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Abstract—Currently, long-range spectral and spatial
dependencies have been widely demonstrated to be essential for
hyperspectral image (HSI) classification. Due to the transformer
superior ability to exploit long-range representations, the
transformer-based methods have exhibited enormous potential.
However, existing transformer-based approaches still face two
crucial issues that hinder the further performance promotion of
HSI classification: 1) treating HSI as 1D sequences neglects spatial
properties of HSI, 2) the dependence between spectral and spatial
information is not fully considered. To tackle the above problems,
a large kernel spectral-spatial attention network (LKSSAN) is
proposed to capture the long-range 3D properties of HSI, which is
inspired by the visual attention network (VAN). Specifically, a
spectral-spatial attention module is first proposed to effectively
exploit discriminative 3D spectral-spatial features while keeping
the 3D structure of HSI. This module introduces the large kernel
attention (LKA) and convolution feed-forward (CFF) to flexibly
emphasize, model, and exploit the long-range 3D feature
dependencies with lower computational pressure. Finally, the
features from the spectral-spatial attention module are fed into the
classification module for the optimization of 3D spectral-spatial
representation. To verify the effectiveness of the proposed
classification method, experiments are executed on four widely
used HSI data sets. The experiments demonstrate that LKSSAN is
indeed an effective way for long-range 3D feature extraction of
HSI.

Index Terms—Deep learning, long-range 3D spectral-spatial
feature extraction, spectral-spatial attention, large kernel
attention (LKA), convolutional feed-forward (CFF), hyperspectral
image (HSI) classification.

|. INTRODUCTION

YPERSPECTRAL images (HSI) contain hundreds of
continuous and narrow spectral bands. Such valuable
information can precisely characterize the physical
properties and bring great convenience for land object
recognition [1]. These characteristics have enabled HSI to be
widely applied in environmental protection [2], and land-cover
mapping [3], urban development monitoring [4]. HSI
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classification is one of the most critical tasks in these
applications.

Over the few years, various methods have been developed
for HSI classification. The earlier classification methods mainly
focus on spectral features, i.e., support vector machine (SVM)
[5], multiple regression (MLR) [6], and k-nearest neighbors [7].
However, the high dimensionality with a small number of
labeled samples may lead to the Hughes phenomenon [8],
which usually causes overfitting [9]. Feature selection [10] and
feature extraction [11] are persuasive to alleviate these
problems. Nevertheless, an increasing number of studies have
demonstrated that it is challenging to distinguish confusing
objects only utilizing spectral information [12, 13]. Meanwhile,
the spatial context of HSI provides complementary features to
their abundant spectral correlations for precise recognition [14].
Thus, effectively exploiting spatial and spectral information is
essential for HSI classification. The traditional spectral and
spatial feature extraction methods are partitioned into two
categories [15]: spectral plus spatial feature extraction methods
and spectral-spatial feature extraction methods. For spectral
plus spatial feature extraction, numerous spatial algorithms,
such as morphological operators [16], gabor filters [17],
hypergraph structure [18], and markov random fields (MRFs)
[19], were employed to extract spatial features. However, the
feature-stacking-based methods lead to information
redundancy, causing overfitting of classification models [20].
For spectral-spatial feature extraction, spectral and spatial
information are jointly exploited to keep the most
discriminative features for HSI classification. The typical
methods include 3-D discrete wavelets [21], 3-D scattering
wavelets [22], and 3-D gabor filters [23]. Nevertheless, these
traditional methods extract the features of the original data in a
shallow manner, which is hard to dig deep nonlinear spectral-
spatial correlation information [24].

Compared with traditional feature extraction, deep learning
(DL) can extract more abstract and discriminative features and

X. Jia is with the School of Engineering and Information Technology,
University of New South Wales at Canberra, Canberra, ACT 2600, Australia.
(e-mail: x.jia@adfa.edu.au).

J. Ren is with the School of Computer Sciences, Guangdong Polytechnic
Normal University, Guangzhou 510665, China, and also with the National
Subsea Centre, Robert Gordon University, Aberdeen AB21 0BH, U.K. (e-mail:
jinchang.ren@ieee.org).

Kai Yan is with the Faculty of Geographical Science, Beijing Normal
University, Beijing 100875, China, and also with the School of Land Science
and Techniques, China University of Geosciences, Beijing 100083, China (e-
mail: kaiyan.earthscience@gmail.com).

Authorized licensed use limited to: University of Ulsan. Downloaded on August 09,2023 at 20:21:11 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


mailto:jinchang.ren@ieee.org

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3292065

IEEE TGRS-2022-01845

has been widely used in HSI classification. Recurrent neural
networks (RNNSs) [25], autoencoders (AEs) [26], deep belief
networks (DBNs) [27], fully convolutional networks (FCNSs)
[28, 29] and convolutional neural networks (CNNs) [30] are the
mainstream DL architectures. Among these methods, patch-
based CNN is the most popular framework, mainly because it
elegantly integrates spectral features with spatial-contextual
information from HSI data in its unique local connection. Note
that patch-based methods may face problems such as multiple
computations and insufficient global information mining.
Fortunately, their advantages in the following three aspects
allow them to remain in the mainstream. 1) Local feature
mining is more convenient. The features related to classification
performance mainly exist locally, and spatial partitioning helps
to reduce the interference of redundant information. 2) Sample
production is more convenient. The model can be optimized
based on point samples, which considerably reduces the sample
production time in practical applications. 3) The model is more
flexible. The end-to-end model is not suitable for the problems
of scale diversity and high spatial heterogeneity, while the
patch-based method can improve the migration of the model in
different geographical environments with different patch sizes.
In recent decades, numerous CNN-based methods have
made prosperous progress in HSI classification. In [31], CNNs
were used to extract hierarchical deep spatial features. Lee et al.
[32] introduced three-dimensional convolutional network
(3DCNN) to explore local spectral-spatial contextual
interactions simultaneously. While the CNNs enhanced the
performance of methods, the extraction of spatial and spectral
features is still insufficient. Hence, Xu et al. [33] designed a
dual-tunnel CNN in which one-dimensional convolutional
network (1DCNN) was employed to exploit the spectral
features, two-dimensional convolutional network (2DCNN)
was comprised to highlight the spatial characteristic. Li et al.
[34] proposed an automatic clustering-based two-branch
network to extract spectral and spatial features. However, the
methods based on dual-tunnel or two-branch do not meet the
characteristics of HSI spectral-spatial integration and thus
inherently overlook the ample spectral-spatial correlation
information. To resolve these issues, 3D spectral-spatial feature
extraction is required to reveal the 3D inherent structure of HSI
[35]. Zhong et al. [36] designed an end-to-end spectral-spatial
residual network (SSRN) that takes raw 3-D cubes as input data
and introduced residual connections [37] for HSI classification.
Sellami et al. [38] combined band clustering based on spectral
clustering with 3DCNN to find informative and distinctive
spectral-spatial features. Jia et al. [39] adopted spectral-spatial
schroedinger eigenmaps (SSSE) and dual-scale convolution to
obtain the joint spatial-spectral correlation information.
However, the aforementioned-based CNN methods treat
local features equally, which is easy to cause the loss of crucial
information. Fortunately, the attention mechanism can alleviate
this issue since it can adaptively capture salient parts through
constructing the weight map. In [40], a squeeze-and-excitation
network (SEnet) was constructed to recalibrate channel-wise
feature responses. Based on this structure, spectral attention
classification networks were developed and obtained favorable

applications [41, 42]. In [43], a convolutional block attention
module (CBAM) was proposed, which can learn channel
dependencies and spatial connections by spectral and spatial
weights. Inspired by CBAM, Ma et al. [44] proposed the
double-branch multi-attention mechanism network (DBMA) to
excavate the spectral and spatial information. Pu et al. [45]
developed a learnable spectral-spatial attention module
(SSAM) to focus on spectral-spatial correlations. Nevertheless,
SEnet and CBAM do not fully consider the long-range
correlation over local spectral and spatial features. Therefore, a
dual attention network (DAN) [46] was proposed, which can
effectively mitigate the problem through channel and spatial
self-attention modules. Subsequently, [47-49] introduced self-
attention to set various weights for extracted long-range
spectral-spatial features.

Transformer [50] is a new self-attention-based network and
further enhances performance with its remarkable capability of
exploiting long-range features. In [51], a transformer was
applied for the first time in the HSI classification task. Xue et
al. [52] proposed a local transformer with a spatial partition
restore network (SPRLT-Net) to model locally detailed spatial
discrepancies. Similarly, Sun et al. [53] constructed a spectral-
spatial feature tokenization transformer (SSFTT) method to
capture spectral-spatial features and high-level semantic
features. More recently, Yang et al. [54] developed an
interactive learning framework to achieve multi-scale, detail-
aware, and space-interactive classification based on different
transformer structures. Although the above-mentioned
transformer-based approaches have made many efforts for
long-range spectral-spatial features extraction and gain better
performance, there are still two crucial obstacles that can be
summarized: 1) treating HSI as 1D sequences inevitably neglect
3D properties of HSI, 2) the dependence between spectral and
spatial information is not fully considered.

To address these two limitations, we propose the following
three strategies. 1) We use large kernel 3D convolution to
extract spectral and spatial features while maintaining the HSI
3D structure. Compared with the transformer-based methods,
the method is more facilitated to exploit the spectral-spatial
correlation characterization and can still effectively leverage
long-range dependencies. 2) Large kernel convolution causes a
massive computational burden. Therefore, we introduce
convolutional decomposition to alleviate this problem. 3) The
transformer-based methods can adaptively extract salient
features by attention mechanism. Hence, we design an attention
structure to enhance vital information. Unlike the existing
attention mechanism, this structure is encapsulated in a large
kernel 3BDCNN and can more effectively exploit the long-range
spectral-spatial dependencies, which is more in line with HSI.

Based on the above strategies, we proposed a patch-based
large kernel spectral-spatial attention network (LKSSAN) to
capture long-range 3D spectral-spatial features, which is
inspired by Visual Attention Network (VAN) [55]. LKSSAN
firstly uses principal component analysis (PCA) to reduce the
HSI spectral dimension, followed by image segmentation to
generate 3D patches as the input of the model. Then, the
spectral-spatial attention module and classification module are
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designed to exploit long-range 3D features and generate labels
for patch center pixels, respectively. The spectral-spatial
attention module follows a modular design, and the basic
module is composed of a scale expansion block, several hybrid
blocks, and a layer normalization. The hybrid block is the main
feature processing structure of LKSSAN and contains two core
operations, large kernel attention (LKA) and convolutional
feed-forward (CFF). LKA captures long-range spectral-spatial
characters by large kernel convolution with a 3D spectral-
spatial attention mechanism. The CFF integrates the 3D
features along the spatial and spectral dimensions by employing
MLP and depth-wise convolution. Both LKA and CFF take the
3D patch as input, which make the spectral-spatial attention
module easy to exploit 3D spectral-spatial feature associations,
thereby improving the performance of the feature extraction.
The classification module is a specially designed simple
multilayer perceptron (SMLP), which can take advantage of the
features extracted by the spectral-spatial attention module to
complete high-precision HSI classification. The three major
contributions of this paper are listed as follows.

1) A large kernel spectral-spatial attention network
(LKSSAN) is proposed to extract the long-range 3D properties
of HSI. In this model, the spectral-spatial attention module and
classification module are adopted to emphasize, exploit, and
distinguish the long-range spectral-spatial features with
lightweight structures, thereby relieving the problems of the 3D
feature utilization.

2) Inspired by VAN, the spectral-spatial attention module
integrates the attention mechanism and convolutional
decomposition into large kernel 3DCNN to exploit long-range
dependencies. To further explore the 3D characterization, the
module simultaneously introduces the CFF. With this structure,
3D properties can be fully identified with a lower computational
burden, which is more suitable for high spatial and spectral
resolution 3D HSI.

3) To promote spectral-spatial attention module
performance, a patch-based sampling strategy, and a
classification module are designed to generate 3D image
patches and the labels of land cover. The patch-based sampling
strategy helps excavate local spatial and spectral information.
The classification module can be perfectly integrated with the
spectral-spatial attention module, and thus effectively
aggregates and classify features.

The remainder of this article is organized as follows. The
related works of the proposed method are presented in Section
Il. In Section Ill, we describe the proposed method in detail.
The experiments and results are presented and discussed in
Section V. Finally, concluding remarks are provided in Section
V.

Il. RELATED WORKS

In this section, we will provide a brief introduction to Patch-
based CNN, Attention mechanism, and the VAN, which are
also the crucial techniques of the proposed methods.

A. Patch-based CNN
Based on the input method of HSI data, CNNs mainly has

two structures: patch-based CNNs and pixel-based CNNs. The
comparison of the patch-based and pixel-based methods is
shown in Fig. 1. Patch-based CNNs handle images as a
multidimensional input, instead as a single vector and considers
the spatial contexts of image pixels explicitly. To facilitate the
utilization of spatial information, it uses HSI patches to assist
pixel classification.

. — (CNNs — the related pixel
Patch-based CNN:
HSIs patch Result
the unrelated pixel
— (CNNs — the noise pixel
Pixel-based CNN:
HSIs pixel Result

Fig. 1. The patch-based CNN and pixel-based CNN

Specifically, Let F € R"**® as the HSI for classification,
where H , W, and C denote the length, the width, and the
number of bands of F , respectively. Denote the patch size is
w, then F is decomposed into some image patches, which
number is HxW | and the data patch can be represented as
X e R | where wxw denotes the size of patch and c
denotes the number of bands. After that, the data cube is input
into the CNN model for extracting spectral and spatial
information and classification. Finally, the model output tensor
T eR™,T=[t,t,,...4,...t_,t ], where s represents the total
number of categories in the data set. If the index corresponds to
the largest data in the T is i, the classification of the label of
center pixel of the patch is i .

B. Attention Mechanism
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Fig. 2. Overview of currently well-recognized attention models for the HSI
classification task, such as (a) SEnet [40], (b) CBAM [43], (c) DAN [46], and
(d) Transformer [50].

The attention mechanism originated in computer vision,
embedding it into the network can promote the representation
capacity of the critical features, and Fig. 2 exhibits the existing
mainstream attention structure. Attention models can be
divided into spectral attention models and spatial attention
models. SEnet [40] is the typical representative of the spectral
attention model, which can enhance crucial information on
spectral dimension through spectral weight maps. The spatial
attention models are often combined with spectral attention
structures, and the typical models include convolutional block
attention module (CBAM) [43] and dual attention network
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(DAN) [46]. CBAM first uses spectral attention to enhance the
critical HSI spectral information and then uses spatial attention
to exploit the spatial correlation. DAN is a two-branch
structure, including a channel attention module (CAM) and
position attention module (PAM), which can complete spectral
attention and spatial attention, respectively. The association
between long-range spectral features helps improve the
classification effect, and transformer [50] is better at processing
the features than the state-of-the-art attention networks.

The attention models mentioned above have been widely
applied in HSI classification [54], but they cannot achieve 3D
spectral-spatial attention. The main reason for this situation is
that the existing attention structures have a series of deficiencies
as follows.

1) Spectral attention models: As an early attention
architecture, spectral attention can describe long-range
dependencies and boost the discriminability of spectral
features, which can enhance the critical spectral information for
classification. However, these models have not taken full
consideration of the discriminative spatial features, which
limits their further development in HSI classification.

2) Spectral-spatial attention models: Unlike spectral attention
models, these models combining spectral and spatial attention
can facilitate methods to exploit spectral and spatial
information. Nevertheless, none of these models can achieve
3D spectral-spatial attention information. For instance, CBAM
processes the spectral and spatial features in turn, and DAN
exploits spectral and spatial contextual through parallel
subnetworks. They all ignore the inherent spectral-spatial
correlation information in HSI, which does not meet the
characteristics of HSI spectral-spatial integration.

3) Transformer-based models: these methods can excavate
the associated information in long-range data and have an
advantage in processing HSI data. However, because the
transformer originated from NLP, its block idea destroys the
spatial structure of HSI.

In summary, none of the mainstream attention-based
networks for HSI classification are compatible with the
spectral-spatial unity while extracting image features.
Therefore, they inherently overlook long-range 3D
dependencies regardless of how to combine the spectral and
spatial attention structures or what structures of the transformer
are employed to mine the image features.

C. Attention Mechanism

VAN is a novel attention-based model that can
simultaneously enhance spatial and channel information
through a three-dimensional attention map built by large kernel
convolution in visual tasks. VAN has a simple hierarchical
structure, as overviewed of VAN as shown in Fig. 3. The basic
block of VAN first performs down-sampling, and then feature
extraction is completed through LKA and CFF [56], and the last
step is layer normalization. LKA and CFF are the core modules
of VAN. Large Kkernel convolution means that the
computational burden of image classification will be larger. To
address this problem, VAN designs a large convolution kernel
decomposition method to generate spectral-spatial attention

4

maps. VAN divides a large kernel convolution into three
components: a spatial local convolution (depth-wise
convolution), a spatial long-range convolution (depth-wise
dilation convolution), and a channel convolution (1x<L
convolution).

Multi-task head

Feature map H - -
A Layer Norm j
Basic block of VAN - 1
. 1x1, BN, CFF
Feature map . i
L
Basic block of VAN i !
.1 BN, IxI,GELU
Feature map : P— ;
Basic block of VAN i _________ I_) OWH—Sampl]ng
Feature map

Fig. 3. The original VAN consists of four stages, the scale of the feature map is
compressed at each step, and finally uses the multi-task head to complete
different downstream tasks.

Suppose F is the input feature map, the operation of using a
large convolution kernel to complete the attention can be
expressed as:

Attention = conv,,,,, (DW, (DW (F))) 1)

F™* = Attention® F )
where Attention is the spectral-spatial attention map,

con(kxk,g) denotes the two-dimensional convolution

function with a kernel size of k and a group value of g, DW, (-)
is depth-wise dilation convolution, DW(-) is depth-wise
convolution, and ® denotes the element-wise product.

After the LKA, the feature map is processed by CCF. The
difference between CFF and feed-forward is that a depth-wise
convolution is added between the 1x1 convolution and
activation function, which can enhance spatial information in
different channels. The processing result of the CFF can be
expressed by:

F = conv,,,,,, (GELU (DW (conviy,,, (F*))  (3)

where GELU (-) denotes an activation function called gaussian

error linear units (GELU), and the functions that have been
introduced above will not be repeated.

Nonetheless, there are still some problems in VAN which
hinder its development. 1) For input scale, although VAN
perform outstandingly in solving the problem of natural image,
it is not suitable for HSI. 2) For feature utilization, VAN can
extract high-quality features but cannot achieve classification.
However, it is challenging to build a classifier that can fully
integrate with feature extraction [57]. Hence, we introduced
VAN into the patch-based model, which not only solves the
scale problem but also promotes the mining of local spectral
and spatial information. In addition, we specially designed
simple multilayer perceptron (SMLP) classifier to directly
establish the relationship between the obtained features and the
classification of center pixel of the patch.

11,1
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Fig. 4. Overview illustration of the proposed LKSSAN for the HSI classification task. LKSSAN consists of two modules, i.e., spectral-spatial attention module
and classification module, and spectral-spatial attention module has two core components: LKA and CCF.

I11. LKSSAN FOR HSI CLASSIFICATION

The proposed LKSSAN is a patch-based attention HSI
classification network, as shown in Fig. 4, which includes data
preparation with spatial patching, spectral-spatial attention
module, and classification module. The challenges of DL for
HSI classification are: 1) it is difficult to exploit long-range 3D
features and 2) these methods that are employed to capture
long-range information impose a huge computational burden on
the facility. Spatial patching is introduced for generating a large
number of 3D patches to be the input of the model, which is
more favorable for the model to use the local features
indispensable for classification. In the spectral-spatial attention
module, the LKA and CFF are introduced to guide the network
to be more focused on the most informative long-range 3D
features of the input data, which is achieved by adaptively
weighting the different pixel blocks. LKA is used to emphasize
spectral-spatial cohesion features with lightweight structures by
progressively learning 3D feature embedding. CFF is then
introduced to adaptively aggregate the spatial and spectral
dimensional features. Differing from the feed-forward in the
transformer, the CFF can flexibly recover the spatial
information of the semantic features. In the classification
module, the 3D feature maps with long-range spectral and
spatial dependencies extracted by the spectral-spatial attention
module are further refined and reinforced through SMLP to
generate class probability maps. Apart from that, to facilitate
the utilization of the spectral-spatial connections in the multi-
level feature maps, a scale expansion block is used to refine the
spatial and channel sizes of feature maps in the spectral-spatial
attention module.

A. Spectral-Spatial Attention Module

It is essential to explore discriminant 3D spectral-spatial
features for more effective HSI classification. Although
previous studies have applied spatial contextual information
and long-range spectral correlation features for HSI
classification, the correlation information between spectral and
spatial features is ignored. Fortunately, 3D spectral-spatial
feature extraction can reveal the 3D inherent structure of HSI.
Hence, we design a spectral-spatial attention module that
follows a modular design and can effectively extract 3D

spectral-spatial features by a scale expansion block, L; hybrid
blocks, and layer normalization, where i is the number of hybrid

blocks of the ith basic block. Let F, e R®™*™® he the

input 3D patch, where r is the number of pixels separating the
central pixel from the edge and P denotes the number of the first
several principal components (PCs) selected by PCA. Each
component of basic block is described in the following.
1) Scale expansion block

To excavate spatial and spectral correlation features, we first
feed feature map into a scale expansion block to increase the
number of channels and the spatial scale of patch, as shown in
Fig.5. We can see that the scale expansion block first expands
the spatial scale of the patch by using the spatial depth
convolution with a convolution kernel of size 2, and then the
channel convolution is used to expand the channel features of
the patch. The process can be expressed vividly as follows:

A =CONy,q 5 (Con(ZXZ,CH) (FH)) (4)

where A e RE e s the feature map after scale

expansion, Fii is the output of i-1th basic block, cii is the
number of channels of Fi... When i is 1, the Fi_1 is Fin. According
to the above description, we can learn that the scale expansion
module is simple and provides a larger feature space for
subsequent feature mining. Note that although the convolution
can only affect the edge features of 3Dpatch during the scale
expansion, the influence range of this edge feature will be
effectively expanded after the base block processing.

Conv (272, ¢) Conv (11, 1)

Fig. 5. Flowchart of the proposed scale expansion block.

2) Large Kernel Attention for exploiting 3D features
After the scale expansion block, the A is used as the input

of hybrid blocks, and large kernel convolution is employed to
realize the spectral-spatial attention operation. Fig. 6 shows the
structure of the LKA.
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Fig. 6. LKA for spectral-spatial feature learning. (a) Detailed structure of LKA
in LKSSAN. (b) Changes of feature map when using LKA.

Specifically, the LKA firstly uses 1>l convolution to
improve the flexibility of the model. Next, GELU is adopted to

model the nonlinear features. And then, large kernel
convolution decomposition is used to obtain a three-
dimensional  spectral-spatial ~ attention  weight  map

W, e REr-Ertia - cajculating the spectral and spatial
correlation between pixels. This process can be expressed as
B/ =GELU (conv(mvl)(Eij’l)) (5)
W/ = conv(lxlyl)(DWd (DW (B}))) (6)
where E/™ is the output of CFF of j-1th hybrid block. When j
is 1, the E/™" is A . It can be deduced from (6) that the pixel
block in each position of BRI

corresponding weight value at the same position in W,’, and the

has

pixel block of W,’ can effectively establish dependencies with
long-range features by adaptive weighted aggregation of
convolution. Then, a weighted matrix is obtained by

Cij = Bij ®Wij (7
where ® denotes  the  element-wise product,
C/ e RErHeraa s the 3D attention.

equation (7), we can speculate that each pixel block of C/ has

been fused with neighborhood features based on the same local
statistical properties of convolutional modeling by weighting,
which will effectively suppress high-frequency noise and
reinforce the crucial long-range dependencies.

Finally, a residual connection and 1%l convolution is

According to

performed to obtain the output of LKA D) e R

It can be expressed by:
D! = A +conv,,, (C) (8)

LKA can capture long-range relationship with slight
computational cost and parameters through the decomposition
of large kernel convolution. After obtaining long-range
relationship, LKA can estimate the importance of a pixel block
and generate spectral-spatial attention map. As shown in Fig. 6,
LKA combines the advantages of convolution and self-attention,
which enable it to take the local contextual spatial information,

and large receptive field into consideration and realize 3D
spectral-spatial attention. The architecture of LKA is shown in
Fig. 6. It consists of two 11 convolution, an activation function
and a spectral-spatial attention. The output spectral-spatial
features of this subnetwork are fed into CFF for further
information fusion and extraction.
3) Convolutional Feed-Forward for spectral and spatial
features fusion

The mechanism of combining attention with feed-forward
has been proven to be an effective strategy in transformer,
which can enhance information exchange between long-range
information. Unlike transformer, the spectral-spatial attention
module replaces feed-forward with CFF, as shown in Fig. 7.
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Fig. 7. The structures of Feed-forward and Convolution Feed-forward. (a)
Feed-forward, (b) Convolution Feed-forward, (c) An exploded view of
Convolution Feed-forward.

The difference between CFF and FF is that CFF encodes the
spatial information of each channel by adding depth-wise
convolution, which is zero-padding convolution. Therefore, the
CFF operation can be expressed as

E/ =con,,,, (GELU (DW (con,,,, (D)) + D/ ©)

1x11

where E/ e R#™ 0 s the output of CFF. It can be

inferred from (9) that CFF realizes the weight fusion of spectral
and spatial information of each pixel and capture the local
continuity of the input tensor spatial dimension. by combining
depth-wise convolution and 11 convolution.

Finally, the output of ith basic block F, is generated by

F=LN(E") (10)

where LN (-) is layer normalization function.

B. Classification Module

After spectral-spatial attention module has performed
sufficiently spectral-spatial feature extraction and fusion. To
take full advantage of the information, we design SMLP
classifier. The SMLP consists of global average pooling and
MLP, as shown in Fig.4. The MLP only contains one layer, the
input layer is the output layer, and without the hidden layer. The
operation process of the SMLP can be expressed as:

p=FC(Avg(F,)) (11)
Y =argmax( p) (12)
2r+5)x(2r+5)xc,

where F, € R is the output of the spectral-spatial

attention module, FC(-) and Avg(-) denote fully connected
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and global average pooling, respectively. The arg max() is
argmax function, and p=[p,, p,s-. Pys--r P ], Where K is
the number of class in dataset, p, is the probability that the
central pixel of the 3D-patch belongs to category k. After
that, Y €{0,1,2,...,

pixel. Such a simple classifier can preserve the integrity of the
acquired features, which is more helpful for the optimization of
the spectral-spatial attention module.

During the model training, we introduce focalloss [58] to
suppress the effect of sample imbalance on model training. The
focal loss for multiclassification can be calculated using the

following formula:
1 k= 9i
t = N
0, k=Y,

:__Z::Z:(;(ak 1 pk IOg(pk)thi) (14

where ¢, denotes the weighting factor that is used to

K —1} represents the class of the center

(13)

balance the sample distribution, ¥ is the focus parameter

that smoothly adjusts the weight reduction rate of the simple
example, and B is the batch size. The ¥, denotes truth label

of center pixel. By means of the loss function L and
backpropagation algorithm [59], the model is optimized and
the predicted class of each pixel is output.

IVV. EXPERIMENT AND DISCUSSION

In this section, we first introduce the four HSI datasets and
then describe the experimental evaluation indicators and
hardware configuration. To analyze the performance of
LKSSAN, we test the influence of related parameters and key
modules on the accuracy of the algorithm, and finally, we will
qualitatively and quantitatively analyze the performance of the
proposed LKSSAN and state-of-the-art methods on the HSI
datasets.

A. Datasets description
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Fig. 8. (a) False-color image, (b) Spatial distribution of ground truth
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University of Houston 2018 dataset (UH2018): The UH2018
is captured by the ITRES CASI 1500 sensor over the University
of Houston and contains 501015 labeling pixels with 20
ground-truth classes. This database contains consists of 601 =
2385 pixels, 1 m ground sampling distance (GSD), and 48
spectral bands with wavelengths ranging from 380-1050 nm.
Table I reports the detailed pixel distributions in each class. The
specific ground features of the UH2018 dataset are shown in
Fig. 8.

Yellow River Estuary coastal wetland (YRE): The second
hyperspectral dataset was acquired by using the Gaofen-5
satellite over the Yellow River Estuary coastal wetland between
Bohai Bay and Laizhou Bay. The whole image contains pixels
740 x 761 pixels with 30 m per pixel resolution. The YRE
coastal wetland image has 8 classes with 296 spectral bands.
The specific ground features of the YRE dataset are shown in
Fig. 9 and the fixed number of training and testing samples are
detailed in Table II.

Pavia Centre dataset (PC): The image was gathered by the
reflective optics system imaging spectrometer (ROSIS) sensor,
which covers the area of Pavia, northern Italy. The HSI cube
comprises 1096 =715 pixels with 102 wavelength bands in the
range of 430-860 nm. As shown in Fig. 10, there exist 9
different classes of land covers with a resolution of 1.3 m per
pixel. Meanwhile, the training set with few samples and test set
is listed in Table I11.

WHU-Hi-HongHu dataset (WH): The WH dataset was
recorded by the Headwall Nano-Hyperspec sensor with
fragmented plots and various crops. The image size in pixels is
940 %< 475, with a spatial resolution of 0.043 m, composed of
270 bands ranging from 400 to 1000 nm. The ground truth of
this scene consists of 22 classes, and 0.1% samples per class
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was selected to train the networks, and the remaining were used
for testing, as listed in Table IV. A three-band true-color
composite image and the ground-truth map are shown in Fig.
11.

TABLE |
NUMBERS OF TRAINING AND TEST SAMPLES USED IN UH2018 DATASET.
No Land Cover Type Train Test Total
1 Healthy grass 100 9395 9495
2 Stressed grass 100 31830 31930
3 Synthetic grass 100 544 644
4 Evergreen grass 100 13310 13410
5 Deciduous grass 100 4828 4928
6 Soil 100 4383 4483
7 Water 100 138 238
8 Residential 100 39405 39505
9 Commercial 100 223896 223996
10 Road 100 44844 44944
11 Sidewalk 100 32033 32133
2 Crosswalk 100 1417 1517
13 Major Thoroughfares 100 46683 46783
14 Highway 100 9782 9882
15 Railway 100 6827 6927
16 Paved Parking Lot 100 11337 11437
17 Gravel Parking Lot 100 39 139
18 Cars 100 6505 6605
19 Trains 100 5129 5229
20 Seats 100 6690 6790
Total 2000 499015 501015
TABLE Il
NUMBERS OF TRAINING AND TEST SAMPLES USED IN YRE DATASET.
No. Land Cover Type Train Test Total
1 Reed Marsh 45 44394 44439
2 Spartina Alterniflora 31 30687 30718
3 Water 215 214194 214409
4 Tamarix 17 16294 16311
5 Tical Flat Reed 13 12233 12246
6 Suaeda Salsa 30 29559 29589
7 Bare Lake Beach 47 46044 46091
8 BareLand 22 21276 21298
Total 420 414681 415101
TABLE Il
NUMBERS OF TRAINING AND TEST SAMPLES USED IN PC DATASET.
No. Land Cover Type Train Test Total
1 Water 66 65905 65971
2 Trees 8 7590 7598
3 Asphalt 4 3086 3090
4 Self-blocking bricks 3 2682 2685
5 Bitumen 7 G577 6584
6 Tiles 10 9238 9248
7 Shadows 8 7279 7287
8 Meadows 43 42783 42826
9 Bare soil 3 2860 2863
Total 152 148000 148152
TABLE IV
NUMBERS OF TRAINING AND TEST SAMPLES USED IN WH DATASET.
No. Land Cover Type Train Test Total
1 Red roof 15 14026 14041
2 Road 4 3508 3512
3 Bare soil n 21709 21821
4 Cotton 164 163121 163285
3 Cotton firewood 7 6211 6218
6 Rape 45 44512 44557
7 Chinese cabbage 25 24078 24103
8 Pakchot 5 4049 4054
9 Cabbage 1 10808 10819
10 Tuber mustard 13 12381 12304
1 Brassica parachinensis 12 11003 11015
12 Brassica chinensis 9 8045 8054
13 Small Brassica chinensis 3 22484 22507
14 Lactuca sativa 8 7348 7356
15 Celtuce 2 1000 1002
16 Film covered letiuce 8 7254 7262
17 Romaine lettuce 4 3006 3010
18 Carrot 4 3213 7
19 White radish 9 8703 8712
20 Garlic sprout 4 3482 3486
21 Broad bean 2 1326 1328
»n Tree 5 4033 4040
Total 401 386292 386693

4

B. Experimental setup

1) Evaluation Metrics

To quantify the classification performance of LKSSAN, the
overall accuracy (OA), average accuracy (AA), kappa
coefficient (kappa), producer’s accuracies (PA) of each land-
cover category, and time taken by the model to train (T) are
employed as evaluation measures. Moreover, the classification
maps obtained by different models are visualized to make a
qualitative comparison.
2) Comparison With State-of-the-Art Backbone Networks

To analyze the effectiveness of LKSSAN and the
performance of long-range 3D spectral-spatial information for
HSI classification, we compare LKSSAN with other existing
state-of-the-art methods of various types and structures. The
comparison algorithm is divided into three categories, 3D
spectral-spatial extraction, two-branch and Transformer-based
structures. For the 3D spectral-spatial extraction, we choose
SSRN, multi-scale dense networks (MSDN) [60], spectral-
spatial unified networks (SSUN) [61], and residual spectral-
spatial attention network (RSSAN) [62] for comparison. For the
two-branches, we choose adaptive spectral-spatial multiscale
network (ASSMN) [63], double-branch dual-attention
mechanism network (DBDA) [49], and attention-based
adaptive spectral-spatial kernel resnet (A2S2K) [64] to analyze
the effectiveness of the LKSSAN spectral-spatial attention
module. For the transformer-based models, we use spectral-
spatial transformer network (SSTN) [57] and spectral-spatial
feature tokenization transformer (SSFTT) [53] to evaluate the
performance of LKSSAN in HSI spectral-spatial features
processing capability.
3) Implementation Details

All the experiments were implemented on Windows 10 and
an 8-GB GPU of Nvidia GeForce GTX 1080. The proposed
networks were carried out using the PyTorch platform as the
backend. We trained the network for 200 epochs adopt the
Adam optimizer [65] with a batch size of 28 and a learning rate
of 0.005. To avoid biased estimation, all experiments were
conducted with five independent tests, and the average values
were reported for all the evaluation metrics.

C. Model Analysis

1) Parameter Sensitivity Analysis

For CNN-based models, the settings of hyperparameters
often have a greater impact on model accuracy. Therefore, we
analyze the effect of hyperparameters on LKSSAN in this part.
LKSSAN has a simple structure and does not perform complex
processing on HSI. The number of PCs, the radius of the Patch,
the number of training samples, and the combination of value
of kernel-padding-dilation on LKA are critical to the
performance of LKSSAN. Note that in this paper, except for the
UH2018 dataset, the training sample size of each category of
training samples selected in the rest of the datasets is taken as
0.1% of the total number of samples in the respective category.
In different parameter sensitivity analysis experiments, we set
the default values of the above parameters to 10, 4, 0.1%/100,
and (7,9,3) when we do not specifically mention parameter
settings. Next, we will analyze them in detail.
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Fig. 12. Effect of (a) The number of PCs, (b) The Size of Patch, (b) The number
of training sample on the classification accuracies in the four datasets.

a) Effect of the number of PCs

To reduce the redundancy of the spectral information, we
perform principal component analysis on the HSI at the initial
stage and select a certain number of principal components (PCs)
for subsequent processing. Hence, the number of PCs selected
influences the performance of the model to a large extent. Fig.
12 (a) displays the OA versus the number of PCs in different
datasets. We can observe that except for the YRE dataset, all
other datasets show a rise and then stabilization with the rise in
the number of PCs. For this reason, we can simply speculate
that only a small number of PCs have an impact on the model
performance. In addition, the variation of OA on the YRE
dataset is relatively stable which indicates that when the number
of PCs is set in the range of {5, 10, 15, 20, 25, 30, 35, 40}, the
impact on its performance is rather small. According to the
above analysis, we finally set the number of PCs to 10 to
balance the performance of the model on each dataset and
reduce the operational burden.

b) Effect of the Size of Patch

LKSSAN is a patch-based CNN model, which is essential for
the analysis of patch size. Fig. 12 (b) shows the effect of the
spatial size of the patch on the OA of the proposed network. A
large patch block can contain more spatial contextual
information, but a too-large patch size also contains more noise,
which adversely affects the spatial features analysis of the
center pixel. The key spectral-spatial information of remote
sensing images mainly exists locally. Therefore, after the patch-
size increases to a critical value, if the patch size continues to
increase, the effective information will not increase, and the
accuracy will be reduced due to excessive redundant
information. Note that the variation of OA in the PC dataset
does not conform to the trend of OA in other datasets, instead,
it gradually decreases with the increase of patch size in the

higher accuracy range. This result further confirms that the
perceptual field of the model is not as large as possible, and the
images with different resolutions and different scenes are
suitable for different patch scales. In Fig. 12 (b), it is clear that
12, 10, 2, and 16 patch size leads to the best results on UH2018,
YRE, PC, and WH datasets, respectively. After that, the
network performance starts to decrease on these four datasets.
Therefore, in the following experiments, the patch size is set
to12, 10, 2, and 16 for UH2018, YRE, PC, and WH datasets,
respectively.

c) Effect of the Training Percent

Few-shot is an important problem for HSI classification
models, and the change of the number of training samples often
has a huge impact on the model. Therefore, we analyzed the
LKSSAN accuracy under different the number of training
samples. In this paper, 100 training samples were taken for each
category in the UH2018 dataset in the quantitative analysis
phase, and the training samples used in the other datasets were
all obtained proportionally based on the total number of
samples. Therefore, in order to keep the same sample
distribution for different experiments on the same dataset, in
this part the variation range of samples for each category on the
UH2018 dataset is {20, 40, 60, 80, 100, 120}, while the
variation range of training samples on the other datasets is
{0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%}. Fig. 12 (c) shows the
performance on different the number of training samples.
According to the experimental results, we can know that in the
simple scenario of the PC dataset, OA of the model can be better
than 95% by relying on 0.05% of the training percent. In YRE
and PC datasets, if the accuracy is better than 95%, only 1% of
the training samples are needed. In addition, the model can
achieve better than 70% performance in the UH2018 dataset
when only 40 samples of each type are taken, which indicates
that the model has a vigorous ability to resist the imbalance of
sample distribution. However, the performance on the UH2018
dataset with a training set of 80 is worse than that of 60, which
demonstrates that the performance of the model in the small
sample dataset with unbalanced sample distribution needs to be
improved.

d) Effect of the Kernel-padding-dilation

In LKSSAN, we introduce a convolutional decomposition,
which uses depth-wise convolution, depth-wise dilation
convolution, and 1x1 convolution instead of large kernel 3D
convolution to construct image 3D weights. The kernel size and
dilation size of the atrous convolution will directly affect the
spatial perceptual field size of LKA. Therefore, in this section,
we analyze the effect of different combinations of kernel,
padding, and dilation on the experimental results. Table V
shows the experimental results on different datasets when the
kernel-padding-dilation are set to the parameters in {(5,4,2),
(7,6,2), (7,9,3), (9,8,2), (9,12,3)}.

In this part, we set the radius of the patch to 14 to ensure the
reasonableness of the experiment. According to Table V, we
can intuitively see that different datasets are adapted to different
parameters. The convolutional kernels corresponding to the
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parameters adapted to different datasets are PC, YRE, UH2018,
and WH in descending order, and this order is the same as the
order from small to large based on the optimal patch size of
each dataset, i.e., the smaller the patch size is, the farther the
long-range information is needed. This phenomenon may occur
because the feature distribution presents an overall dispersion
and a local aggregation in this hypothesis space; meanwhile, the
larger the optimal patch size of the image, the larger the
dispersion value of its spatial feature set distribution, and the
smaller the dispersion value between the elements within
different spatial feature sets. Although the optimal values are
obtained for different scenes and data with different spatial
resolutions under different combinations of kernel and dilation,
the discrepancies between the results obtained in different
combinations of the same dataset is relatively small. Therefore,
there is no harm in eventually setting the kernel-padding-
dilation to (7,9,3).
TABLE V

THE EFFECTS OF KERNEL-PADDING-DILATION ON LKA. THE BEST ONE IS
SHOWN IN BOLD

Kernel-padding-dilation 542 762 7-9-3 9-8-2 9-12-3
Houston 2018 OA/% 84.07 84.80 84.06 83.64 8385
AA/% 74.30 85.71 7311 7299 7473

dataset
Kappa 0.7967 0.8053 0.7911 0.7926 0.7973
YRE coastal 0A/% 93.64 93.23 923.72 93.09 9311
AA/% 9048 88.89 9015 89.80 8955

wetland
Kappa 0.5085 0.9025 0.9091 0.9004 0.9004
Pavia Centre OA/% 9493 95.70 9561 96.26 96.43
AA% 87.73 90.73 8810 92.05 90.78

dataset
Kappa 92.79 0.9389 0.9375 0.9470 0.9494
WHU-Hi- 0A/% 92.59 90.19 9203 9236 9094
AA/% 84.45 83.12 82.56 84.20 80.30

HongHu dataset

- Kappa 0.9060 09012 0.8991 90.34 0.8854

2) Ablation Study

This paper proposes the LKSSAN method, and the technical
contributions include: the scale expansion block to expand both
spatial and spectral scales of 3D patch; the LKA for long-range
3D representation learning; the CFF to assist LKA to further
exploit spatial and spectral information. In this part, we
investigate how these structures in the LKSSAN affects the
classification performance in YRE and PC datasets. For that,
we conduct extensive ablation experiments on the datasets to
verify the effectiveness of these components in LKSSAN for
HSI classification, and the detailed classification results with
different structures are shown in Table VI. Note that data input
and classification are the basic modules of LKSSAN, and good
performance of the model is the best proof for them, so we do
not analyze the performance of these two modules in detail in
this paper.

Table VI indicates that the spatial expansion increases
accuracy significantly by 1.01% of OA on the YRE dataset, by
0.5% of OA on the PC dataset. Furthermore, we can observe
that the spectral expansion can improve higher accuracy
compared to the spatial expansion. The aforementioned results
show that although the scale expansion structure is simple, it
can facilitate the model to extract spectral and spatial
information by expanding the spectral and spatial scales of the
data. Moreover, when the LKA is removed, the OA of the
model are reduced by 1.7% and 0.8% on the YRE and PC
datasets, respectively, which reflects the importance of jointly

extraction of spectral and spatial information. Meanwhile, we
can notice that when LKA loses the assistance of CFF, the OA
values will drop to 90.89% and 96.98%, respectively, while
CFF without LKA also fails to obtain excellent performance.
This indicates that LKA and CFF can achieve mutual
reinforcement, which consequently justifies the combination of
these two structures.

In addition, to verify the effect of convolutional
decomposition on the performance of LKSSAN, we replace the
weight construction part of LKA with the corresponding 3D
convolution. Since the default kernel and dilation of depth-wise
dilation convolution are 7 and 3, respectively, the spatial and
channel kernels of the corresponding 3D convolution are set to
19and c;, respectively, where ¢, denotes the dimension of the

feature map in the ith base module. Obviously, in the YRE
dataset, the OA of LKSSAN is inferior to that of 3D-LKSSAN
OA, while in the PC dataset, the OA of LKSSAN is better than
that of 3D-LKSSAN. Although LKSSAN and 3D-LKSSAN
have their advantages in different datasets, the mutual
advantages are small or even negligible, which indicates that
the convolutional decomposition can effectively replace the
large kernel 3D convolution to exploit the long-range 3D
spectral-spatial features. Moreover, Table VI presents the size
of parameters required by the model when the two models take
the same size of input for the PC dataset. It can be found that
the size of the parameters of LKSSAN is much smaller than that
of 3D-LKSSAN, which reflects that convolutional
decomposition can effectively reduce the model parameters. In
summary, although large kernel 3D convolution is effective in
extracting long-range 3D features, it has high computational
pressure, and the convolutional decomposition approach can
maintain the model performance to the maximum while

significantly reducing the number of model parameters.
TABLE VI
ABLATION ANALYSIS OF THE PROPOSED LKSSAN WITH A COMBINATION OF
DIFFERENT MODULES ON THE YRE AND PC DATASETS. THE BEST ONE IS
SHOWN IN BOLD

Framework No scale expansion No spatial expansion No-LKA No-CFF 3D-LKSSAN LKSSAN

YRE coastal QAN 90.40 91.52 90.83 90.89 2.8 9253
AN 8550 85.32 8561 84.11 86.97 86.67

Kappa 0.8705 08822 08812 0.8688 0.8064 08921

Paviz Centre 0A%% 2401 97.26 9696 9698 97.64 97.76
AA% 16.51 91.10 90.58 90.74 91.38 91.64

dataset
Kappa 0.9277 09653 09611 0.9514 0.9665 0.9680

Param eter size — — — — 21.5TM 0.74M

D. Comparison With State-of-the-Art Methods

In this section, to evaluate the performance of LKSSAN, we
qualitatively and quantitatively compare LKSSAN with other
existing state-of-the-art methods. All these methods are
implemented using open source code with optimal parameters,
as described in the corresponding references. Furthermore, for
fair comparison, all methods are trained and tested on the same
sample number, as listed in Tables I-1V.

1) Results on the UH2018 Dataset

The UH2018 dataset shows urban scenes with more feature
classes and is mainly used to verify the performance of the
model for refined classification in urban scenarios. Table VII
shows the mean and standard deviation of each accuracy metric
obtained by each algorithm after five experiments on the
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UH2018 dataset. As shown in Table VII, LKSSAN produces
the best OA and kappa. Specifically, the two-branch algorithms
obtain the best result among the compared algorithms, while the
3D algorithms obtain the worst performance. In the two-branch
networks, ASSMN vyields the lowest OA value, but it has the
highest number of optimal PAs. This phenomenon may occur
because the UH2018 dataset has the same number of training
samples for all types of features, which leads to it hard for
ASSMN to adequately explore the characteristics of land cover
with more validation samples. Among the compared
algorithms, DBDA and SSSFTT have higher OA values of
81.36% and 80.42%, respectively. By contrast, LKSSAN
obtained the finest OA with 84.55%, which is superior to them
by 3.19% and 4.13%, respectively. The three algorithms that
obtain the highest AA are ASSMN, SSUN, and LKSSAN, but
the OA and kappa of ASSMN and SSUN are lower, which
indicates that they extracted fewer representative features. In
addition, the kappa of LKSSAN is 0.8035, which achieves
significant improvements ranging from 0.0473 to 0.2914.
Moreover, although LKSSAN has an absolute advantage in
accuracy metrics, its training time is longer, which indirectly
reflects the necessity of convolutional decomposition.

Fig. 13 displays the classification maps of all methods for
visual performance estimation. It can be seen that the results of
MSDN, RSSAN, and A2S2K are seriously affected by noise,
and the commercial misclassification phenomenon is more
serious in the images of SSRN, SSUN, ASSMN, SSTN, and
SSFTT. Although DBDA performs best in the comparison
algorithms, its classification map shows serious confusion
between paved parking lot and car. Compared with the
comparison algorithms, LKSSAN obtains a smooth
classification map with optimal visualization.

2) Results on the YRE Dataset

Among all experimental datasets, the YRE dataset has the
widest spectral coverage, the highest number of spectra, and the
lowest spatial resolution, and is mainly used to verify the
performance of the model for coastal wetland classification
based on satellite images.

Table VIII shows the experimental results of each algorithm
on the YRE dataset. According to Table VIII, we can find that
all the algorithms obtain excellent performance on this dataset.
The SSUN requires the shortest training time and its OA is
93.03%. The OA of SSRN exceeds the OA of SSUN by 0.33%,
but its training time is about 200 times longer than the training
time of SSUN. In the two-branch algorithms, DBDA obtains
the best performance with the least training time and the best
accuracy. In the transformer-based algorithms, the difference in
OA between SSTN and SSFTT is smaller, but SSTN takes more
training time. Although the dominant algorithms in different
categories all obtain good performance, their results have large
variance values and the differences in each accuracy are large.
By contrast, LKSSAN obtains the optimal OA and the best
kappa, which directly proves that LKSSAN can alleviate the
imbalanced training data problems and indirectly reflects the
advantages of the 3D spectral-spatial extraction method in
remote sensing target recognition based on satellite images.

Fig. 14 shows the experimental maps of each algorithm on

the YRE dataset. The results demonstrate that SSRN, MSDN,
DBDA, A2S2K, and SSFTT are severely affected by strip
noise, while RSSAN, ASSMN, and SSTN maintain details
well, but the tamarix in their upper left of classification maps
are more severely affected by noise. The 3D feature extraction-
based model SSUN has good detail retention, but the suaeda
salsa at the bottom is miss-classified, and LKSSAN is more
balanced for all kinds of feature recognition, but there is still a
weak banding phenomenon. In summary, SSUN and LKSSAN

obtain the best visualization results.
TABLE VII
QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN
TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS

LKSSAN

SSTN SSETT

95.48:20.603
93.63=1.907
99.8420.204
1000

TABLE VIII
QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN
TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS
ON THE YRE DATASET. THE BEST ONE IS SHOWN IN BOLD.

two-branch
DEDA A282

Transform er
SSIN SSFTT

Class 3D spectral-spatial extraction
No SSRN

- LKSSAN
ASSMN

89,49 £ 1806

0.8
94,3920,
90.97£0.503
0.5191=0.003
652.41

240

3) Results on the PC Dataset

The PC dataset shows urban scenes with fewer categories and
stitched areas and is mainly used to verify the model's
classification effect in multi-scale coarse-grained cases. Table
IX shows the results of all the algorithms on the PC dataset. The
results show that OAs of all the algorithms except RSSAN and
MSDN obtained better than 93%, which may indicate the high
spectral quality of the image and low classification difficulty.
The PA of LKSSAN was better than 80%, which speculates the
model can resist sample imbalance. In addition, although
DBDA obtained the highest AA and kappa, the differences with
LKSSAN are smaller. Fortunately, the training speed of
LKSSAN is better than that of DBDA, so LKSSAN produces
the best quantitative metrics based on the overall performance.

Fig. 15 shows the classification map of each algorithm. To
facilitate the qualitative evaluation, we enlarge the white box
area in the classification graphs. The classification maps of
MSDN, RSSAN, ASSMN, DBDA, and SSFTT cannot
effectively reflect the spatial distribution of vegetation in this
region. According to Fig.15(a), it can be found that the non-
residential area contains a large amount of meadows and bare
soil except for trees, but SSRN and SSUN have a serious
phenomenon of misclassifying these two classes as trees. Based
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on the visualization results of the white box field, we can
deduce that joint mining of long-range spectral and spatial
information helps to alleviate the scenarios with poor spatial
regularity of feature distribution. Moreover, compared with
LKSSAN, A2S2K misclassifies asphalt and shadows into tiles
in the left splicing area. Additionally, LKSSAN can still obtain
smooth images in the region without labels indicating that the
algorithm can effectively alleviate the spatial autocorrelation
issue. In summary, LKSSAN has optimal visualization results.

3 -~

Fig. 14. Classification maps of different methods on YRE dataset. (a) True-
color image of YRE. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) RSSAN. (g)
ASSMN. (h) DBDA. (i) A2S2K.(j)SSTN. (k)SSFTT. (I)LKSSAN.

Fig. 13. Classification maps of different methods on UH2018 dataset. (a)
False-color image of UH2018. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f)
RSSAN. (g) ASSMN. (h) DBDA. (i) A2S2K.(j)SSTN. (k)SSFTT.
(INLKSSAN.

TABLE IX
QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN
TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS
ON THE PC DATASET. THE BEST ONE IS SHOWN IN BOLD.

Class 3D spectral-spatial extraction tweo-branch Transformer

Ne. SSRN MSDN SSUN RSSAN ASSMN DBDA A2S2K SSTN SSFTIT LESSAN

1 9999+ 0006 97.81=0.514 9985+0162 89.31+7058]99.91+0.083 9998+005 9998+0026]99.94+0.062 99.79+0.14 100=0.004
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9 99.51= 0475 98.76=0.619 83.48= 10.16633.25£18.694] 81.06=3.726 99.81=0273 99.36=0.825] 99.7£0.392 96.00: 1.496| 96.27+0.06 1 ifi 1 1 -
OA(%)|97.2+£0376 83.67+0.895 93.01+ 1141 74571291 M4.94:0207 9810202 97.77=0306|97.34+£0.680 96.74+0026| 98.12+0.043 Flg' 15' ClaSSIflcatlon maps Of dlfferent methOds On PC dataset' (a) True
AA(%)]92.05+£1376 88710628 76844862 4448+ 6890 8407+ 085 94540665 02452089 |9200+1.605 9028+ 1137 93.61+0277 H ( ) ( ) ( ) ( ) (f) ( )
e ’ . sos 25 : Bz color image of PC. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) RSSAN. (g
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TABLE X 4) Results on the WH Dataset

QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN
TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS
ON THE WH DATASET. THE BEST ONE IS SHOWN IN BOLD.
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The WH dataset is ultra-high spatial resolution hyperspectral
data acquired by UAV with numerous agricultural classes, and
each type of class provides only 0.1% of its all label for model
training. In this section, we use the WH dataset to validate the
performance of the models for fine-grained agricultural
classification using high spatial and spectral resolution in the
small sample case. The experimental results of all models on
the WH dataset are shown in Table X. Obviously, LKSSAN has
a tremendous advantage with an OA that is 31.77% to 2.68%
higher than the comparison algorithm. Specifically, the
transformer-based algorithm obtains the best performance,
which indicates the advantage of long-range information in
refined classification. DBDA and A2S2K have higher OA and
longer training times than the 3D spectral-spatial extraction-
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based algorithms. In contrast, LKSSAN achieves optimal
performance with the highest number of optimal PAs, the best
OA, AA, and kappa.

Fig. 16 shows the classification maps of each model for
model qualitative analysis. Based on Fig. 16, we can see that
MSDN, RSSAN, ASSMN, and A2S2K are most affected by
noise, and SSRN, SSUN, SSTN, and SSSFTT have severe
feature confusion in the upper left region of their classification
maps. Although he classification map of DBDA has the best
visualization, with the GT map as the benchmark, we can
identify the best image quality obtained by LKSSAN. By
comparing the 3D extraction models as SSRN, SSUN, and
RSSAN with the two-branch models such as DBDA and
A2S2K, we can find that although the 3D extraction models
perform poorly overall, the edges between local objects in the
classification map are better maintained. Together with the
performance of LKSSAN on the WH dataset, we can infer that
3D feature extraction is essential for the fine classification of
?griculture.

(g) (h) (i)
Fig. 16. Classification maps of different methods on WH dataset. (a) False-
color image of WH. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) RSSAN. (q)
ASSMN. (h) DBDA. (i) A2S2K. (j)SSTN. (K)SSFTT. (I)LKSSAN

(k)

TABLE XI
Trainable Parameters of Different DL-based Methods on YRE datasets. The
best one is shown in bold.

Patch size 3D spectral-spatial extraction |
SSRN _ MSDN

SSUN__RSSAN |ASSMNM3§§RCh A252K l ssTTrznsmrsn;?-—rrT LKSSAN

Parameters | 0.5114M 1.5374M 0.3117M_0.0234M[3.0245M _0.5565M_0.5205M 0.7427M
5) Model Complexity Analysis

To evaluate the complexity of the proposed LKSSAN
method, we list the trainable parameters of different DL-based
methods with the same patch size on YRE datasets in Table XI.
According to Table XI, we can notice that RSSAN has the least
parameters, but the lightweight structure causes performance
loss. In the two-branch networks, A2S2K and DBDA have
fewer parameters. The transformer-based methods have fewer
parameters and poorer performance than the two-branch
models. In addition, LKSSAN has the best performance on each
dataset, but it requires more parameters compared to the other
methods. Fortunately, it is small that the difference between the
parameters of LKSSAN and the state-of-the-art algorithm. The
result confirms the feasibility and value of LKSSAN in
practical applications to some extent.

V. CONCLUSION

In this article, we have proposed a large kernel spectral-
spatial attention network (LKSSAN) to exploit the long-range
3D dependency. Instead of the transformer, the proposed
method can excavate the long-rang features by large kernel 3D
convolution, which can effectively address the challenges in the
field of HSI classification. To emphasize and model the critical
3D features, we are inspired by VAN and design a spectral-
spatial attention module that contains two crucial structures
(i.e., LKA and CFF). The LKA extracts long-range 3D
dependencies from the 3D patch expanded by scale expansion
block through attention and convolution decomposition, and the
CFF facilitates the LKA and exploits the more abstract 3D
semantic representation. Moreover, to adequately utilize the
long-rang 3D information, the classification module fuses the
information and obtains the final classification map by SMLP.

Experiments with SSRN, MSDN, SSUN, RSSAN, ASSMN,
DBDA, A2S2K, SSTN, and SSFTT on UH2018, YRE, PC, and
WH datasets demonstrate the superior performance of
LKSSAN. The reasons are that the spectral-spatial attention
module can effectively excavate the long-range 3D spectral-
spatial features, and the well-designed SMLP can perfectly
match the spectral-spatial attention module to realize the
efficient integration and utilization of information. However, it
should be mentioned that, although the LKSSAN can obtain
high classification accuracies with various complex scenes, its
ability in addressing insufficient training data problems and
reducing computational burden still needs to be improved. In
the future, we will introduce more lightweight structures to
optimize HSI classification speed and build a semi-supervised
model to alleviate the insufficient training data issue.
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