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Abstract—Currently, long-range spectral and spatial 

dependencies have been widely demonstrated to be essential for 

hyperspectral image (HSI) classification. Due to the transformer 

superior ability to exploit long-range representations, the 

transformer-based methods have exhibited enormous potential. 

However, existing transformer-based approaches still face two 

crucial issues that hinder the further performance promotion of 

HSI classification: 1) treating HSI as 1D sequences neglects spatial 

properties of HSI, 2) the dependence between spectral and spatial 

information is not fully considered. To tackle the above problems, 

a large kernel spectral-spatial attention network (LKSSAN) is 

proposed to capture the long-range 3D properties of HSI, which is 

inspired by the visual attention network (VAN). Specifically, a 

spectral-spatial attention module is first proposed to effectively 

exploit discriminative 3D spectral-spatial features while keeping 

the 3D structure of HSI. This module introduces the large kernel 

attention (LKA) and convolution feed-forward (CFF) to flexibly 

emphasize, model, and exploit the long-range 3D feature 

dependencies with lower computational pressure. Finally, the 

features from the spectral-spatial attention module are fed into the 

classification module for the optimization of 3D spectral-spatial 

representation. To verify the effectiveness of the proposed 

classification method, experiments are executed on four widely 

used HSI data sets. The experiments demonstrate that LKSSAN is 

indeed an effective way for long-range 3D feature extraction of 

HSI. 

 
Index Terms—Deep learning, long-range 3D spectral-spatial 

feature extraction, spectral-spatial attention, large kernel 

attention (LKA), convolutional feed-forward (CFF), hyperspectral 

image (HSI) classification.  

I. INTRODUCTION 

YPERSPECTRAL images (HSI) contain hundreds of 

continuous and narrow spectral bands. Such valuable 

information can precisely characterize the physical 

properties and bring great convenience for land object 

recognition [1]. These characteristics have enabled HSI to be 

widely applied in environmental protection [2], and land-cover 

mapping [3], urban development monitoring [4]. HSI 
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classification is one of the most critical tasks in these 

applications. 

Over the few years, various methods have been developed 

for HSI classification. The earlier classification methods mainly 

focus on spectral features, i.e., support vector machine (SVM) 

[5], multiple regression (MLR) [6], and k-nearest neighbors [7]. 

However, the high dimensionality with a small number of 

labeled samples may lead to the Hughes phenomenon [8], 

which usually causes overfitting [9]. Feature selection [10] and 

feature extraction [11] are persuasive to alleviate these 

problems. Nevertheless, an increasing number of studies have 

demonstrated that it is challenging to distinguish confusing 

objects only utilizing spectral information [12, 13]. Meanwhile, 

the spatial context of HSI provides complementary features to 

their abundant spectral correlations for precise recognition [14]. 

Thus, effectively exploiting spatial and spectral information is 

essential for HSI classification. The traditional spectral and 

spatial feature extraction methods are partitioned into two 

categories [15]: spectral plus spatial feature extraction methods 

and spectral-spatial feature extraction methods. For spectral 

plus spatial feature extraction, numerous spatial algorithms, 

such as morphological operators [16], gabor filters [17], 

hypergraph structure [18], and markov random fields (MRFs) 

[19], were employed to extract spatial features. However, the 

feature-stacking-based methods lead to information 

redundancy, causing overfitting of classification models [20]. 

For spectral-spatial feature extraction, spectral and spatial 

information are jointly exploited to keep the most 

discriminative features for HSI classification. The typical 

methods include 3-D discrete wavelets [21], 3-D scattering 

wavelets [22], and 3-D gabor filters [23]. Nevertheless, these 

traditional methods extract the features of the original data in a 

shallow manner, which is hard to dig deep nonlinear spectral-

spatial correlation information [24]. 

Compared with traditional feature extraction, deep learning 

(DL) can extract more abstract and discriminative features and 
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has been widely used in HSI classification. Recurrent neural 

networks (RNNs) [25], autoencoders (AEs) [26], deep belief 

networks (DBNs) [27], fully convolutional networks (FCNs) 

[28, 29] and convolutional neural networks (CNNs) [30] are the 

mainstream DL architectures. Among these methods, patch-

based CNN is the most popular framework, mainly because it 

elegantly integrates spectral features with spatial-contextual 

information from HSI data in its unique local connection. Note 

that patch-based methods may face problems such as multiple 

computations and insufficient global information mining. 

Fortunately, their advantages in the following three aspects 

allow them to remain in the mainstream. 1) Local feature 

mining is more convenient. The features related to classification 

performance mainly exist locally, and spatial partitioning helps 

to reduce the interference of redundant information. 2) Sample 

production is more convenient. The model can be optimized 

based on point samples, which considerably reduces the sample 

production time in practical applications. 3) The model is more 

flexible. The end-to-end model is not suitable for the problems 

of scale diversity and high spatial heterogeneity, while the 

patch-based method can improve the migration of the model in 

different geographical environments with different patch sizes. 

In recent decades, numerous CNN-based methods have 

made prosperous progress in HSI classification. In [31], CNNs 

were used to extract hierarchical deep spatial features. Lee et al. 

[32] introduced three-dimensional convolutional network 

(3DCNN) to explore local spectral-spatial contextual 

interactions simultaneously. While the CNNs enhanced the 

performance of methods, the extraction of spatial and spectral 

features is still insufficient. Hence, Xu et al. [33] designed a 

dual-tunnel CNN in which one-dimensional convolutional 

network (1DCNN) was employed to exploit the spectral 

features, two-dimensional convolutional network (2DCNN) 

was comprised to highlight the spatial characteristic. Li et al. 

[34] proposed an automatic clustering-based two-branch 

network to extract spectral and spatial features. However, the 

methods based on dual-tunnel or two-branch do not meet the 

characteristics of HSI spectral-spatial integration and thus 

inherently overlook the ample spectral-spatial correlation 

information. To resolve these issues, 3D spectral-spatial feature 

extraction is required to reveal the 3D inherent structure of HSI 

[35]. Zhong et al. [36] designed an end-to-end spectral-spatial 

residual network (SSRN) that takes raw 3-D cubes as input data 

and introduced residual connections [37] for HSI classification. 

Sellami et al. [38] combined band clustering based on spectral 

clustering with 3DCNN to find informative and distinctive 

spectral-spatial features. Jia et al. [39] adopted spectral-spatial 

schroedinger eigenmaps (SSSE) and dual-scale convolution to 

obtain the joint spatial-spectral correlation information. 

However, the aforementioned-based CNN methods treat 

local features equally, which is easy to cause the loss of crucial 

information. Fortunately, the attention mechanism can alleviate 

this issue since it can adaptively capture salient parts through 

constructing the weight map. In [40], a squeeze-and-excitation 

network (SEnet) was constructed to recalibrate channel-wise 

feature responses. Based on this structure, spectral attention 

classification networks were developed and obtained favorable 

applications [41, 42]. In [43], a convolutional block attention 

module (CBAM) was proposed, which can learn channel 

dependencies and spatial connections by spectral and spatial 

weights. Inspired by CBAM, Ma et al. [44] proposed the 

double-branch multi-attention mechanism network (DBMA) to 

excavate the spectral and spatial information. Pu et al. [45] 

developed a learnable spectral-spatial attention module 

(SSAM) to focus on spectral-spatial correlations. Nevertheless, 

SEnet and CBAM do not fully consider the long-range 

correlation over local spectral and spatial features. Therefore, a 

dual attention network (DAN) [46] was proposed, which can 

effectively mitigate the problem through channel and spatial 

self-attention modules. Subsequently, [47-49] introduced self-

attention to set various weights for extracted long-range 

spectral-spatial features. 

Transformer [50] is a new self-attention-based network and 

further enhances performance with its remarkable capability of 

exploiting long-range features. In [51], a transformer was 

applied for the first time in the HSI classification task. Xue et 

al. [52] proposed a local transformer with a spatial partition 

restore network (SPRLT-Net) to model locally detailed spatial 

discrepancies. Similarly, Sun et al. [53] constructed a spectral-

spatial feature tokenization transformer (SSFTT) method to 

capture spectral-spatial features and high-level semantic 

features. More recently, Yang et al. [54] developed an 

interactive learning framework to achieve multi-scale, detail-

aware, and space-interactive classification based on different 

transformer structures. Although the above-mentioned 

transformer-based approaches have made many efforts for 

long-range spectral-spatial features extraction and gain better 

performance, there are still two crucial obstacles that can be 

summarized: 1) treating HSI as 1D sequences inevitably neglect 

3D properties of HSI, 2) the dependence between spectral and 

spatial information is not fully considered. 

To address these two limitations, we propose the following 

three strategies. 1) We use large kernel 3D convolution to 

extract spectral and spatial features while maintaining the HSI 

3D structure. Compared with the transformer-based methods, 

the method is more facilitated to exploit the spectral-spatial 

correlation characterization and can still effectively leverage 

long-range dependencies. 2) Large kernel convolution causes a 

massive computational burden. Therefore, we introduce 

convolutional decomposition to alleviate this problem. 3) The 

transformer-based methods can adaptively extract salient 

features by attention mechanism. Hence, we design an attention 

structure to enhance vital information. Unlike the existing 

attention mechanism, this structure is encapsulated in a large 

kernel 3DCNN and can more effectively exploit the long-range 

spectral-spatial dependencies, which is more in line with HSI. 

Based on the above strategies, we proposed a patch-based 

large kernel spectral-spatial attention network (LKSSAN) to 

capture long-range 3D spectral-spatial features, which is 

inspired by Visual Attention Network (VAN) [55]. LKSSAN 

firstly uses principal component analysis (PCA) to reduce the 

HSI spectral dimension, followed by image segmentation to 

generate 3D patches as the input of the model. Then, the 

spectral-spatial attention module and classification module are 
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designed to exploit long-range 3D features and generate labels 

for patch center pixels, respectively. The spectral-spatial 

attention module follows a modular design, and the basic 

module is composed of a scale expansion block, several hybrid 

blocks, and a layer normalization. The hybrid block is the main 

feature processing structure of LKSSAN and contains two core 

operations, large kernel attention (LKA) and convolutional 

feed-forward (CFF). LKA captures long-range spectral-spatial 

characters by large kernel convolution with a 3D spectral-

spatial attention mechanism. The CFF integrates the 3D 

features along the spatial and spectral dimensions by employing 

MLP and depth-wise convolution. Both LKA and CFF take the 

3D patch as input, which make the spectral-spatial attention 

module easy to exploit 3D spectral-spatial feature associations, 

thereby improving the performance of the feature extraction. 

The classification module is a specially designed simple 

multilayer perceptron (SMLP), which can take advantage of the 

features extracted by the spectral-spatial attention module to 

complete high-precision HSI classification. The three major 

contributions of this paper are listed as follows. 

1) A large kernel spectral-spatial attention network 

(LKSSAN) is proposed to extract the long-range 3D properties 

of HSI. In this model, the spectral-spatial attention module and 

classification module are adopted to emphasize, exploit, and 

distinguish the long-range spectral-spatial features with 

lightweight structures, thereby relieving the problems of the 3D 

feature utilization. 

2) Inspired by VAN, the spectral-spatial attention module 

integrates the attention mechanism and convolutional 

decomposition into large kernel 3DCNN to exploit long-range 

dependencies. To further explore the 3D characterization, the 

module simultaneously introduces the CFF. With this structure, 

3D properties can be fully identified with a lower computational 

burden, which is more suitable for high spatial and spectral 

resolution 3D HSI. 

3) To promote spectral-spatial attention module 

performance, a patch-based sampling strategy, and a 

classification module are designed to generate 3D image 

patches and the labels of land cover. The patch-based sampling 

strategy helps excavate local spatial and spectral information. 

The classification module can be perfectly integrated with the 

spectral-spatial attention module, and thus effectively 

aggregates and classify features. 

The remainder of this article is organized as follows. The 

related works of the proposed method are presented in Section 

II. In Section III, we describe the proposed method in detail. 

The experiments and results are presented and discussed in 

Section IV. Finally, concluding remarks are provided in Section 

V. 

II. RELATED WORKS 

In this section, we will provide a brief introduction to Patch-

based CNN, Attention mechanism, and the VAN, which are 

also the crucial techniques of the proposed methods. 

A. Patch-based CNN 

Based on the input method of HSI data, CNNs mainly has 

two structures: patch-based CNNs and pixel-based CNNs. The 

comparison of the patch-based and pixel-based methods is 

shown in Fig. 1. Patch-based CNNs handle images as a 

multidimensional input, instead as a single vector and considers 

the spatial contexts of image pixels explicitly. To facilitate the 

utilization of spatial information, it uses HSI patches to assist 

pixel classification. 

 
Fig. 1. The patch-based CNN and pixel-based CNN 

 

Specifically, Let H W CF R     as the HSI for classification, 

where H  , W  , and C  denote the length, the width, and the 

number of bands of F , respectively. Denote the patch size is 

w  , then F   is decomposed into some image patches, which 

number is H W  , and the data patch can be represented as 
w w cX R    , where w w   denotes the size of patch and c  

denotes the number of bands. After that, the data cube is input 

into the CNN model for extracting spectral and spatial 

information and classification. Finally, the model output tensor 

 1

1 2 1, , ,..., ,..., ,s

i s sT R T t t t t t

− = , where s  represents the total 

number of categories in the data set. If the index corresponds to 

the largest data in the T  is i , the classification of the label of 

center pixel of the patch is i . 

B. Attention Mechanism 

 
Fig. 2. Overview of currently well-recognized attention models for the HSI 

classification task, such as (a) SEnet [40], (b) CBAM [43], (c) DAN [46], and 

(d) Transformer [50]. 

 

The attention mechanism originated in computer vision, 

embedding it into the network can promote the representation 

capacity of the critical features, and Fig. 2 exhibits the existing 

mainstream attention structure. Attention models can be 

divided into spectral attention models and spatial attention 

models. SEnet [40] is the typical representative of the spectral 

attention model, which can enhance crucial information on 

spectral dimension through spectral weight maps. The spatial 

attention models are often combined with spectral attention 

structures, and the typical models include convolutional block 

attention module (CBAM) [43] and dual attention network 
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(DAN) [46]. CBAM first uses spectral attention to enhance the 

critical HSI spectral information and then uses spatial attention 

to exploit the spatial correlation. DAN is a two-branch 

structure, including a channel attention module (CAM) and 

position attention module (PAM), which can complete spectral 

attention and spatial attention, respectively. The association 

between long-range spectral features helps improve the 

classification effect, and transformer [50] is better at processing 

the features than the state-of-the-art attention networks. 

The attention models mentioned above have been widely 

applied in HSI classification [54], but they cannot achieve 3D 

spectral-spatial attention. The main reason for this situation is 

that the existing attention structures have a series of deficiencies 

as follows. 

1) Spectral attention models: As an early attention 

architecture, spectral attention can describe long-range 

dependencies and boost the discriminability of spectral 

features, which can enhance the critical spectral information for 

classification. However, these models have not taken full 

consideration of the discriminative spatial features, which 

limits their further development in HSI classification.  

2) Spectral-spatial attention models: Unlike spectral attention 

models, these models combining spectral and spatial attention 

can facilitate methods to exploit spectral and spatial 

information. Nevertheless, none of these models can achieve 

3D spectral-spatial attention information. For instance, CBAM 

processes the spectral and spatial features in turn, and DAN 

exploits spectral and spatial contextual through parallel 

subnetworks. They all ignore the inherent spectral-spatial 

correlation information in HSI, which does not meet the 

characteristics of HSI spectral-spatial integration.  

3) Transformer-based models: these methods can excavate 

the associated information in long-range data and have an 

advantage in processing HSI data. However, because the 

transformer originated from NLP, its block idea destroys the 

spatial structure of HSI.  

In summary, none of the mainstream attention-based 

networks for HSI classification are compatible with the 

spectral-spatial unity while extracting image features. 

Therefore, they inherently overlook long-range 3D 

dependencies regardless of how to combine the spectral and 

spatial attention structures or what structures of the transformer 

are employed to mine the image features. 

C. Attention Mechanism 

VAN is a novel attention-based model that can 

simultaneously enhance spatial and channel information 

through a three-dimensional attention map built by large kernel 

convolution in visual tasks. VAN has a simple hierarchical 

structure, as overviewed of VAN as shown in Fig. 3. The basic 

block of VAN first performs down-sampling, and then feature 

extraction is completed through LKA and CFF [56], and the last 

step is layer normalization. LKA and CFF are the core modules 

of VAN. Large kernel convolution means that the 

computational burden of image classification will be larger. To 

address this problem, VAN designs a large convolution kernel 

decomposition method to generate spectral-spatial attention 

maps. VAN divides a large kernel convolution into three 

components: a spatial local convolution (depth-wise 

convolution), a spatial long-range convolution (depth-wise 

dilation convolution), and a channel convolution (1×1 

convolution). 

 
Fig. 3. The original VAN consists of four stages, the scale of the feature map is 

compressed at each step, and finally uses the multi-task head to complete 

different downstream tasks. 

 

Suppose F  is the input feature map, the operation of using a 

large convolution kernel to complete the attention can be 

expressed as:  

 ( )1 1,1
( ( ( )))dAttention conv DW DW F


=  (1) 

 LKAF Attention F=   (2) 

where Attention  is the spectral-spatial attention map, 

( ),con k k g  denotes the two-dimensional convolution 

function with a kernel size of k and a group value of g, ( )dDW   

is depth-wise dilation convolution, ( )DW   is depth-wise 

convolution, and   denotes the element-wise product. 

After the LKA, the feature map is processed by CCF. The 

difference between CFF and feed-forward is that a depth-wise 

convolution is added between the 1×1 convolution and 

activation function, which can enhance spatial information in 

different channels. The processing result of the CFF can be 

expressed by: 

( ) ( )1 1,1 1 1,1
( ( ( ( ))))CFF LKAF conv GELU DW conv F

 
=  (3) 

where ( )GELU   denotes an activation function called gaussian 

error linear units (GELU), and the functions that have been 

introduced above will not be repeated.  

Nonetheless, there are still some problems in VAN which 

hinder its development. 1) For input scale, although VAN 

perform outstandingly in solving the problem of natural image, 

it is not suitable for HSI. 2) For feature utilization, VAN can 

extract high-quality features but cannot achieve classification. 

However, it is challenging to build a classifier that can fully 

integrate with feature extraction [57]. Hence, we introduced 

VAN into the patch-based model, which not only solves the 

scale problem but also promotes the mining of local spectral 

and spatial information. In addition, we specially designed 

simple multilayer perceptron (SMLP) classifier to directly 

establish the relationship between the obtained features and the 

classification of center pixel of the patch. 
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 Fig. 4. Overview illustration of the proposed LKSSAN for the HSI classification task. LKSSAN consists of two modules, i.e., spectral-spatial attention module 

and classification module, and spectral-spatial attention module has two core components: LKA and CCF. 

 

III. LKSSAN FOR HSI CLASSIFICATION 

The proposed LKSSAN is a patch-based attention HSI 

classification network, as shown in Fig. 4, which includes data 

preparation with spatial patching, spectral-spatial attention 

module, and classification module. The challenges of DL for 

HSI classification are: 1) it is difficult to exploit long-range 3D 

features and 2) these methods that are employed to capture 

long-range information impose a huge computational burden on 

the facility. Spatial patching is introduced for generating a large 

number of 3D patches to be the input of the model, which is 

more favorable for the model to use the local features 

indispensable for classification. In the spectral-spatial attention 

module, the LKA and CFF are introduced to guide the network 

to be more focused on the most informative long-range 3D 

features of the input data, which is achieved by adaptively 

weighting the different pixel blocks. LKA is used to emphasize 

spectral-spatial cohesion features with lightweight structures by 

progressively learning 3D feature embedding. CFF is then 

introduced to adaptively aggregate the spatial and spectral 

dimensional features. Differing from the feed-forward in the 

transformer, the CFF can flexibly recover the spatial 

information of the semantic features. In the classification 

module, the 3D feature maps with long-range spectral and 

spatial dependencies extracted by the spectral-spatial attention 

module are further refined and reinforced through SMLP to 

generate class probability maps. Apart from that, to facilitate 

the utilization of the spectral-spatial connections in the multi-

level feature maps, a scale expansion block is used to refine the 

spatial and channel sizes of feature maps in the spectral-spatial 

attention module. 

A. Spectral-Spatial Attention Module 

It is essential to explore discriminant 3D spectral-spatial 

features for more effective HSI classification. Although 

previous studies have applied spatial contextual information 

and long-range spectral correlation features for HSI 

classification, the correlation information between spectral and 

spatial features is ignored. Fortunately, 3D spectral-spatial 

feature extraction can reveal the 3D inherent structure of HSI. 

Hence, we design a spectral-spatial attention module that 

follows a modular design and can effectively extract 3D 

spectral-spatial features by a scale expansion block, Li hybrid 

blocks, and layer normalization, where i is the number of hybrid 

blocks of the ith basic block. Let 
( ) ( )2 1 2 1r r P

inF R
+  + 

  be the 

input 3D patch, where r is the number of pixels separating the 

central pixel from the edge and P denotes the number of the first 

several principal components (PCs) selected by PCA. Each 

component of basic block is described in the following. 

1) Scale expansion block 

To excavate spatial and spectral correlation features, we first 

feed feature map into a scale expansion block to increase the 

number of channels and the spatial scale of patch, as shown in 

Fig.5. We can see that the scale expansion block first expands 

the spatial scale of the patch by using the spatial depth 

convolution with a convolution kernel of size 2, and then the 

channel convolution is used to expand the channel features of 

the patch. The process can be expressed vividly as follows: 

 ( )( )
1(1 1,1) (2 2, ) 1ii c iA con con F
−  −=  (4) 

where 
( ) ( )2 1 2 1 ir i r i c

iA R
+ +  + + 

  is the feature map after scale 

expansion, Fi-1 is the output of i-1th basic block, ci-1 is the 

number of channels of Fi-1. When i is 1, the Fi-1 is Fin. According 

to the above description, we can learn that the scale expansion 

module is simple and provides a larger feature space for 

subsequent feature mining. Note that although the convolution 

can only affect the edge features of 3Dpatch during the scale 

expansion, the influence range of this edge feature will be 

effectively expanded after the base block processing. 

 
Fig. 5. Flowchart of the proposed scale expansion block. 

 

2) Large Kernel Attention for exploiting 3D features 

After the scale expansion block, the 
iA  is used as the input 

of hybrid blocks, and large kernel convolution is employed to 

realize the spectral-spatial attention operation. Fig. 6 shows the 

structure of the LKA. 
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 Fig. 6. LKA for spectral-spatial feature learning. (a) Detailed structure of LKA 

in LKSSAN. (b) Changes of feature map when using LKA. 

 

Specifically, the LKA firstly uses 1×1 convolution to 

improve the flexibility of the model. Next, GELU is adopted to 

model the nonlinear features. And then, large kernel 

convolution decomposition is used to obtain a three-

dimensional spectral-spatial attention weight map
( ) ( )2 1 2 1 ir i r i c

iW R
+ +  + + 

  by calculating the spectral and spatial 

correlation between pixels. This process can be expressed as 

 ( )
1

1 1,1
( ( ))j j

i iB GELU conv E −


=   (5) 

 ( )1 1,1
( ( ( )))j j

i d iW conv DW DW B


=  (6) 

where 1j

iE −  is the output of CFF of j-1th hybrid block. When j 

is 1, the 1j

iE −  is 
iA . It can be deduced from (6) that the pixel 

block in each position of 
( ) ( )2 1 2 1 ir i r i cj

iB R
+ +  + + 

  has 

corresponding weight value at the same position in j

iW , and the 

pixel block of j

iW  can effectively establish dependencies with 

long-range features by adaptive weighted aggregation of 

convolution. Then, a weighted matrix is obtained by 

 j j j

i i iC B W=   (7) 

where   denotes the element-wise product, 

( ) ( )2 1 2 1 ir i r i cj

iC R
+ +  + + 

  is the 3D attention.  According to 

equation (7), we can speculate that each pixel block of j

iC  has 

been fused with neighborhood features based on the same local 

statistical properties of convolutional modeling by weighting, 

which will effectively suppress high-frequency noise and 

reinforce the crucial long-range dependencies.  

Finally, a residual connection and 1×1 convolution is 

performed to obtain the output of LKA . 

It can be expressed by: 

 ( )1 1,1
( )j j j

i i iD A conv C


= +  (8) 

LKA can capture long-range relationship with slight 

computational cost and parameters through the decomposition 

of large kernel convolution. After obtaining long-range 

relationship, LKA can estimate the importance of a pixel block 

and generate spectral-spatial attention map. As shown in Fig. 6, 

LKA combines the advantages of convolution and self-attention, 

which enable it to take the local contextual spatial information, 

and large receptive field into consideration and realize 3D 

spectral-spatial attention. The architecture of LKA is shown in 

Fig. 6. It consists of two 1×1 convolution, an activation function 

and a spectral-spatial attention. The output spectral-spatial 

features of this subnetwork are fed into CFF for further 

information fusion and extraction. 

3) Convolutional Feed-Forward for spectral and spatial 

features fusion 

The mechanism of combining attention with feed-forward 

has been proven to be an effective strategy in transformer, 

which can enhance information exchange between long-range 

information. Unlike transformer, the spectral-spatial attention 

module replaces feed-forward with CFF, as shown in Fig. 7. 

 
Fig. 7. The structures of Feed-forward and Convolution Feed-forward. (a) 

Feed-forward, (b) Convolution Feed-forward, (c) An exploded view of 

Convolution Feed-forward. 

 

The difference between CFF and FF is that CFF encodes the 

spatial information of each channel by adding depth-wise 

convolution, which is zero-padding convolution. Therefore, the 

CFF operation can be expressed as 

( ) ( )1 1,1 1 1,1
( ( ( ( ))))j j j

i i iE con GELU DW con D D
 

= +  (9) 

where
( ) ( )2 1 2 1 ir i r i cj

iE R
+ +  + + 

  is the output of CFF. It can be 

inferred from (9) that CFF realizes the weight fusion of spectral 

and spatial information of each pixel and capture the local 

continuity of the input tensor spatial dimension. by combining 

depth-wise convolution and 1×1 convolution.  

Finally, the output of ith basic block 
iF  is generated by 

 ( )iL

i iF LN E=  (10) 

where ( )LN   is layer normalization function. 

B. Classification Module 

After spectral-spatial attention module has performed 

sufficiently spectral-spatial feature extraction and fusion. To 

take full advantage of the information, we design SMLP 

classifier. The SMLP consists of global average pooling and 

MLP, as shown in Fig.4. The MLP only contains one layer, the 

input layer is the output layer, and without the hidden layer. The 

operation process of the SMLP can be expressed as:  

 4( ( ))p FC Avg F=  (11) 

 ( )arg maxY p=  (12) 

where 
( ) ( ) 42 5 2 5

4

r r c
F R

+  + 
  is the output of the spectral-spatial 

attention module, ( )FC   and ( )Avg   denote fully connected 

( ) ( )2 1 2 1 ir i r i cj

iD R
+ +  + + 


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and global average pooling, respectively. The ( )arg max    is 

argmax function, and 
0 1[ , ,..., ,..., ]k Kp p p p p=  , where K is 

the number of class in dataset, 
kp  is the probability that the 

central pixel of the 3D-patch belongs to category k . After 

that,  0,1,2,..., 1Y K −   represents the class of the center 

pixel. Such a simple classifier can preserve the integrity of the 

acquired features, which is more helpful for the optimization of 

the spectral-spatial attention module. 

During the model training, we introduce focalloss [58] to 

suppress the effect of sample imbalance on model training. The 

focal loss for multiclassification can be calculated using the 

following formula: 

 
ˆ1,

ˆ0,

i

ki

i

k y
t

k y

=
= 


 (13) 

 ( ) ( )( )
1

1 0

1
1 log

B K

k k k ki

i k

L p p t
B




−

= =

= −  −    (14) 

where 
k   denotes the weighting factor that is used to 

balance the sample distribution,    is the focus parameter 

that smoothly adjusts the weight reduction rate of the simple 

example, and B  is the batch size. The ˆ
iy  denotes truth label 

of center pixel. By means of the loss function L   and 

backpropagation algorithm [59], the model is optimized and 

the predicted class of each pixel is output. 

IV. EXPERIMENT AND DISCUSSION 

In this section, we first introduce the four HSI datasets and 

then describe the experimental evaluation indicators and 

hardware configuration. To analyze the performance of 

LKSSAN, we test the influence of related parameters and key 

modules on the accuracy of the algorithm, and finally, we will 

qualitatively and quantitatively analyze the performance of the 

proposed LKSSAN and state-of-the-art methods on the HSI 

datasets. 

A. Datasets description 

 
Fig. 8. (a) False-color image, (b) Spatial distribution of ground truth 

 

Fig. 9. (a) True-color image, (b) Spatial distribution of ground truth 

 
Fig. 10. (a) True-color image, (b) Spatial distribution of ground truth 

 
Fig. 11. (a) True-color image, (b) Spatial distribution of ground truth 

 

University of Houston 2018 dataset (UH2018): The UH2018 

is captured by the ITRES CASI 1500 sensor over the University 

of Houston and contains 501015 labeling pixels with 20 

ground-truth classes. This database contains consists of 601 × 

2385 pixels, 1 m ground sampling distance (GSD), and 48 

spectral bands with wavelengths ranging from 380-1050 nm. 

Table I reports the detailed pixel distributions in each class. The 

specific ground features of the UH2018 dataset are shown in 

Fig. 8.  

Yellow River Estuary coastal wetland (YRE): The second 

hyperspectral dataset was acquired by using the Gaofen-5 

satellite over the Yellow River Estuary coastal wetland between 

Bohai Bay and Laizhou Bay. The whole image contains pixels 

740 × 761 pixels with 30 m per pixel resolution. The YRE 

coastal wetland image has 8 classes with 296 spectral bands. 

The specific ground features of the YRE dataset are shown in 

Fig. 9 and the fixed number of training and testing samples are 

detailed in Table II.  

Pavia Centre dataset (PC): The image was gathered by the 

reflective optics system imaging spectrometer (ROSIS) sensor, 

which covers the area of Pavia, northern Italy. The HSI cube 

comprises 1096 × 715 pixels with 102 wavelength bands in the 

range of 430-860 nm. As shown in Fig. 10, there exist 9 

different classes of land covers with a resolution of 1.3 m per 

pixel. Meanwhile, the training set with few samples and test set 

is listed in Table III. 

WHU-Hi-HongHu dataset (WH): The WH dataset was 

recorded by the Headwall Nano-Hyperspec sensor with 

fragmented plots and various crops. The image size in pixels is 

940 × 475, with a spatial resolution of 0.043 m, composed of 

270 bands ranging from 400 to 1000 nm. The ground truth of 

this scene consists of 22 classes, and 0.1% samples per class 
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was selected to train the networks, and the remaining were used 

for testing, as listed in Table IV. A three-band true-color 

composite image and the ground-truth map are shown in Fig. 

11. 
TABLE I 

NUMBERS OF TRAINING AND TEST SAMPLES USED IN UH2018 DATASET. 

 
 

TABLE II 

NUMBERS OF TRAINING AND TEST SAMPLES USED IN YRE DATASET. 

 
 

TABLE III 

NUMBERS OF TRAINING AND TEST SAMPLES USED IN PC DATASET. 

 
 

TABLE IV 

NUMBERS OF TRAINING AND TEST SAMPLES USED IN WH DATASET. 

 

B. Experimental setup 

1) Evaluation Metrics 

To quantify the classification performance of LKSSAN, the 

overall accuracy (OA), average accuracy (AA), kappa 

coefficient (kappa), producer’s accuracies (PA) of each land-

cover category, and time taken by the model to train (T) are 

employed as evaluation measures. Moreover, the classification 

maps obtained by different models are visualized to make a 

qualitative comparison. 

2) Comparison With State-of-the-Art Backbone Networks 

 To analyze the effectiveness of LKSSAN and the 

performance of long-range 3D spectral-spatial information for 

HSI classification, we compare LKSSAN with other existing 

state-of-the-art methods of various types and structures. The 

comparison algorithm is divided into three categories, 3D 

spectral-spatial extraction, two-branch and Transformer-based 

structures. For the 3D spectral-spatial extraction, we choose 

SSRN, multi-scale dense networks (MSDN) [60], spectral-

spatial unified networks (SSUN) [61], and residual spectral-

spatial attention network (RSSAN) [62] for comparison. For the 

two-branches, we choose adaptive spectral-spatial multiscale 

network (ASSMN) [63], double-branch dual-attention 

mechanism network (DBDA) [49], and attention-based 

adaptive spectral-spatial kernel resnet  (A2S2K) [64] to analyze 

the effectiveness of the LKSSAN spectral-spatial attention 

module. For the transformer-based models, we use spectral-

spatial transformer network (SSTN) [57] and spectral-spatial 

feature tokenization transformer (SSFTT) [53] to evaluate the 

performance of LKSSAN in HSI spectral-spatial features 

processing capability. 

3) Implementation Details 

All the experiments were implemented on Windows 10 and 

an 8-GB GPU of Nvidia GeForce GTX 1080. The proposed 

networks were carried out using the PyTorch platform as the 

backend. We trained the network for 200 epochs adopt the 

Adam optimizer [65] with a batch size of 28 and a learning rate 

of 0.005. To avoid biased estimation, all experiments were 

conducted with five independent tests, and the average values 

were reported for all the evaluation metrics. 

C. Model Analysis 

1) Parameter Sensitivity Analysis 

For CNN-based models, the settings of hyperparameters 

often have a greater impact on model accuracy. Therefore, we 

analyze the effect of hyperparameters on LKSSAN in this part. 

LKSSAN has a simple structure and does not perform complex 

processing on HSI. The number of PCs, the radius of the Patch, 

the number of training samples, and the combination of value 

of kernel-padding-dilation on LKA are critical to the 

performance of LKSSAN. Note that in this paper, except for the 

UH2018 dataset, the training sample size of each category of 

training samples selected in the rest of the datasets is taken as 

0.1% of the total number of samples in the respective category. 

In different parameter sensitivity analysis experiments, we set 

the default values of the above parameters to 10, 4, 0.1%/100, 

and (7,9,3) when we do not specifically mention parameter 

settings. Next, we will analyze them in detail. 
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 Fig. 12. Effect of (a)The number of PCs, (b) The Size of Patch, (b) The number 

of training sample on the classification accuracies in the four datasets. 

a) Effect of the number of PCs 

 To reduce the redundancy of the spectral information, we 

perform principal component analysis on the HSI at the initial 

stage and select a certain number of principal components (PCs) 

for subsequent processing. Hence, the number of PCs selected 

influences the performance of the model to a large extent. Fig. 

12 (a) displays the OA versus the number of PCs in different 

datasets. We can observe that except for the YRE dataset, all 

other datasets show a rise and then stabilization with the rise in 

the number of PCs. For this reason, we can simply speculate 

that only a small number of PCs have an impact on the model 

performance. In addition, the variation of OA on the YRE 

dataset is relatively stable which indicates that when the number 

of PCs is set in the range of {5, 10, 15, 20, 25, 30, 35, 40}, the 

impact on its performance is rather small. According to the 

above analysis, we finally set the number of PCs to 10 to 

balance the performance of the model on each dataset and 

reduce the operational burden. 

b) Effect of the Size of Patch 

LKSSAN is a patch-based CNN model, which is essential for 

the analysis of patch size. Fig. 12 (b) shows the effect of the 

spatial size of the patch on the OA of the proposed network. A 

large patch block can contain more spatial contextual 

information, but a too-large patch size also contains more noise, 

which adversely affects the spatial features analysis of the 

center pixel. The key spectral-spatial information of remote 

sensing images mainly exists locally. Therefore, after the patch-

size increases to a critical value, if the patch size continues to 

increase, the effective information will not increase, and the 

accuracy will be reduced due to excessive redundant 

information. Note that the variation of OA in the PC dataset 

does not conform to the trend of OA in other datasets, instead, 

it gradually decreases with the increase of patch size in the 

higher accuracy range. This result further confirms that the 

perceptual field of the model is not as large as possible, and the 

images with different resolutions and different scenes are 

suitable for different patch scales. In Fig. 12 (b), it is clear that 

12, 10, 2, and 16 patch size leads to the best results on UH2018, 

YRE, PC, and WH datasets, respectively. After that, the 

network performance starts to decrease on these four datasets. 

Therefore, in the following experiments, the patch size is set 

to12, 10, 2, and 16 for UH2018, YRE, PC, and WH datasets, 

respectively. 

c) Effect of the Training Percent 

Few-shot is an important problem for HSI classification 

models, and the change of the number of training samples often 

has a huge impact on the model. Therefore, we analyzed the 

LKSSAN accuracy under different the number of training 

samples. In this paper, 100 training samples were taken for each 

category in the UH2018 dataset in the quantitative analysis 

phase, and the training samples used in the other datasets were 

all obtained proportionally based on the total number of 

samples. Therefore, in order to keep the same sample 

distribution for different experiments on the same dataset, in 

this part the variation range of samples for each category on the 

UH2018 dataset is {20, 40, 60, 80, 100, 120}, while the 

variation range of training samples on the other datasets is 

{0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%}. Fig. 12 (c) shows the 

performance on different the number of training samples. 

According to the experimental results, we can know that in the 

simple scenario of the PC dataset, OA of the model can be better 

than 95% by relying on 0.05% of the training percent. In YRE 

and PC datasets, if the accuracy is better than 95%, only 1% of 

the training samples are needed. In addition, the model can 

achieve better than 70% performance in the UH2018 dataset 

when only 40 samples of each type are taken, which indicates 

that the model has a vigorous ability to resist the imbalance of 

sample distribution. However, the performance on the UH2018 

dataset with a training set of 80 is worse than that of 60, which 

demonstrates that the performance of the model in the small 

sample dataset with unbalanced sample distribution needs to be 

improved. 

d) Effect of the Kernel-padding-dilation 

In LKSSAN, we introduce a convolutional decomposition, 

which uses depth-wise convolution, depth-wise dilation 

convolution, and 1×1 convolution instead of large kernel 3D 

convolution to construct image 3D weights. The kernel size and 

dilation size of the atrous convolution will directly affect the 

spatial perceptual field size of LKA. Therefore, in this section, 

we analyze the effect of different combinations of kernel, 

padding, and dilation on the experimental results. Table V 

shows the experimental results on different datasets when the 

kernel-padding-dilation are set to the parameters in {(5,4,2), 

(7,6,2), (7,9,3), (9,8,2), (9,12,3)}.  

In this part, we set the radius of the patch to 14 to ensure the 

reasonableness of the experiment. According to Table V, we 

can intuitively see that different datasets are adapted to different 

parameters. The convolutional kernels corresponding to the 
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parameters adapted to different datasets are PC, YRE, UH2018, 

and WH in descending order, and this order is the same as the 

order from small to large based on the optimal patch size of 

each dataset, i.e., the smaller the patch size is, the farther the 

long-range information is needed. This phenomenon may occur 

because the feature distribution presents an overall dispersion 

and a local aggregation in this hypothesis space; meanwhile, the 

larger the optimal patch size of the image, the larger the 

dispersion value of its spatial feature set distribution, and the 

smaller the dispersion value between the elements within 

different spatial feature sets. Although the optimal values are 

obtained for different scenes and data with different spatial 

resolutions under different combinations of kernel and dilation, 

the discrepancies between the results obtained in different 

combinations of the same dataset is relatively small. Therefore, 

there is no harm in eventually setting the kernel-padding-

dilation to (7,9,3). 
TABLE V 

THE EFFECTS OF KERNEL-PADDING-DILATION ON LKA. THE BEST ONE IS 

SHOWN IN BOLD 

 

 

2) Ablation Study 

This paper proposes the LKSSAN method, and the technical 

contributions include: the scale expansion block to expand both 

spatial and spectral scales of 3D patch; the LKA for long-range 

3D representation learning; the CFF to assist LKA to further 

exploit spatial and spectral information. In this part, we 

investigate how these structures in the LKSSAN affects the 

classification performance in YRE and PC datasets. For that, 

we conduct extensive ablation experiments on the datasets to 

verify the effectiveness of these components in LKSSAN for 

HSI classification, and the detailed classification results with 

different structures are shown in Table VI. Note that data input 

and classification are the basic modules of LKSSAN, and good 

performance of the model is the best proof for them, so we do 

not analyze the performance of these two modules in detail in 

this paper.  

Table VI indicates that the spatial expansion increases 

accuracy significantly by 1.01% of OA on the YRE dataset, by 

0.5% of OA on the PC dataset. Furthermore, we can observe 

that the spectral expansion can improve higher accuracy 

compared to the spatial expansion. The aforementioned results 

show that although the scale expansion structure is simple, it 

can facilitate the model to extract spectral and spatial 

information by expanding the spectral and spatial scales of the 

data. Moreover, when the LKA is removed, the OA of the 

model are reduced by 1.7% and 0.8% on the YRE and PC 

datasets, respectively, which reflects the importance of jointly 

extraction of spectral and spatial information. Meanwhile, we 

can notice that when LKA loses the assistance of CFF, the OA 

values will drop to 90.89% and 96.98%, respectively, while 

CFF without LKA also fails to obtain excellent performance. 

This indicates that LKA and CFF can achieve mutual 

reinforcement, which consequently justifies the combination of 

these two structures. 

In addition, to verify the effect of convolutional 

decomposition on the performance of LKSSAN, we replace the 

weight construction part of LKA with the corresponding 3D 

convolution. Since the default kernel and dilation of depth-wise 

dilation convolution are 7 and 3, respectively, the spatial and 

channel kernels of the corresponding 3D convolution are set to 

19 and 
ic , respectively, where 

ic  denotes the dimension of the 

feature map in the ith base module. Obviously, in the YRE 

dataset, the OA of LKSSAN is inferior to that of 3D-LKSSAN 

OA, while in the PC dataset, the OA of LKSSAN is better than 

that of 3D-LKSSAN. Although LKSSAN and 3D-LKSSAN 

have their advantages in different datasets, the mutual 

advantages are small or even negligible, which indicates that 

the convolutional decomposition can effectively replace the 

large kernel 3D convolution to exploit the long-range 3D 

spectral-spatial features. Moreover, Table VI presents the size 

of parameters required by the model when the two models take 

the same size of input for the PC dataset. It can be found that 

the size of the parameters of LKSSAN is much smaller than that 

of 3D-LKSSAN, which reflects that convolutional 

decomposition can effectively reduce the model parameters. In 

summary, although large kernel 3D convolution is effective in 

extracting long-range 3D features, it has high computational 

pressure, and the convolutional decomposition approach can 

maintain the model performance to the maximum while 

significantly reducing the number of model parameters. 
TABLE VI 

ABLATION ANALYSIS OF THE PROPOSED LKSSAN WITH A COMBINATION OF 

DIFFERENT MODULES ON THE YRE AND PC DATASETS. THE BEST ONE IS 

SHOWN IN BOLD 

 

D. Comparison With State-of-the-Art Methods  

In this section, to evaluate the performance of LKSSAN, we 

qualitatively and quantitatively compare LKSSAN with other 

existing state-of-the-art methods. All these methods are 

implemented using open source code with optimal parameters, 

as described in the corresponding references. Furthermore, for 

fair comparison, all methods are trained and tested on the same 

sample number, as listed in Tables I-IV. 

1) Results on the UH2018 Dataset 

The UH2018 dataset shows urban scenes with more feature 

classes and is mainly used to verify the performance of the 

model for refined classification in urban scenarios. Table VII 

shows the mean and standard deviation of each accuracy metric 

obtained by each algorithm after five experiments on the 
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UH2018 dataset. As shown in Table VII, LKSSAN produces 

the best OA and kappa. Specifically, the two-branch algorithms 

obtain the best result among the compared algorithms, while the 

3D algorithms obtain the worst performance. In the two-branch 

networks, ASSMN yields the lowest OA value, but it has the 

highest number of optimal PAs. This phenomenon may occur 

because the UH2018 dataset has the same number of training 

samples for all types of features, which leads to it hard for 

ASSMN to adequately explore the characteristics of land cover 

with more validation samples. Among the compared 

algorithms, DBDA and SSSFTT have higher OA values of 

81.36% and 80.42%, respectively. By contrast, LKSSAN 

obtained the finest OA with 84.55%, which is superior to them 

by 3.19% and 4.13%, respectively. The three algorithms that 

obtain the highest AA are ASSMN, SSUN, and LKSSAN, but 

the OA and kappa of ASSMN and SSUN are lower, which 

indicates that they extracted fewer representative features. In 

addition, the kappa of LKSSAN is 0.8035, which achieves 

significant improvements ranging from 0.0473 to 0.2914. 

Moreover, although LKSSAN has an absolute advantage in 

accuracy metrics, its training time is longer, which indirectly 

reflects the necessity of convolutional decomposition.  

Fig. 13 displays the classification maps of all methods for 

visual performance estimation. It can be seen that the results of 

MSDN, RSSAN, and A2S2K are seriously affected by noise, 

and the commercial misclassification phenomenon is more 

serious in the images of SSRN, SSUN, ASSMN, SSTN, and 

SSFTT. Although DBDA performs best in the comparison 

algorithms, its classification map shows serious confusion 

between paved parking lot and car. Compared with the 

comparison algorithms, LKSSAN obtains a smooth 

classification map with optimal visualization. 

2) Results on the YRE Dataset 

Among all experimental datasets, the YRE dataset has the 

widest spectral coverage, the highest number of spectra, and the 

lowest spatial resolution, and is mainly used to verify the 

performance of the model for coastal wetland classification 

based on satellite images. 

Table VIII shows the experimental results of each algorithm 

on the YRE dataset. According to Table VIII, we can find that 

all the algorithms obtain excellent performance on this dataset. 

The SSUN requires the shortest training time and its OA is 

93.03%. The OA of SSRN exceeds the OA of SSUN by 0.33%, 

but its training time is about 200 times longer than the training 

time of SSUN. In the two-branch algorithms, DBDA obtains 

the best performance with the least training time and the best 

accuracy. In the transformer-based algorithms, the difference in 

OA between SSTN and SSFTT is smaller, but SSTN takes more 

training time. Although the dominant algorithms in different 

categories all obtain good performance, their results have large 

variance values and the differences in each accuracy are large. 

By contrast, LKSSAN obtains the optimal OA and the best 

kappa, which directly proves that LKSSAN can alleviate the 

imbalanced training data problems and indirectly reflects the 

advantages of the 3D spectral-spatial extraction method in 

remote sensing target recognition based on satellite images.  

Fig. 14 shows the experimental maps of each algorithm on 

the YRE dataset. The results demonstrate that SSRN, MSDN, 

DBDA, A2S2K, and SSFTT are severely affected by strip 

noise, while RSSAN, ASSMN, and SSTN maintain details 

well, but the tamarix in their upper left of classification maps 

are more severely affected by noise. The 3D feature extraction-

based model SSUN has good detail retention, but the suaeda 

salsa at the bottom is miss-classified, and LKSSAN is more 

balanced for all kinds of feature recognition, but there is still a 

weak banding phenomenon. In summary, SSUN and LKSSAN 

obtain the best visualization results. 
TABLE VII 

QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN 

TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS 

ON THE UH2018 DATASET. THE BEST ONE IS SHOWN IN BOLD. 

 
TABLE VIII 

QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN 

TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS 

ON THE YRE DATASET. THE BEST ONE IS SHOWN IN BOLD. 

 
 

3) Results on the PC Dataset 

The PC dataset shows urban scenes with fewer categories and 

stitched areas and is mainly used to verify the model's 

classification effect in multi-scale coarse-grained cases. Table 

IX shows the results of all the algorithms on the PC dataset. The 

results show that OAs of all the algorithms except RSSAN and 

MSDN obtained better than 93%, which may indicate the high 

spectral quality of the image and low classification difficulty. 

The PA of LKSSAN was better than 80%, which speculates the 

model can resist sample imbalance. In addition, although 

DBDA obtained the highest AA and kappa, the differences with 

LKSSAN are smaller. Fortunately, the training speed of 

LKSSAN is better than that of DBDA, so LKSSAN produces 

the best quantitative metrics based on the overall performance. 

Fig. 15 shows the classification map of each algorithm. To 

facilitate the qualitative evaluation, we enlarge the white box 

area in the classification graphs. The classification maps of 

MSDN, RSSAN, ASSMN, DBDA, and SSFTT cannot 

effectively reflect the spatial distribution of vegetation in this 

region. According to Fig.15(a), it can be found that the non-

residential area contains a large amount of meadows and bare 

soil except for trees, but SSRN and SSUN have a serious 

phenomenon of misclassifying these two classes as trees. Based 
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on the visualization results of the white box field, we can 

deduce that joint mining of long-range spectral and spatial 

information helps to alleviate the scenarios with poor spatial 

regularity of feature distribution. Moreover, compared with 

LKSSAN, A2S2K misclassifies asphalt and shadows into tiles 

in the left splicing area. Additionally, LKSSAN can still obtain 

smooth images in the region without labels indicating that the 

algorithm can effectively alleviate the spatial autocorrelation 

issue. In summary, LKSSAN has optimal visualization results. 

 
Fig. 13. Classification maps of different methods on UH2018 dataset. (a) 

False-color image of UH2018. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) 

RSSAN. (g) ASSMN. (h) DBDA. (i) A2S2K.(j)SSTN. (k)SSFTT. 

(l)LKSSAN. 

TABLE IX 

QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN 

TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS 

ON THE PC DATASET. THE BEST ONE IS SHOWN IN BOLD. 

 
 

TABLE X 

QUANTITATIVE PERFORMANCE OF DIFFERENT CLASSIFICATION METHODS IN 

TEAMS OF OA, AA, AND KAPPA, AS WELL AS THE ACCURACY FOR EACH CLASS 

ON THE WH DATASET. THE BEST ONE IS SHOWN IN BOLD. 

 

 
Fig. 14. Classification maps of different methods on YRE dataset. (a) True-

color image of YRE. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) RSSAN. (g) 

ASSMN. (h) DBDA. (i) A2S2K.(j)SSTN. (k)SSFTT. (l)LKSSAN. 

 

 
Fig. 15. Classification maps of different methods on PC dataset. (a) True-

color image of PC. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) RSSAN. (g) 

ASSMN. (h) DBDA. (i) A2S2K.(j)SSTN. (k)SSFTT. (l)LKSSAN. 

4) Results on the WH Dataset 

The WH dataset is ultra-high spatial resolution hyperspectral 

data acquired by UAV with numerous agricultural classes, and 

each type of class provides only 0.1% of its all label for model 

training. In this section, we use the WH dataset to validate the 

performance of the models for fine-grained agricultural 

classification using high spatial and spectral resolution in the 

small sample case. The experimental results of all models on 

the WH dataset are shown in Table X. Obviously, LKSSAN has 

a tremendous advantage with an OA that is 31.77% to 2.68% 

higher than the comparison algorithm. Specifically, the 

transformer-based algorithm obtains the best performance, 

which indicates the advantage of long-range information in 

refined classification. DBDA and A2S2K have higher OA and 

longer training times than the 3D spectral-spatial extraction-
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based algorithms. In contrast, LKSSAN achieves optimal 

performance with the highest number of optimal PAs, the best 

OA, AA, and kappa. 

Fig. 16 shows the classification maps of each model for 

model qualitative analysis. Based on Fig. 16, we can see that 

MSDN, RSSAN, ASSMN, and A2S2K are most affected by 

noise, and SSRN, SSUN, SSTN, and SSSFTT have severe 

feature confusion in the upper left region of their classification 

maps. Although he classification map of DBDA has the best 

visualization, with the GT map as the benchmark, we can 

identify the best image quality obtained by LKSSAN. By 

comparing the 3D extraction models as SSRN, SSUN, and 

RSSAN with the two-branch models such as DBDA and 

A2S2K, we can find that although the 3D extraction models 

perform poorly overall, the edges between local objects in the 

classification map are better maintained. Together with the 

performance of LKSSAN on the WH dataset, we can infer that 

3D feature extraction is essential for the fine classification of 

agriculture. 

 
Fig. 16. Classification maps of different methods on WH dataset. (a) False-

color image of WH. (b)GT. (c) SSRN. (d) MSDN. (e) SSUN. (f) RSSAN. (g) 

ASSMN. (h) DBDA. (i) A2S2K. (j)SSTN. (k)SSFTT. (l)LKSSAN 

 

TABLE XI 

Trainable Parameters of Different DL-based Methods on YRE datasets. The 

best one is shown in bold. 

 
 

5) Model Complexity Analysis 

To evaluate the complexity of the proposed LKSSAN 

method, we list the trainable parameters of different DL-based 

methods with the same patch size on YRE datasets in Table XI. 

According to Table XI, we can notice that RSSAN has the least 

parameters, but the lightweight structure causes performance 

loss. In the two-branch networks, A2S2K and DBDA have 

fewer parameters. The transformer-based methods have fewer 

parameters and poorer performance than the two-branch 

models. In addition, LKSSAN has the best performance on each 

dataset, but it requires more parameters compared to the other 

methods. Fortunately, it is small that the difference between the 

parameters of LKSSAN and the state-of-the-art algorithm. The 

result confirms the feasibility and value of LKSSAN in 

practical applications to some extent. 

V. CONCLUSION 

In this article, we have proposed a large kernel spectral-

spatial attention network (LKSSAN) to exploit the long-range 

3D dependency. Instead of the transformer, the proposed 

method can excavate the long-rang features by large kernel 3D 

convolution, which can effectively address the challenges in the 

field of HSI classification. To emphasize and model the critical 

3D features, we are inspired by VAN and design a spectral-

spatial attention module that contains two crucial structures 

(i.e., LKA and CFF). The LKA extracts long-range 3D 

dependencies from the 3D patch expanded by scale expansion 

block through attention and convolution decomposition, and the 

CFF facilitates the LKA and exploits the more abstract 3D 

semantic representation. Moreover, to adequately utilize the 

long-rang 3D information, the classification module fuses the 

information and obtains the final classification map by SMLP.  

Experiments with SSRN, MSDN, SSUN, RSSAN, ASSMN, 

DBDA, A2S2K, SSTN, and SSFTT on UH2018, YRE, PC, and 

WH datasets demonstrate the superior performance of 

LKSSAN. The reasons are that the spectral-spatial attention 

module can effectively excavate the long-range 3D spectral-

spatial features, and the well-designed SMLP can perfectly 

match the spectral-spatial attention module to realize the 

efficient integration and utilization of information. However, it 

should be mentioned that, although the LKSSAN can obtain 

high classification accuracies with various complex scenes, its 

ability in addressing insufficient training data problems and 

reducing computational burden still needs to be improved. In 

the future, we will introduce more lightweight structures to 

optimize HSI classification speed and build a semi-supervised 

model to alleviate the insufficient training data issue. 
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