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Abstract: Object detection in drone-captured images is a popular task in recent years. As drones
always navigate at different altitudes, the object scale varies considerably, which burdens the op-
timization of models. Moreover, high-speed and low-altitude flight cause motion blur on densely
packed objects, which leads to great challenges. To solve the two issues mentioned above, based on
YOLOv5, we add an additional prediction head to detect tiny-scale objects and replace CNN-based
prediction heads with transformer prediction heads (TPH), constructing the TPH-YOLOv5 model.
TPH-YOLOv5++ is proposed to significantly reduce the computational cost and improve the detec-
tion speed of TPH-YOLOv5. In TPH-YOLOv5++, cross-layer asymmetric transformer (CA-Trans) is
designed to replace the additional prediction head while maintain the knowledge of this head. By
using a sparse local attention (SLA) module, the asymmetric information between the additional head
and other heads can be captured efficiently, enriching the features of other heads. In the VisDrone
Challenge 2021, TPH-YOLOv5 won 4th place and achieved well-matched results with the 1st place
model (AP 39.43%). Based on the TPH-YOLOv5 and CA-Trans module, TPH-YOLOv5++ can further
increase efficiency while achieving comparable and better results.

Keywords: object detection; drone; transformer; tiny object; high-density scene

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, are aircraft operated by
radio-controlled devices or their own programmed controls and do not carry any people.
Equipped with embedded devices and cameras, drones have been widely used in aerial
photography, agriculture, express transportation, disaster relief, and many other fields [1–4]
due to their advantages of small size, low cost, and convenient use. Meanwhile, research
into object detection in drone-captured images has attracted attention in recent years.

Thanks to the emergence of large-scale benchmark datasets, such as MS COCO [5]
and PASCAL VOC [6], deep convolutional neural networks (CNNs) [7–11] have made
remarkable achievements in object detection tasks. However, most deep CNNs are designed
for natural scene images, which do not work as well as expected on drone-captured images
because of the significant differences between natural and drone-captured images.

Three typical problems are illustrated in Figure 1. First, as shown in row (a), the object
scale and appearance vary considerably because the pitching angle and height of drones
change greatly, and there are many extremely tiny objects in images. Second, we find in
row (b) that objects in drone-captured images are usually in large quantities and often
densely packed, which brings in occlusion between objects. Third, drone-captured images
always contain confusing geographic elements because they cover a large area. As shown
in row (c) of Figure 1, drone-captured images cover a wide range of scenes, including
different weather scenes in different places at different times, leading to the diversity of
object features. These three problems make object detection in drone-captured images
very challenging.
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Figure 1. Intuitive cases to explain the three main problems in object detection in drone-captured
images. The cases in row (a), (b), and (c), respectively, show the size variation, high-density, and large
coverage of objects in drone-captured images.

In an object detection task, YOLO series [8,12–15] are representative methods for
one-stage detectors. In this paper, we first propose an improved model, TPH-YOLOv5,
to address the three main problems mentioned above. First of all, we find that YOLOv5
is insensitive to extremely small objects, so we add an additional head to YOLOv5 to
utilize more information for tiny object detection. In total, our TPH-YOLOv5 has four
detection heads separately used for the detection of tiny, small, medium, and large objects.
Then, to make more effective use of context information, we replace the original CNN-
based prediction heads with transformer-based heads named transformer prediction head
(TPH) [16,17]. To further improve the performance of TPH-YOLOv5, we employ several
tricks, including convolutional block attention module (CBAM) [18], data augmentation,
multi-scale testing (ms-testing), multi-model ensemble inference strategies, and an auxiliary
classifier for two confusing classes, “tricycle” and “awning-tricycle”.

Although TPH-YOLOv5 can detect objects in drone-captured images with high perfor-
mance, the additional prediction head introduces a large amount of computing resources
and is time consuming. By analyzing the experiment results, compared to YOLOv5, we
find TPH-YOLOv5 has more than a 60% increase in GPU memory usage and nearly a 50%
decrease in frames per second (FPS). Meanwhile, TPH-YOLOv5 has negligible performance
improvement on datasets that rarely have high-density scenes, such as UAVDT [19]. In
TPH-YOLOv5, the prediction boxes generated by the additional head can account for
nearly 80% of the total boxes, making it very suitable for dealing with high-density local
areas. However, a non-negligible number of false positive prediction boxes hinder the
performance of TPH-YOLOv5 on datasets like UAVDT [19].

To solve this problem and improve the generalization of our TPH-YOLOv5, we propose
TPH-YOLOv5++ with a cross-layer asymmetric transformer (CA-Trans) to remove the
additional prediction head while preserving the performance of detecting large-scale
varying objects and high-density scenes. The overview of the working pipeline using
TPH-YOLOv5++ is shown in Figure 2. By visualizing the results of the additional head
and small object prediction head, we find the latter can detect a significant portion of the
former’s results. Due to the severe occlusion between objects, the small object prediction
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head misses the objects with fewer features, while the additional head captures all the
features. The CA-Trans introduces a transformer-based module between tiny and small
paths, as shown in Figure 2, extracting asymmetric information between two paths to
enrich the features of the small path. Because the resolutions of the two paths are extremely
large for the transformer module and each pixel of features in the small path only needs the
nearby pixels of ones in the tiny path, we propose a sparse local attention (SLA) to generate
local self-attention and reduce the computational cost. The SLA generates a sparse relation
matrix to explore the correlation between each pixel in small path features and its local
area in tiny path features. Then, based on a relation reverse operation, SLA extracts the
asymmetric information between two paths and fuses it to features of the small path. The
obtained features cover the rich information of two paths and maintain the efficiency of the
small path.
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Figure 2. Overview of the working pipeline using TPH-YOLOv5++. Compared to the original
YOLOv5, our TPH-YOLOv5 proposes an addition prediction head, four transformer prediction heads
(TPH), and tricks to improve detection performance. Based on TPH-YOLOv5, TPH-YOLOv5++
designs a cross-layer asymmetric transformer (CA-Trans) to replace the tiny object detection head
and transfer knowledge to the small object detection head.

Compared to TPH-YOLOv5, our TPH-YOLOv5++ greatly improves detection effi-
ciency, maintains state-of-the-art (SOTA) performance, and even further improves the
detection performance of some datasets. This is an extension of our previous work [20].
Our code is available at https://github.com/cv516Buaa/tph-yolov5.

Our contributions are summarized as follows:

• By adding one more prediction head and integrating a transformer, CBAM, and a bag
of tricks, we propose TPH-YOLOv5 to effectively solve scale variation, high-density
scenes, and large coverage of objects in drone-captured images.

• To improve efficiency while maintaining detection performance of TPH-YOLOv5, we
further propose TPH-YOLOv5++ by designing the CA-Trans module to enrich the
features of small path.

• On the VisDrone2021 test-challenge dataset, TPH-YOLOv5 achieves 39.18% (AP), won
4th place in the VisDrone2021 DET challenge, and has a minor gap compared to the
1st place models. Extensive experments show that our TPH-YOLOv5++ achieves
SOTA results in VisDrone [21] and UAVDT [19] datasets and significantly reduces the
computational and inference time costs of TPH-YOLOv5.

https://github.com/cv516Buaa/tph-yolov5
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2. Related Work
2.1. Object Detection

Deep neural networks (DNNs) based models play a very important role in object de-
tection tasks, and these methods can be divided into different types according to different
criteria. Based on whether the model produces candidate boxes first for subsequent detec-
tion, we can divide models into one-stage detectors and two-stage detectors. YOLO series
models [8,12–15] and SSD [9] are classical one-stage detectors, while Faster R-CNN [7]
and Cascade R-CNN [22] are two-stage detectors. Based on whether there are prede-
fined anchors in a working pipeline, we can divide models into anchor-based detectors
and anchor-free detectors. The anchor-based methods family has Faster R-CNN [7] and
YOLOv5 [15], while CornerNet [23], CenterNet [24], YOLOX [25], and RepPoints [26] are
famous anchor-free detectors.

Faster R-CNN [7] proposes a region proposal network (RPN) promoting single-stage
detectors as the preferred approach in early DNN-based object detection. YOLOv1 [8]
and SSD [9] realize single-stage detection by matching each pixel on the feature map
to specific anchors, achieving fast detection with competitive performance. FPN [27]
uses multiple features with different resolutions to generate multiple prediction results.
By using feature maps of different resolutions to detect objects of different sizes, FPN
further improves the performance of previous methods and is widely used in object
detection models. To mitigate the influence of foreground–background class imbalance
on one-stage detectors, Lin et al. [10] designed the focal loss, which down-weights the
loss assigned to well-classified examples, and they proposed RetinaNet to verify the
effectiveness. To solve the problems caused by inference–time mismatch between the
IoUs and overfitting during training, Cascade R-CNN [22] is proposed with a sequence
of detectors trained with increasing IoU thresholds. In DNN-based detectors, there are
always two choices in designing the structure of prediction head: a shared module for both
localization and classification or two different modules for localization and classification.
For the latter, to understand how these two head structures work for these two tasks,
Wu et al. [28] performed a thorough analysis and proposed a new double-head method
that uses a fully-connected head focusing on classification and a convolution head for
bounding box regression. Revisiting the FPN architecture [27] used in most object detection
methods, YOLOF [29] points out that the success of FPN is due to its divide-and-conquer
solution rather than multi-scale feature fusion. By combining dilated encoder and uniform
matching, YOLOF realizes a fast single-in-single-out method with comparable performance
as multiple-in-multiple-out methods. To eliminate the network design difficulties caused
by predefined anchor boxes, CornerNet [23] views the object detection task as finding a
pair of keypoints for each object; these two keypoints are the top left and bottom right
points of the object’s bounding box. CenterNet [24] further develops the idea of CornerNet
by adding a center point to detect each object as a triplet.

Due to the fact that the number of targets in an image is unknown, DNN-based
detectors need to generate a lot of prediction boxes to ensure that all targets can be detected,
which leads to a quantity of redundant invalid prediction boxes. Detectors should therefore
use non-maximum suppression (NMS) to filter the overlapped boxes. However, if an object
lies within the predefined overlap threshold, it leads to a miss. Soft-NMS [30] is proposed to
decay the detection scores of boxes that are overlapped with other boxes with higher scores,
so no box is eliminated in this process. However, WBF [31] aims to fuse different prediction
boxes rather than eliminate part of them. By using information from all prediction boxes,
WBF can obtain more reasonable results.

2.2. Object Detection in Drone-Captured Images

In recent years, drones have been widely used in plenty of application scenes, and ob-
ject detection in drone-captured images has also attracted the attention of many researchers.
Based on the emergence of large-scale standard drone-captured image datasets [19,21],
DNN-based methods have made significant breakthroughs.
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The design of object detection methods in drone-captured images is difficult due
to the dynamic changes of flight height and angle, wide coverage scenes, and various
types of objects involved in the image collection process of drones. Because one image
covers a fairly large area, most of which does not have an object, the large background
leads to inefficient detection. ClusDet [32] unifies object clustering and detection in an
end-to-end framework by sequentially finding clustered areas and detecting objects in
these areas. Similarly, Zhang et al. [33] proposed a difficult region estimation network to
find a difficult high density area for further detection. Aiming to address vehicle detection
challenges caused by diversity in drone-captured images, AdNet [34] seeks to align features
between different viewpoints, illumination, weather, and background following the idea of
domain adaptation. Tiny scale objects and unevenly distributed objects severely hinder
the performance of detection models as discussed in ClusDet [32]. GLSAN [35] adds an
efficient self-adaptive region, selecting an algorithm for the global–local detection network,
finding high density areas, and detecting objects with large size variation accurately. Similar
to ClusDet [32] and GLSAN [35], DMNet [36] proposes a novel crop strategy guided by
a density map, removing the area without objects and balancing the information of the
foreground and background. Yu et al. [37] analyzed the detection results of DMNet [36]
and found that it has a explicit performance degradation on a long-tail scene. They designed
a DSHNet [37] to handle head classes and tail classes separately by combining class-biased
samplers and bilateral box heads. MDCT [38] designs a multi-kernel dilated convolution
(MDC) block and transformer block to identify small objects in dense scenes. Gallo et al. [39]
utilized the YOLOv7 model to solve the challenge caused by the existence of unstructured
crop conditions and the high biological variation of weeds. RAANet [40] constructs a
new residual ASPP by embedding the attention module and residual structure into the
ASPP, to deal with the variability and complex background problems of land use in high-
resolution imagery. HawkNet [41] proposes an up-scale feature aggregation framework to
fully utilize multi-scale complementary information. CDMNet [42] formats density maps
into coarse-grained form and designs a lightweight dual task density estimation network.
FiFoNet [43] effectively selects a combination of multi-scale features for an object and block
background interference, which further revitalizes the differentiability of the multi-scale
feature representation. TPH-YOLOv5 [20] combines a transformer-based prediction head
and the YOLOv5 detection model, realizing significantly performance improvement in
large size variation and high density scenes.

In order to promote the application of a deep learning algorithm on drones in real-
time scenes, many works focus on designing fast and lightweight models for high quality
object detection in drone-captured images. UAV-Net [44] analyzes influences from different
backbone architectures, prediction heads, and model pruning methods comprehensively
and constructs a better combination to realize fast object detection. GDFNet [45] uses a
global density model to jointly extract density information from multiple-level pyramid
features, which is faster than most models based on pyramid feature fusion architecture.
RHFNet [46] utilizes a bidirectional fusion architecture to fully use multi-layer features,
efficiently realizing small object detection. By summarizing the disadvantages of the one-
stage detectors as a mismatch of bounding box classification and the inadequate ability of
only one-time regression, HSD [47] proposes a novel reg-offset-cls module and a stacked
strategy implementing precision and speed at the same time. Integrating the specialized
feature extraction and information fusion techniques, SODNet [48] effectively improves
small object detection ability with high real-time performance. Dividing the high-resolution
input image into a number of chips still introduces a heavy computational cost, so UFPMP-
Det [49] merges sub-regions given by a coarse detector into a mosaic for a single inference,
further promoting the efficiency of detection.

2.3. Vision Transformer

Transformer [16] has been proposed for machine translation tasks and has since
become the state-of-the-art method in many NLP tasks. ViT [17] first introduced the
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transformer to the computer vision field by taking the image as multiple patches. Each patch
contains a certain number of pixels, and ViT does not regard pixels as a two-dimensional
structure; instead it extracts attention between every pair of patches. By obtaining attention
on a patch from all other patches, we can refine the features of this patch with the help
of others.

However, as the input image resolution increases, the computational and storage
demand of ViT increases a lot, which makes it hard to apply it to high-resolution computer
vision tasks. To solve this issue, Swin–Transformer [50] uses a shifted windowing scheme to
realize efficient computation of Transformer by limiting self-attention computation to non-
overlapping local windows while also allowing for cross-window connection. To further
expand the cross-window connection, CSWin–Transformer [51] proposes cross-shaped
window self-attention mechanisms for computing self-attention in the horizontal and
vertical stripes, promoting the connection in the global perspective. The above-mentioned
Transformer models can only be applied if query, key, and value have same shape, so
CrossViT [52] proposes a novel Transformer-based module that can be used between
features with different spatial sizes. CrossViT first utilizes two ViTs for two features
separately. Then, CrossViT exchanges the class tokens of two features and extracts cross
attention between two features. V2X-ViT [53] proposes V2X communication using a novel
vision Transformer to achieve accurate 3D object detection. CoBEVT [54] designs a fused
axial attention module (FAX) to realize bird’s eye view semantic segmentation. MaxViT [55]
consists of two aspects: blocked local and dilated global attention, which allows for global–
local spatial interactions on arbitrary input resolutions with only linear complexity.

Transformer is also widely used in image object detection tasks. DETR [56] proposes an
end-to-end architecture for object detection by regarding the task as a direct set prediction
problem. However, in DETR, each object query will not focus on a specifc region. Anchor
DETR [57] proposes a query design and an attention variant to make the object query focus
on the objects near the anchor point. Based on the design idea of the YOLO series [8,12–15],
YOLOS [58] proposes a series of Transformer-based object detection models.

3. Methodology
3.1. Overview of YOLOv5

YOLOv5 [15] uses CSPDarknet53 with a spatial pyramid pooling (SPP) module as
the backbone, PANet as the neck, and a prediction head. To further improve the detection
potential and robustness of YOLOv5, a bag of freebies and specials [14] are provided, such
as mosaic data augmentation, multi-scale training strategy, and focal loss. Since it is the
most notable and convenient one-stage detector, we select it as our baseline.

When we train the original YOLOv5 model on the VisDrone2021 dataset with multiple
data augmentation (MixUp, Mosaic, Flip, Rotate, etc.), we find that YOLOv5x, the largest
version of YOLOv5, has the best detection performance. The results of YOLOv5x are more
than 1.5% better than YOLOv5s, YOLOv5m, and YOLOv5l (another, smaller version of
YOLOv5) on AP value. We choose YOLOv5x as our baseline, even though it has more
computational cost. In addition, we adjust the parameters of commonly used photometric
distortions and geometric distortions.

3.2. TPH-YOLOv5

In order to make YOLOv5 deal better with the three main problems existing in drone-
captured images mentioned above, we first modify the YOLOv5 and propose the TPH-
YOLOv5, a general detector for object detection in drone scenes. The architecture of
TPH-YOLOv5 is shown in Figure 3.
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Figure 3. The architecture of TPH-YOLOv5. TPH-YOLOv5 introduces an additional head, trans-
former prediction head (TPH), and convolutional block attention module (CBAM). Four prediction
heads are named tiny, small, medium, and large heads, and the branches before these heads are tiny,
small, medium, and large paths.

3.2.1. Additional Prediction Head for Tiny Objects

Because the pitching angle and height of drones change greatly, the object scale and
appearance vary considerably. On the other hand, it is very frequent for objects in the
image to appear in high-density clusters. The experimental results show that the original
YOLOv5 with three prediction heads can not work effectively in cases where many tiny
objects appear as clusters.

We therefore add an additional prediction head to YOLOv5, promoting the perfor-
mance of tiny object detection. As shown in Figure 3, the additional head takes low-level
high-resolution features as input and fuses them with multi-layer high-level features,
which is more sensitive to tiny objects. Although the additional prediction head introduces
quite a lot of computation and memory costs, the performance of tiny object detection is
greatly improved.

3.2.2. Transformer Prediction Head

Due to the confusing characteristics of objects in drone-captured images, objects of
different categories can be quite similar in some very confusing scenes. It is necessary
to adequately extract the long-range relationship between objects and other instances
in the scene. Inspired by the vision transformer [17], we replace some CSPbottleneck
modules with transformer encoder modules to utilize contextual information by generating
attentions between every pixel pairs. The transformer encoder module increases the ability
to capture different local information. It can also explore the feature representation potential
with its self-attention mechanism [16].

However, the computation and memory costs required by transformer modules greatly
increase as the input resolution increases. On the other hand, the transformer lacks some
critical inductive biases inherent to CNNs, such as translation equivariance and locality. To
solve the problems mentioned above, we only replace the last CSPbottleneck module of the
backbone and four prediction heads. When enlarging the resolution of input images, we can
reduce the number of replaced modules. For example, when we use 1996 × 1996 resolution
for VisDrone2021 test-challenge datasets, we only replace the last one or two prediction
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heads with transformer modules; as there are only two transformer blocks in each module,
our TPH-YOLOv5 is flexible.

Compared to the original vision transformer module [17], the Swin-Transformer [50]
reduces memory cost while increasing computation cost slightly. Therefore, we also utilize
the Swin-Transformer module to construct our transformer prediction head (TPH), and all
four prediction heads can be replaced by TPH simultaneously when the image resolution
is 1996 × 1996.

3.2.3. Other Strategies

To efficiently take advantage of channel information and spatial information within
the features, we utilize convolutional block attention module (CBAM) [18] after CSPbottle-
neck and transformer encoder modules, as shown in the light green part of Figure 3. In
drone-captured images, large coverage of scenes always leads to confusing geographical
elements. By introducing the CBAM module, our TPH-YOLOv5 can mitigate the influence
of confusing information and focus on useful information that can clearly identify objects.

To further improve the detection performance on multi-scale objects, we implement a
multi-scale testing (ms-testing) strategy during the inference phase. Our ms-testing first
resizes the width and height of input images to 1, 0.83, and 0.67 times the original resolution,
and then each image is flipped horizontally. After obtaining six different prediction results,
we fuse them by weighted boxes fusion (WBF) [31] to get the final prediction result.

After analyzing the detection results of our TPH-YOLOv5 on the VisDrone2021 test-
dev dataset, we find that there are some easily confusing categories, such as tricycle and
awning-tricycle. To identify these two categories efficiently, we train an auxiliary classifier
to distinguish tricycle and awning-tricycle in particular.

3.2.4. Overview of TPH-YOLOv5

To make the discussion easier, we define the model structure mathematically. As
shown in Figure 3, defining the input images as x, we get f0 = Focus(x). The four-feature
output from the backbone can be denoted as fi, where i = 1, · · · , 4. These four features can
obtained as in Equation (1):

fi = Bi( fi−1), i = 1, · · · , 4 (1)

where Bi(·) denotes the different blocks in the backbone; B1(·), B2(·), and B3(·) are combi-
nations of a convolutional (Conv) layer; there are 3, 6, or 9 CSPbottleneck modules; and
B4(·) is a combination of a Conv layer, three transformer modules, and an SPP module.

In the neck part, there are also four features, f
′
i , where i = 1, · · · , 4. These four features

can be formulated as follows:

f
′
i =

{
Ni

(
fi, f

′
i+1

)
, i = 1, 2, 3

Conv( f4), i = 4
(2)

where Ni(·, ·) represents different blocks; Conv(·) denotes Conv layers; and Ni(·, ·) is
formulated as in Equation (3):

Ni

(
fi, f

′
i+1

)
= UpBlock

(
Concat

(
fi, Upsampling

(
f
′
i+1

)))
(3)

where Concat(·, ·) and Upsampling(·) are concatenate and upsampling operations, respec-
tively; UpBlock(·) denotes the combination of different modules; in N2(·, ·) and N3(·, ·), the
UpBlock(·) consists of three CSPbottleneck modules, a CBAM module, and a Conv layer;
and the UpBlock(·) in N1(·, ·) is composed of a transformer module and a CBAM module.
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We define the features before the last four Conv. layers as f
′′
i where i = 1, · · · , 4.

Therefore, we obtain Equation (4):

f
′′
i =

{
f
′
1, i = 1

Hi

(
f
′
i , f

′′
i−1

)
, i = 2, 3, 4

(4)

where Hi(·, ·) represents different blocks, similar to Ni(·, ·).

Hi

(
f
′
i , f

′′
i−1

)
= DownBlock

(
Concat

(
f
′
i , Conv

(
f
′′
i−1

)))
(5)

The DownBlock(·) also denotes the combination of different modules. The DownBlock(·)
in H2(·, ·), H3(·, ·), and H4(·, ·) consists of a CBAM module and 1, 2, or 3 transformer
modules, respectively. After obtaining the f

′′
i , we can obtain the final predictions as in

Equation (6):

pi = Conv
(

f
′′
i

)
, i = 1, · · · , 4 (6)

where pi denotes the four output predictions from different prediction heads.

3.3. TPH-YOLOv5++

Based on the TPH-YOLOv5 model, to improve the efficiency while maintaining detec-
tion performance, we propose TPH-YOLOv5++. We will discuss the overall architecture of
TPH-YOLOv5++ and the designed cross-layer asymmetric transformer (CA-Trans) module
in detail.

3.3.1. Analysis of TPH-YOLOv5

Although TPH-YOLOv5 obtains significant performance improvement on drone-
captured images, there are some obvious weaknesses hindering the application of this model.

To analyze the influence of the additional prediction head, we conduct two visual-
ization experiments. In the first experiment shown in Figure 4, we match the prediction
boxes produced by each head to the ground truth individually and split prediction results
into the correct set and the wrong set. We sort all bounding boxes in the prediction set
from largest to smallest according to their confidence values. By setting the IoU threshold
as 0.5, for every ground truth box, the bounding box satisfying this requirement with the
highest confidence is seen as the correct one, and other boxes are assigned to the wrong set.
We process all the bounding boxes predicted in the VisDrone2021 test-dev and draw the
distribution of confidence values in Figure 4. We can see that the additional prediction head
(the “Tiny Prediction Head” in Figure 4) produces plenty of wrong boxes with relatively
large confidence, especially between 0.2 and 0.6. These wrong boxes hamper the detection
performance on datasets where high-density scenes are not frequent; for example, the
UAVDT [19].

To further analyze the difference in prediction results produced by the additional head
and the small prediction head, we visualize the spatial distribution of correct bounding
boxes. As shown in Figure 5, we calculate the average confidence value of each pixel. First,
for each pixel, we find all the correct bounding boxes that cover this pixel. Second, we
average the confidence values of these correct bounding boxes as the visualization value of
this pixel. Finally, the visualization results are shown in Figure 5. If the average confidence
is high, the color tends towards red, otherwise it tends towards blue. We can obviously
find that the additional head indeed improves the performance for high-density scenes
and large size variations. However, the small prediction head also captures objects of
considerable proportions that are contained by the results predicted by the additional head.

Based on the analysis of the two visualization experiments, we find there is asymmetric
information between the additional head and the small prediction head. Therefore, we
design the cross-layer asymmetric transformer (CA-Trans) to enrich the feature of small
paths with the help of tiny paths. By introducing the CA-Trans, we propose the TPH-
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YOLOv5++ significantly reduces the computational cost and improves the detection speed
of TPH-YOLOv5.
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Figure 4. The distributions of confidence of each prediction bounding box generated by four predic-
tion heads. The bounding boxes are split into correct boxes and wrong boxes. The first and second
row are the distributions of correct and wrong boxes, respectively.

(b) Tiny Prediction Head (c) Small Prediction Head(a) Original Image

Figure 5. Two cases of spatial distributions of correct bounding boxes generated by tiny and small
heads. The color of each pixel denotes the average confidence of correct boxes covering the pixel. If
the confidence is high, the color tends towards red, otherwise it tends towards blue.

3.3.2. Overview of TPH-YOLOv5++

Based on the TPH-YOLOv5, we remove the additional prediction head and introduce
CA-Trans between tiny paths and small paths to predict the final f

′′
2 , as shown in Figure 6.

As discussed earlier, the additional prediction head leads to a significant increase in com-
putation and memory costs. However, the additional prediction head indeed captures
more information than the small prediction head, which greatly helps object detection in
high-density scenes and for tiny objects. Aiming to transfer the asymmetric information
between two heads to the small prediction head, we design CA-Trans, taking f1 and f

′
2 as

inputs and getting f
′′
2 .
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Figure 6. The overall architecture of TPH-YOLOv5++. Different from the TPH-YOLOv5, TPH-
YOLOv5++ removes the additional head and introduces the CA-Trans to enrich the features of small
paths. The CA-Trans takes f1 and f

′
2 as inputs and outputs f

′′
2 . After a Conv. layer, a new p2 is

predicted to absorb the best of the original p1 and p2.

Compared to TPH-YOLOv5, there are no f
′
1 or f

′′
1 in TPH-YOLOv5++. Otherwise, the

new p2 is obtained as in Equation (7):

p2 = Conv
(

CA− Trans
(

f1, f
′′
2

))
(7)

where CA− Trans(·, ·) denotes the cross-layer asymmetric transformer (CA-Trans) module.

3.3.3. Cross-Layer Feature Enrichment Transformer

To extract the asymmetric information, which means the information that the addi-
tional head can capture but the small prediction head ignores, we design the CA-Trans as
shown in Figure 7.

CA-Trans takes f1 and f
′
2 as inputs and generates f

′′
2 . Then, K and Q are generated from

f1, which can be formulated as K = LN(Conv( f1)) and V = LN(Conv( f1)), where LN(·)
denotes the layer norm. Similar to K and V, Q is generated from f

′
2 by Q = LN

(
Conv

(
f
′
2

))
.

After obtaining Q, K, and V, we use the sparse local attention (SLA) module to calculate
sparse attentions between features of two different layers: 1) the feature of tiny paths
represented by f1; and 2) the feature of small paths represented by f

′
2.

In SLA, we only calculate attentions between pixels in Q and their a× b neighborhoods
in K, as shown in Figures 7c and 8. The a and b must satisfy the restriction condition that
a ≥ 2 and b ≥ 2. If a and b equal 2, then the neighborhood areas of all pixels in Q can
cover the whole space of K just fine without overlapping. However, if a or b is larger than 2,
the cover space of all the neighborhood areas will be beyond the space of K, which means
we need to pad some zeros in K to make the calculation work well. Defining the spatial
size of Q as (w, h), then the spatial size of K is (2w, 2h). If the size of neighborhood area is

(a, b), in which a ≥ 2 and b ≥ 2, then we need to pad K with zeros with
(⌊ a−2

2
⌋
,
⌊

b−2
2

⌋)
in horizontal and vertical dimensions, respectively, to get the Kp, where b·c denotes the
rounding down operation. If a equals an odd number, for example, a = 3, then we have
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b 3−2
2 c = b

2−2
2 c. Therefore, for each pixel in Q, the pixels in Kp covered by the neighborhood

area under the 3× 3 condition are the same as those under the 2× 2 condition. Therefore,
we only use even number as a and b in experiments, and we set a = b because there is
no obvious scale difference between horizontal and vertical image features. The whole
working pipeline of SLA can be seen in Algorithm 1.

Algorithm 1: Sparse Local Attention
Input: input feature maps Q, Kp, V
Output: output Fout

1 for i from 0 to a− 1 do
2 for j from 0 to b− 1 do
3 select the (i, j) point in neighborhood of each pixel in Q;
4 build the neighborhood feature Mij;
5 end
6 end
7 concatenate all neighborhood features to generate Ksparse;

8 R←− Ksparse ·Q√
dQ

;

9 for each row r of R do
10 calculate the average R̄r;
11 A(r, l)←− 2 · R̄r − R(r, l);
12 end
13 build the asymmetric map A;
14 Fa ←− so f tmax(A) ·V;
15 return Fa;

Layer Norm

Multi Self-AttentionMulti Self-AttentionMulti Self-AttentionMulti-Head 

Self-Attention

Layer Norm

MLP

Layer Norm

Multi Self-AttentionMulti Self-AttentionMulti Self-AttentionSparse Local 

Attention

Layer Norm

MLP

Asymmetric Feature Extractor

Q K V K V Q

Cross-layer Sparse 

Relation Module

K Q

V

(a) (b) (c)

Element-wise sum Matrix multiplication

Figure 7. Overview of the CA-Trans module. (a) is the vanilla ViT module that generates Q, K, and V
from a single feature map and uses multi-head self-attention (MHSA) to obtain attentions. (b) shows
the architecture of our CA-Trans, where K and V are generated from f1, while Q is generated from f

′
2.

Otherwise, we replace the MHSA with the sparse local attention (SLA) to extract attentions between
two different layers. (c) is the SLA. By introducing the cross-layer sparse relation module (CSRM)
and asymmetric feature extractor (AFE), our CA-Trans can efficiently extract asymmetric information
between two paths and enrich the features of small paths.
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Figure 8. The architecture of SLA with three inputs: Kp, Q, and V. The Kp is generated from K after
padding with zeros. After using a sparse relation extraction and an inverse method, the V values are
multiplied by the asymmetric map to obtain the final output.

As shown in Figure 8, we can get neighborhood area of Kp for each pixel in Q. There-
fore, we have a neighborhood set for Q as formulated in Equation (8):

M =
{

Mij | neighborhood f eature o f pixel (i, j), i = 0, · · · , a− 1, j = 0, · · · , b− 1
}

(8)

where M is the set of neighborhood features of all pixels in Q, and Mij contains the (i, j)
neighborhood feature of each pixel in Q. The transformation of each pixel from Kp to Mij

can be calculated by Equation (9):

M(u,v)
ij = Kp(2u + i, 2v + j) (9)

where u and v are the coordinates of pixel in Mij, and they satisfy u = 0, 1, · · · , w− 1 and
v = 0, 1, · · · , h− 1. Then we concatenate all the neighborhood features as in Equation (10):

Ksparse = Concat
(

M00, M01, · · · , M(a−1)(b−1)
)

(10)

where Ksparse is the feature generated by concatenating all elements in M. Then, as shown
in Figure 8, we get the sparse relation map by following Equation (11):

R =
Ksparse ·Q√

dQ
(11)
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R denotes the sparse relation map, and dQ is the channel dimension of Q. The dot
between between Ksparse and Q denotes the element-wise multiplication. Then we use
asymmetric feature extractor (AFE) to obtain the asymmetric map:

A = AFE(R) (12)

A denotes the asymmetric map, and AFE(·) denotes the AFE module. Specifically, the
value at each location of A can be calculated by Equation (13):

A(i, j) = 2 · R̄i − R(i, j) (13)

where R̄i denotes the average of the i-th row of R. Therefore, we invert values in R along
each row to find the features that are least relative to features in Q.

We apply the asymmetric map to V to extract the features with the asymmetric
information that the original small prediction head ignores.

Fa = so f tmax(A) ·V (14)

where Fa denotes the asymmetric feature output from the SLA and so f tmax(·) is the softmax
operation along each row of A. Finally, the output Fout of our CA-Trans can be formulated as:

Fout = f
′′
2 + Fa + MLP

(
LN
(

f
′′
2 + Fa

))
(15)

4. Experiments
4.1. Implementation Details
4.1.1. Datasets

The VisDrone2021 [21] and UAVDT [19] datasets are used in experiments to evaluate
our methods. VisDrone2021 contains four parts: a training set, validation set, test-dev set,
and test-challenge set, in which the maximal resolution of images is 2000 × 1500. The
training set has 6471 images and their corresponding annotations for training models. The
validation set and the test-dev set have 548 and 1610 images, respectively, all of which have
corresponding annotations, and these two sets are used to evaluate the performance of
models. The test-challenge set has 1580 images and provides no annotations because this
set is applied as the test set of the VisDrone Challenge 2021. The UAVDT dataset consists
of 50 videos that altogether have 40,376 images, of which 24,778 images are for training
and 15,598 images are for testing; all of the images have 1024 × 540 resolution. Following
previous works [32,33,49], the training set and testing set are from different videos, and
all images in the same video can only be included in one of these two sets. Therefore, the
training set consists of images from 31 videos and the testing set contains images of the
other 19 videos.

4.1.2. Experimental Setting

We implement our models in Pytorch. All of our models use an NVIDIA RTX3090ti
GPU for training and testing. In the training phase, we use part of a pre-trained model from
YOLOv5x; because our models and YOLOv5 share most of the backbone and some part of
the head, there are many weights that can be transferred from YOLOv5x to TPH-YOLOv5
and TPH-YOLOv5++. By using these weights, we can save a lot of training time.

We train our TPH-YOLOv5 and TPH-YOLOv5++ on VisDrone2021 for 65 epochs,
the first 2 of which are used for warm-up. The Adam optimizer is used, and we set the
initial learning rate as 3× 10−4 with the cosine learning rate (cosine lr) schedule. The
learning rate of the last epoch decays to 0.12 of the initial learning rate. To avoid missing
important information, we set the width and height of input as 1536 due to the large image
size. Limited by the GPU memory, the batch size is only 2. On UAVDT, we use 30 epochs
and set the batch size as 4. Because the image sizes of UAVDT are smaller than those of
VisDrone2021, we use 1024 as the input size.
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4.1.3. Evaluation Metrics

We adopt AP, AP50, and AP75 as our evaluation metric. Specifically, AP is computed
by averaging over all 10 IoU thresholds, i.e., in the range [0:50:0:95] with uniform step size
0:05 of all categories. AP50 and AP75 are computed at the single IoU thresholds 0:5 and
0:75, respectively. The VisDrone Challenge 2021 also provides AR1, AR10, AR100, and
AR500 as evaluation metrics. The AR1, AR10, AR100, and AR500 scores are the maximum
recalls given 1, 10, 100, and 500 detections per image.

4.2. Comparison with State-of-the-Art Methods

We conduct experiments to compare our models with current state-of-the-art (SOTA)
methods on the test-challenge set, validation set, and test-dev set of the VisDrone2021
dataset and UAVDT test set.

The results in Table 1 are provided by the organizer of VisDrone Challenge 2021 [59].
On the AP metric, which is also the ranking criterion of this challenge, our TPH-YOLOv5
achieves 39.18% and wins 4th place. On the other hand, on AP75, AR1, AR10, AR100, and
AR500, we achieve the highest performance, which means TPH-YOLOv5 can accurately
detect most objects but produces quite a few false positive boxes at the same time. The bold
values in the tables denote the best result on that metric.

Table 1. Results of our TPH-YOLOv5 and other SOTA methods in the VisDrone Challenge 2021
test-challenge dataset, provided by the organizer of this challenge [59].

Method AP [%] AP50 [%] AP75 [%] AR1 [%] AR10 [%] AR100 [%] AR500 [%]

DBNet(A.1) 39.43 65.34 41.07 0.29 2.03 12.13 55.36
SOLOer(A.2) 39.42 63.91 40.87 1.75 10.94 44.69 55.91
Swin-T(A.3) 39.40 63.91 40.87 1.76 10.96 44.65 56.83
TPH-YOLOv5(A.4) 39.18 62.83 41.34 2.61 13.63 45.62 56.88
VistrongerDet(A.5) 38.77 64.28 40.24 0.77 8.10 43.23 55.12
cascade++(A.6) 38.72 62.92 41.05 1.04 6.69 43.36 43.36
DNEFS(A.7) 38.53 62.86 40.19 1.42 9.38 43.10 54.87
EfficientDet(A.8) 38.51 63.25 39.54 1.82 11.12 43.89 55.12

DPNet-ensemble 37.37 62.05 39.10 0.85 7.96 42.03 53.78
DroneEye2020 34.57 58.21 35.74 0.28 1.92 6.93 52.37
Cascade R-CNN 16.09 31.94 15.01 0.28 2.79 21.37 28.43

We also conduct experiments on the VisDrone2021 validation set. As shown in Table 2,
our TPH-YOLOv5 achieves 42.1% and 45.7% for AP and AP75, respectively, which are
better than previous SOTA methods. Specifically, TPH-YOLOv5 surpasses UFPMP-Net [49]
by 2.9% and 5.5% for AP and AP75, and has 2.2% AP50 lower than UFPMP-Net. Compared
to TPH-YOLOv5, TPH-YOLOv5++ is about 1% lower on three metrics but still gets higher
AP and AP75 than other methods.

Table 2. Results of our methods and current SOTA methods on the VisDrone2021 validation set.

Method AP [%] AP50 [%] AP75 [%]

ClusDet [32] 28.4 53.2 26.4
Zhang et al. [33] 30.3 58.0 27.5
GLSAN [35] 32.5 55.8 33.0
DMNet [36] 29.4 49.3 30.6
DSHNet [37] 30.3 51.8 30.9
HawkNet [41] 25.6 44.3 25.8
CDMNet [42] 31.9 52.9 33.2
DCRFF [60] 35.0 57.0 29.5
UFPMP-Net [49] 39.2 65.3 40.2

TPH-YOLOv5 42.1 63.1 45.7
TPH-YOLOv5++ 41.4 61.9 45.0
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Table 3 shows the results of different methods on the VisDrone2021 test-dev set. We
can see that the Vit-YOLO [61], which also wins 2nd place in the VisDrone Challenge
2021, achieves the SOTA results. Compared to other methods, our TPH-YOLOv5 and
TPH-YOLOv5++ have comparable results.

Table 3. Results of our methods and current SOTA methods on the VisDrone2021 test-dev set.

Method AP [%] AP50 [%] AP75 [%]

GDFNet [45] 18.7 31.7 19.4
VistrongerDet [62] 33.85 57.27 34.81
ViT-YOLO [61] 38.5 63.2 40.5

TPH-YOLOv5 34.4 54.5 36.5
TPH-YOLOv5++ 33.5 52.5 35.7

The experiments on UAVDT are also conducted, as shown in Table 4. Compared to
current methods, our TPH-YOLOv5 achieves new SOTA results on all three metrics, which
are 26.9%, 41.3%, and 32.7% for AP, AP50, and AP75, respectively. The TPH-YOLOv5
obtains more than a 2% performance gain at least, and is even 4.7% higher than UFPMP-
Net [49] on AP75. Based on TPH-YOLOv5, our TPH-YOLOv5++ further improves the
performance to 30.1%, 43.5%, and 34.3% on these three metrics, which mean 3.2%, 2.2%,
and 1.5% gains. As we discussed above, for datasets with less high-density scenes like
UAVDT, TPH-YOLOv5++ can significantly overcome the shortages of TPH-YOLOv5.

Table 4. Results of our methods and current SOTA methods on UAVDT.

Method AP [%] AP50 [%] AP75 [%]
ClusDet [32] 13.7 26.5 12.5
Zhang et al. [33] 17.7 - -
GDFNet [45] 15.4 26.1 17.0
GLSAN [35] 19.0 30.5 21.7
DMNet [36] 14.7 24.6 16.3
DSHNet [37] 17.8 30.4 19.7
CDMNet [42] 20.7 35.5 22.4
SODNet [48] 17.1 29.9 18.0
UFPMP-Net [49] 24.6 38.7 28.0

TPH-YOLOv5 26.9 41.3 32.7
TPH-YOLOv5++ 30.1 43.5 34.3

4.3. Ablation Studies
4.3.1. Ablation Study on VisDrone2021 Test-Dev Set

We analyze the importance of each proposed component on a local test-dev set as we
cannot test them on the VisDrone2021 competition server. As shown in Table 5, we evaluate
six different models from multiple perspectives. For analyzing the detection performance,
we use AP, AP50, and AP75 as metrics. Additionally, GPU memory cost during testing
phase, giga floating point of operations (GFLOPs), and frames per second (FPS) are utilized
to evaluate the computation cost and operation efficiency of these models.

The additional prediction head significantly increases the detection performance.
Compared to YOLOv5x, it improves the AP, AP50, and AP75 by 2.1%, 3.3%, and 2.1%,
respectively. However, it also introduces non-negligible memory and computation costs.
Specifically, the GPU memory cost increases from 4279 M to 4667 M, and GFLOP increases
from 200.2 to 241.2. The FPS of ’YOLOv5x+p2’ is 10.89, which is lower than the 13.68 of
YOLOv5x. Similar to the additional prediction head, the transformer modules (both ViT
and Swin-Transformer) and the CBAM lead to higher memory and computation costs when
further improving the detection performance. The ‘TPH-YOLOv5 (SwinTrans+CBAM)’
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achieves 34.0%, 53.2%, and 35.8% on AP, AP50, and AP75, but its GPU memory cost,
GFLOPs, and FPS are 4977M, 315.4, and 7.36, which are inferior to these of YOLOv5x.

Table 5. Ablation study of the importance of each proposed component on the VisDrone2021 test-dev
set. ‘p2’ denotes the additional prediction head. ‘ViT’ denotes the ViT module. ‘previous’ denotes the
‘YOLOv5x+p2+ViT’, and ‘TPH-YOLOv5 (SwinTrans+CBAM)’ denotes the model replacing all ViT
modules with Swin-Transfomer.

Methods AP [%] AP50 [%] AP75 [%] GPU Memory GFLOPs FPS

YOLOv5x 28.9 45.4 30.8 4279 M 200.2 13.68
YOLOv5x+p2 31.0 48.7 32.9 4667 M 241.2 10.89
YOLOv5x+p2+ViT 32.8 52.0 34.8 5103 M 244.5 9.51
TPH-YOLOv5 (previous+CBAM) 33.6 53.2 35.8 5105 M 245.1 8.22
TPH-YOLOv5 (SwinTrans+CBAM) 34.0 53.2 35.8 4977 M 315.4 7.36
TPH-YOLOv5++ 33.1 52.1 35.1 4715 M 207.0 11.86

Based on the TPH-YOLOv5, we propose the TPH-YOLOv5++. As shown in Table 5,
TPH-YOLOv5++ decreases 0.9%, 1.1%, and 0.7% on three detection performance metrics.
In addition, the GFLOP of TPH-YOLOv5++ is 207.0, which is substantially lower than
that of TPH-YOLOv5 and slightly higher than YOLOv5x. Meanwhile, for the FPS metric,
TPH-YOLOv5++ improves 4.50 compared to TPH-YOLOv5.

4.3.2. Ablation Study on UAVDT

On the UAVDT dataset, we also evaluate the detection performance and efficiency
of TPH-YOLOv5 and TPH-YOLOv5++. As shown in Table 6, different from the results in
the VisDrone2021 test-dev set, TPH-YOLOv5++ is better than TPH-YOLOv5 on detection
performance. For AP50 and AP75, TPH-YOLOv5++ gains 2.2% and 1.6% respectively.
For AP, TPH-YOLOv5++ even improves the performance from 26.9% to 30.1%, which is
also the SOTA result. Additionally, TPH-YOLOv5++ decreases GPU memory cost from
3631 M to 3361 M. The GFLOP of TPH-YOLOv5++ is 293.2, which is 47.3% less than that of
TPH-YOLOv5. For FPS, TPH-YOLOv5++ achieves 42.19, evenly 68.0% higher than that of
TPH-YOLOv5.

Table 6. Ablation study of TPH-YOLOv5 and TPH-YOLOv5++ on UAVDT.

Methods AP [%] AP50 [%] AP75 [%] GPU Memory GFLOPs FPS

TPH-YOLOv5 26.9 41.3 32.7 3631 M 556.6 25.12
TPH-YOLOv5++ 30.1 43.5 34.3 3361 M 293.2 42.19

4.3.3. Ablation Study on Each Category

To further analyze the performance of different models on all categories, we calculate
the AP of each category as shown in Table 7. “TPH-YOLOv5+ms-testing” means utilizing
multi-scale testing on TPH-YOLOv5. In the VisDrone2021 images, ‘pedestrian’ means
humans walking or standing while ‘people’ means humans sitting, lying, or driving cars,
so pedestrians are more likely to appear in high-density scenes. The additional prediction
head improves the AP of pedestrians by 2.1%, but the AP of people only increases 0.6%.
This result is indicative of the better performance of additional detection heads for high-
density scenes.

By adding the ViT modules, we can see that AP of each category has a signifi-
cant improvement. For people, the AP also increases from 14.9% to 16.0%. Therefore,
the introduction of transformer can utilize more context information and explore the
prediction potential.
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Table 7. Ablation study for each category on the VisDrone2021 test-dev set. The AP of each category
is used as the result.

Methods All Pedestrian People Bicycle Car Van Truck Tricycle Awning-Tricycle Bus Motor

YOLOv5x 28.9 23.5 14.3 13.5 51.8 35.4 38.0 20.2 19.9 48.6 23.8
YOLOv5x+p2 31.0 25.6 14.9 14.3 56.2 37.4 40.1 22.0 21.5 52.5 25.3
YOLOv5x+p2+ViT 32.8 26.7 16.0 15.5 59.1 40.0 42.7 23.4 22.2 55.4 27.1
TPH-YOLOv5 (previous+CBAM) 33.6 27.4 16.3 15.9 61.4 41.9 43.3 23.9 21.5 56.9 27.8
TPH-YOLOv5 (SwinTrans+CBAM) 34.0 27.5 16.1 15.9 61.7 41.9 43.9 24.2 24.0 56.4 28.5
TPH-YOLOv5+ms-testing 34.9 28.8 16.3 15.0 65.9 44.3 43.8 25.7 22.8 59.0 27.1

4.3.4. Ablation Study of Neighborhood Size

In TPH-YOLOv5++, the SLA plays a very important role by transferring information
from tiny paths to small paths. In SLA, the neighborhood size (a, b) affects how large
the area in the feature map of tiny paths is needed by each pixel on the small path. To
analyze the best neighborhood size, we conduct experiments on the VisDrone2021 test-dev
set. Because there is no obvious difference between information along the horizontal and
vertical axes in an image, we set a = b in experiments. Additionally, a = 0, b = 0 means
only remove the additional prediction head without adding SLA.

As shown in Table 8, when a = 0, b = 0, the AP is only 31.9%, which is substantially
lower than TPH-YOLOv5. By adding the SLA with the smallest neighborhood size (2, 2),
TPH-YOLOv5++ increases the AP to 33.1%, higher than the TPH-YOLOv5 without CBAM.
Meanwhile, TPH-YOLOv5++ is also efficient, with 207 GFLOPs and 11.86 FPS. During
enlargement of the neighborhood size, the detection performance can obtain a slight
increase. However, the efficiency and memory cost of TPH-YOLOv5++ becomes worse at
the same time. The GPU memory costs are 7475 M and 12185 M if the neighborhood sizes
are (4, 4) and (6, 6), respectively. At the same time, the FPS also decreases significantly
when the neighborhood size increases. For the (4, 4) and (6, 6), TPH-YOLOv5++ decreases
the FPS to 10.14% and 7.67%, respectively. When the neighborhood size is (8, 8), the GPU
memory cost is very high, so we do not continually enlarge the neighborhood size. In
conclusion, we choose (2, 2) as the best neighborhood size in other experiments.

Table 8. Ablation study for neighborhood size (a, b) of SLA on the VisDrone 2021 test-dev dataset.

Neighborhood Size (a, b)

a = 0, b = 0 a = 2, b = 2 a = 4, b = 4 a = 6, b = 6

AP [%] 31.9 33.1 33.5 33.6

AP50 [%] 51.7 52.1 52.5 52.6

AP75 [%] 33.5 35.1 34.9 35.0

GPU Memory 4299 M 4715 M 7475 M 12,185 M

GFLOPs 204.5 207 214.9 228.1

FPS 12.01 11.86 10.14 7.67

4.4. Visualization Analysis
4.4.1. Qualitative Visualization of Detection Results

To analyze the performance of our TPH-YOLOv5++ intuitively, we visualize the final
prediction results in Figures 9 and 10. The results show that TPH-YOLOv5++ can accurately
detect tiny objects, dense objects, and objects blurred by motion.
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Figure 9. Qualitative results of the proposed TPH-YOLOv5++ on the VisDrone2021 test-challenge set.
Different categories use bounding boxes with different colors. The performance is good at localizing
tiny objects, dense objects, and objects blurred by motion.

Figure 10. Qualitative results of the proposed TPH-YOLOv5++ on the UAVDT dataset.

4.4.2. Visualization of Correct Bounding Boxes

We visualize the spatial distribution of correct bounding boxes generated by the small
prediction heads of TPH-YOLOv5 and TPH-YOLOv5++, as shown in Figure 11. Similar to
Figure 5, the color of each pixel denotes the average confidence of correct boxes covering the
pixel. If the confidence is high, the color tends towards red, otherwise it tends towards blue.
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The second column of Figure 11 represents the results of TPH-YOLOv5, and the
third column represents the results of TPH-YOLOv5++. We can obviously find that TPH-
YOLOv5++ can detect many tiny objects that are ignored by TPH-YOLOv5. In addition,
this difference is more pronounced in high-density areas.

(b) TPH-YOLOv5 (c) TPH-YOLOv5++(a) Original Image

Figure 11. Spatial distributions of correct bounding boxes generated by the small prediction heads of
TPH-YOLOv5 and TPH-YOLOv5++.

Although TPH-YOLOv5++ can significantly improve the detection performance of
the small prediction head with the help of the tiny head, the bounding boxes that can be
re-detected have relatively low confidence, as shown in Figure 11. Due to this phenomenon,
the improvement that TPH-YOLOv5++ achieves has an upper limit, and there is also a
drop in some small object density scenes.

In conclusion, TPH-YOLOv5++ can effectively transfer information from tiny paths to
enrich features of small paths. By introducing SLA, the detection performance of the small
prediction head gets a great promotion, detecting tiny objects, especially in high-density
scenes, more accurately. Otherwise, the performance on the neglected objects of the small
head is weaker than the original tiny head, so it will have a performance decrease in small
object density scenes.

4.4.3. Visualization between TPH-YOLOv5 and TPH-YOLOv5++

As discussed above, TPH-YOLOv5++ achieves better results than TPH-YOLOv5 on
the UAVDT dataset. To intuitively analyze the performance gap between two models, we
visualize the prediction results of two models on UAVDT, as shown in Figure 12.

There are three cases displayed in Figure 12: on the left of the black dotted line are the
results of TPH-YOLOv5, while on the right are the results of TPH-YOLOv5++. Meanwhile,
each area that can highlight the performance differences between the two models is zoomed
in on the right side of the corresponding image.

For example, on the first row, the TPH-YOLOv5 detects the bus as multiple objects,
while TPH-YOLOv5 can significantly decrease these wrong bounding boxes. On the
second row, TPH-YOLOv5 detects a bounding box across the top two cars. By contrast,
TPH-YOLOv5++ correctly predicts two cars.

Based on the above analysis, the additional prediction head of TPH-YOLOv5 indeed
introduces many false positive boxes in dense scenes. With the help of the removal of
the additional head and the SLA, TPH-YOLOv5++ can significantly avoid these wrong
bounding boxes and improve the efficiency.
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(a) TPH-YOLOv5 (b) TPH-YOLOv5++

Figure 12. Visualization of TPH-YOLOv5 and TPH-YOLOv5++ on the UAVDT dataset.

5. Conclusions

Object detection on drone-captured images has three main challenges: size variation,
high-density, and large coverage of objects. Based on the YOLOv5, we add some cutting-
edge techniques, i.e., transformer encoder block, CBAM, and some experienced tricks
to improve the detection performance in drone-captured scenarios. Then, to alleviate
the computational and inference time costs while maintaining performance, we design
a novel cross-layer asymmetric transformer module, constructing the TPH-YOLOv5++
model. By replacing the original multi-head self-attention in vision transformer with sparse
local attention, the cross-layer asymmetric transformer module can enrich the feature of
small paths with the help of tiny paths. Our TPH-YOLOv5 won 4th place in the VisDrone
challenge 2021. Extensive experiments are conducted on two benchmark datasets, which
show that our two models achieve the new SOTA results and that TPH-YOLOv5++ can
significantly reduce computation and memory costs while achieving comparable or better
performance than TPH-YOLOv5.
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