.1
Cai et al. [4] (f = 7) ICCV’19 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Pavllo et al. [37] (f = 243)* CVPR’19 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Lin et al. [26](f = 50) BMVC’19 42.5 44.8 42.6 44.2 48.5 57.1 52.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6
Yeh et al. [46] NIPS’19 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Liu et al. [29] (f = 243)∗ CVPR’20 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
SRNet [49] * ECCV’20 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
UGCN [42] (f = 96) ECCV’20 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.6
METRO [27] (f = 1) † CVPR’21 - - - - - - - - - - - - - - - 54.0
PoseFormer (no PT) [51] (81) ICCV’21 43.0 46.5 41.4 44.1 48.1 53.2 43.7 43.6 54.9 62.3 47.1 44.9 47.7 32.8 33.5 45.7
Chen et al. [6] (f = 81)* TCSVT’21 42.1 43.8 41.0 43.8 46.1 53.5 42.4 43.1 53.9 60.5 45.7 42.1 46.2 32.2 33.8 44.6
PoseFormer (PT)[51] (81) ICCV’21 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
CrossFormer (81) 40.7 44.1 40.8 41.5 45.8 52.8 41.2 40.8 55.3 61.9 44.9 41.8 44.6 29.2 31.1 43.7
Protocol 2 Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average
Pavlakos et al. [36] CVPR’18 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Hossain et al. [] ECCV’18 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Cai et al. [4] (f = 7) ICCV’19 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 32.3 39.0
Lin et al. [26] (f = 50) BMVC’19 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo et al. [37] (f = 243)* CVPR’19 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Liu et al. [29] (f = 243)* CVPR’20 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
UGCN [42] (f = 96) ECCV’20 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5
Chen et al. [6] (f = 81)* TCSVT’21 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6
PoseFormer (no PT) [51] (f=81) ICCV’21 33.5 35.6 33.5 35.6 36.1 40.4 32.8 32.5 43.5 49.3 35.4 33.2 36.3 25.3 26.6 35.3
PoseFormer [51](f=81) ICCV’21 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
CrossFormer (f=81) 31.4 34.6 32.6 33.7 34.3 39.7 31.6 31.0 44.3 49.3 35.9 31.3 34.4 23.4 25.5 34.3

4 Experiments

In this section, we provide empirical experiments to show the significance of our pro-
posed method. First, we describe the used datasets, the evaluation criteria and protocols.
Then, further experiments are conducted along with ablation studies. Finally, we pro-
vide the comparisons with state-of-the-art methods.

4.1 Datasets and Evaluation Protocols

Datasets Our experiments are evaluated on the most popular datasets for HPE tasks,
Human3.6 [19] and MPI-INF-3DHP [31].
Human3.6 dataset is the most popular dataset and the largest one for HPE. It consists
of 3.6 million images in the form of video frames. It includes seven subjects and a total
of 15 actions including “walking”, “sitting” and “posing”. Each video is captured from
4 different views. 3D annotations are provided by an accurate marker-based motion
capture. The subjects are split for training and testing as in [37], where S1, S5, S6,
S7and S8 are used for training and S1 and S11 for testing. One model is used to train
all the frames for the various actions. All the videos are recorded in indoor scenes.
MPI-INF-3DHP dataset contains 8 actions from 14 different views which result to
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input GT Poseformer CrossFormer input GT Poseformer CrossFormer

Fig. 3: Visual qualitative comparison of the proposed method (CrossFormer), the
ground-truth and the state-of-the art approach (PoseFormer) [51]. The experiments are
conducted on Human3.6M test set S11 with the “SittingDown” action. The blue arrows
on the ground-truth highlight the locations where our method clearly behaves better.

in diverse poses. It contains indoor and outdoor complex scenes and thus it is more
challenging for HPE tasks. The test set includes 6 various subjects. Without stated, the
settings are following [36]. The scenarios of test set are: studio with a Green Screen
(GS), studio without Green Screen (noGS) and outdoor scene (Outdoor).
Evaluation Protocols:
Human3.6 dataset evaluation for 3D pose estimation performance relative to the 3D
ground-truth follow [37] using the most common metrics, i.e. MPJPE and P-MPJPE.
MPJPE (Mean Per Joint Position Error) refers to the average of Euclidean distance in
millimeters between the predicted 3D human-body joints and the ground-truth ones.
It is also denoted by Protocol 1. For P-MPJPE, it calculates the Euclidean distance
between the 3D predicted pose after rigid alignment and the ground-truth. It is referred
to Protocol 2 as it is more robust to prediction failure of the joint individuals.
For MPI-INF-3DHP, Protocol 1 is used, Area Under Curve (AUC), and Percentage of
Correct Keypoint (PCK) within the 150mm as defined in [31]

Table 2: Comparison between the estimated 3D pose of the proposed method and the
ground truth 3D pose on Human3.6M dataset using the Mean Per Joint Position Error
under Protocol 1 (MPJPE). All methods use the ground truth 2D pose as input. (Red:
best; Blue: second best)
Protocol #1 Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [30] ICCV’17 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Lee et al. [22] ECCV’18 32.1 36.6 34.3 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 30.3 37.6 35.5 38.4
Pavllo et al. [37] CVPR’19 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
Cai et al. [4] f = 243 ICCV’19 32.9 38.7 32.9 37.0 37.3 44.8 38.7 36.1 41.0 45.6 36.8 37.7 37.7 29.5 31.6 37.2
Xu et al. [45] CVPR’21 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
Liu et al. [29] (f=243) CVPR’20 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Chen et al. [6] (f=243) TCSVT’21 - - - - - - - - - - - - - - - 32.3
SRNet [49] ECCV’20 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0
PoseFormer [51] (f=81) ICCV ’21 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
CrossFormer (f=81) 26.0 30.0 26.8 26.2 28.0 31.0 30.4 29.6 35.4 37.1 28.4 27.3 26.7 20.5 19.9 28.3
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4.2 Implementation Details

We used Pytorch [35] to implement our proposed method. Two Tesla A100 GPU 40
GB each were used to run the experiments. Adam optimizer [20] is chosen to train the
model for 100 epochs, decaying with 10%. Another decaying schedule is used with
initial learning rate of 0.0001 and an exponential decaying factor of 0.99 after each
epoch, whereas the batch size is 512. We follow [37] for the selection of the 2D pose
detector, which is the cascaded pyramid network (CPN) [8] on Human3.6 dataset. For
MPI-INF-3DHP dataset, 2D ground-truth poses are used as in [37]. Both of the spatial
and temporal transformers have 4 layers, and the multi-head attention has 8 heads. The
dimension of the features is 32 for spatial transformer and 544 for the temporal one. The
receptive fields are 9, 27 and 81. Horizontal flip augmentation is used for the training
and testing stages.

4.3 Comparison with the state-of-the art

Human3.6 In this part, we compare the proposed method with the state-of-the art meth-
ods on Human3.6 dataset. 15 actions have been selected from two subjects, S9 and S11,
for the evaluation. In order to guarantee fair comparisons, the input is taken from CPN
in the form of 2D keypoints for training and testing. Table 1 shows the comparison of
the SOTA methods with the proposed method (81 frames). Overall, our method achieves
the state-of-the art on Human3.6 on all the metrics and it outperforms the state-of-the
art (Chen et al. [6]) with a considerable margin of 0.9%, 1.3% for Protocols 1 and 2,
respectively. It is worth noting that the across-joint modules in the spatial and temporal
cases are crucial to infer the body-joints dependencies. Comparing the proposed method
with PoseFormer (with no pre-training used) shows the significance of the across-joint
correlation modules. Our method outperforms with a large margin of 2% the SOTA. In
terms of accuracy, we achieve 1% better than the second best accuracy. Additionally,
the proposed method achieves the best performance amongst all the compared methods
in protocol 2 in Table 1 (bottom). In some selected difficult poses such as walk together,
walk, smoke, where the poses change very quickly, the proposed method showed a sig-
nificant improvement ranging from 1.1% to 2.5% over the baseline. This highlights the
ability of our method to encode the long-range interactions between the body-joints.
Considering the pre-trained baseline, the proposed method achieves better performance
for all the actions. These results show the importance of plugging the across-joints mod-
ules in the transformers.

Further experiments on Human3.6 using ground-truth 2D poses as input have also
been performed. This shows the power of the proposed method where there is no noise
in the input as in the previous case. Table 2 shows the comparisons of our method and
the baselines. Overall, the proposed method achieved the best performance amongst the
baselines. It achieved 28.3% MPJPE, whereas the second best approach achieves 31.3
with gain of 3%. The proposed method outperforms the baselines in all the actions with
a considerable improvement range from 2.4% as the minimum difference, and 4.8% for
the largest.
MPI-INF-3DHP We further compare the proposed methods (CrossFormer) to previ-
ous ones on MPP-INF-3DHP using 9 frames. This is important because it illustrates
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the ability of the proposed method to train with fewer training samples in an outdoor
settings. As Table 3 shows, our method obtains the best performance amongst the com-
pared ones w.r.t. the metrics.

Table 3: Comparison between the proposed method (CrossFormer) and previous SOTA
methods on MPI-INF-3DHP. The metrics of the comparison are the Percentage of Cor-
rect Keypoints (PCK) and Area Under the Curve (AUC). The best scores are marked in
bold

PCK ↑ AUC ↑ MPJPE ↓
Mehta et al. [32] 3DV’17 75.7 39.3 117.6
Mehta et al. [33] ACM ToG’17 76.6 40.4 124.7
Pavllo et al. [37] (f = 81) CVPR’19 86.0 51.9 84.0
Lin et al. [26] (f = 25) BMVC’19 83.6 51.4 79.8
Li et al. [23] CVPR’20 81.2 46.1 99.7
Chen et al. [6] TCSVT’21 87.9 54.0 78.8
PoseFormer [51] (f = 9) ICCV’21 88.6 56.4 77.1
CrossFormer (f=9) 89.1 57.5 76.3

Computational Complexity Analysis: Table 4 shows the comparison with different
methods of complexity analysis. For the number of parameter analysis, it is relatively
bigger than Poseformer in the three settings, it increases slightly. However, this increase
is negligible in favor of accuracy gains. Apart from Poseformer, the number of param-
eters is still competitive to the other methods. It is also noticeable that the increase of
frames does not translate in ab increase in the total number of parameters (only by hun-
dreds). Regarding the FLOPs, the proposed method is not the best in comparison to
the comparable methods. However, it only exhibits a slight increase over Poseformer.
For frames per second (FPS), our method shows a slightly lower number compared to
PoseFormer.

Qualitative Results. In order to show the superiority of the proposed method qual-
itatively, we compare it with the ground-truth and Poseformer (the state-of-the art ap-
proach [51]). The evaluation is conducted on Human3.6 dataset S11 test set on “Setting-
Down” action. From Fig. 3, it is clear that the proposed method is considerably better
than Poseformer. We use blue arrows to define the locations where our method behaves
better. While our method shows some failures, it is still overall better than Poseformer.

4.4 Ablation Study

In order to check the impact of the the proposed method individually, we perform em-
pirical experiments on Human3.6 dataset using protocol 1. Also, one experiment is
conducted on the optimal hyper-parameters selection.
The impact of cross-joints modules In this ablation study, we investigate the con-
tribution of Cross-Joint Interaction (CJI) on the spatial transformer and on the whole
network. We also study the impact of CJI with spatial embedding since it considers in-
ductive bias implicitly and without. Regarding Cross-Frame Interaction (CFI) module,
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Table 4: Comparison between the proposed method and a set of previous methods
in terms of the comparison are computational complexity, number of the parameters,
MPJPE, and Frames Per Second (FPS). The experiments are conducted on Human3.6M
under Protocol 1 with the detected 2D pose as input.

f Parameters (M) FLOPs (M) MPJPE FPS
Hossain and Little [17] - 16.95 33.88 58.3 -
Chen et al. [6] 27 31.88 61.7 45.3 410
Chen et al. [6] 81 45.53 88.9 44.6 315
Chen et al. [6] 243 59.18 116 44.1 264
PoseFormer [51] 9 9.58 150 49.9 320
PoseFormer [51] 27 9.59 452 47.0 297
PoseFormer [51] 81 9.60 1358 44.3 269
CrossFormer 9 9.93 163 48.5 284
CrossFormer 27 9.93 515 46.5 266
CrossFormer 81 9.93 1739 43.8 241

we verify its impact on the network independently with temporal embedding and with-
out. For a fair comparison, we use the optimal parameter settings, including 4 blocks
for both transformers. The dimension of the keypoints is unified to 32 for the spatial
and 544 for the temporal. Table 5 shows the results of various settings between CJI and
CFI. The results illustrate that using both of the cross-joint modules improve the total
performance significantly (from 49.9 to 48.5). Table 5 (row 4) discusses using CJI mod-
ule along with both embeddings and without CFI. It achieved better performance than
Poseformer (from 49.9 to 49.3). This explains the need of both cross-joint modules to
add locality to the transformers. Similarly, using CFI only along with the embeddings
achieved better performance compared to PoseFormer. However, it achieved lower per-
formance than CJI. It is clear that using cross-joint modules without the spatial infor-
mation embeddings shows no difference in terms of performance, which proves our
claim of using CJI and CFI modules to add to the locality of the self-attention modules.
However, CJI is more independent than CFI to positional information as it shows the
same accuracy without the positional information, whereas CFI obtains 0.04% less.

Another ablation study (a table is included in the supplementary) is conducted to
verify the importance of the spatial and temporal transformers. This shows the various
settings of the proposed network and provides comparisons to Poseformer.

5 Conclusion

Two interaction modules have been proposed to resolve the issues of using the spatial
and temporal transformers for 3D human pose estimation. The first module, cross-joint
interaction (CJI), has been presented to resolve the locality issue of the spatial trans-
formers, while the second module, cross-frame interaction (CFI), has been developed
to encode the dependencies of the joints across the subsequent frames. Both of two mod-
ules have been incorporated into transformer architecture, CrossFormer, and validated
on popular 3D pose datasets. The proposed method has achieved new SOTA results
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Table 5: Quantitative Comparison between Poseformer and the proposed method on
the impact of different components on the total performance. The experiments are per-
formed on Human3.6M (Protocol 1) using CPN 2D pose as input. Various settings are
used for cross-joint modules (CJI: Cross-Joint Interactions; CFI: Cross-Frames Interac-
tions; Es: spatial embedding; Et: temporal embedding)

frames CJI CFI Es Et CrossFormer
9 ✗ ✗ 49.90
9 ✗ ✗ ✗ 49.30
9 ✗ ✗ 49.30
9 ✗ 49.30
9 ✗ 48.50
9 ✗ ✗ ✗ 49.83
9 ✗ ✗ 49.80
9 ✗ 49.80
9 48.50

for both datasets. In the future, we will test on other visual recognition applications to
ensure its generalisation to different visual tasks.
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