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Abstract: In the research of computer vision, a very challenging problem is the detection of small
objects. The existing detection algorithms often focus on detecting full-scale objects, without making
proprietary optimization for detecting small-size objects. For small objects dense scenes, not only
the accuracy is low, but also there is a certain waste of computing resources. An improved detection
algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature
map output of the large object detection layer, the computing resources required by the model were
significantly reduced and the model becomes more lightweight. An improved feature fusion method
(PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively
increased the detection ability for small object of the algorithm. By introducing the spatial pyramid
pooling (SPP) in the backbone network into the feature fusion network and connecting with the
model prediction head, the performance of the algorithm was effectively enhanced. The experiments
demonstrated that the improved algorithm has very good results in detection accuracy and real-time
ability. Compared with the classical YOLOV5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOvV5 were
increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by
68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode
was reduced by 6.9%.

Keywords: object detection; visual tracking; small object; segmentation and categorization; YOLO

1. Introduction

Object detection aims to identify the location, size, spatial relationship, and classes
of specific targets in images or video sequences. It is a cross domain of computer vision,
digital image processing, and machine vision. It always had high research and application
value in face recognition [1,2], industrial defect detection [3], UAV aviation detection [4,5],
traffic and vehicle detection [6], pedestrian detection and counting [7], and other fields.

In recent years, with the update and iteration of high-performance GPUs, the con-
tinuous emergence and improvement of various large-scale datasets (such as DOTA [8],
ImageNet [9], COCO [10]) and the strong rise of neural networks based on convolutional,
object detection algorithms using deep learning techniques have become the mainstream
of contemporary object detection technology.

The current common object detection algorithms can be divided into two-stage al-
gorithm and one-stage detection algorithm according to whether candidate regions are
generated or not. The representative algorithms of the former are: RCNN [11], SPP(Space
Pyramid Pooling)-Net [12], Fast-RCNN [13], Faster-RCNN [14], Mask-RCNN [15], etc. The
latter mainly includes YOLO (YOLOv1 [16], YOLOv2 [17], YOLOv3 [18], YOLOv4 [19],
YOLOVS5 [20], etc.) and SSD [21] algorithm. Although the two-stage algorithms can reach
high accuracy, the prolonged time of detection makes it hard to satisfy the real-time require-
ment in daily object detection scenarios. Because it has the advantages of high precision
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and fast speed, the one-stage detection algorithm has become the research focus in the
study of object detection.

For early versions of object detection algorithms, for example, YOLOv1 [16], YOLOv2 [17],
etc., its network structure is often the stacking of multiple convolution layers and the full-
connection layer. Only the feature map of a fixed size is calculated, which greatly limited
the multi-scale detection ability of the model. On this occasion, the detection accuracy of the
algorithm for small targets is not ideal.

In the case of solving the above problems, an effective method is to adopt the image
pyramid strategy [22], which can enhance the multi-scale detection ability of the model;
however, the high computational cost and inference speed limit the development of the
image pyramid strategy in an object detection algorithm.

Based on the aforementioned methods, FPN [23] up-samples the feature map and
then fuses it with the corresponding output in the backbone network in this process, and
generates multiple new feature maps for final detection. This modification improved the
feature expression ability of the algorithm and further improved the effect of the algorithm
based on real-time detection and multi-scale detection ability. Meanwhile, FPN adopted
the top-down feature fusion path, which also strengthened the small object detection
performance of the algorithm.

Due to the excellent performance of FPN, adding a feature fusion network after the
backbone network of the model become the mainstream configuration of object detection
algorithms. For example, YOLOvV3 [18], YOLOv4 [19], and YOLOV5 [20], all use FPN as a
feature fusion network. The subsequent NAS-FPN [24], ASFF [25], PANet [26], BiFPN [27],
and so on have achieved better results through various feature fusion paths, but their basic
ideas are the same as that of FPN.

Through the combination of well-designed backbones and feature fusion networks,
the current object detection algorithms can ensure the detection accuracy and real-time
capability, and have the ability to detect various scales objects; however, for the specific de-
sign, these algorithms often focus on various complex life scenarios. Their original purpose
is to guarantee that the mathematical model has perfect generalization and detection ability
for targets with different scales, but ignore the detection optimization in some specific
scale scenes. In this context, designing a simple, efficient, lightweight, and easy-to-deploy
algorithm for small object detection has important study significance.

YOLOVS5 is the latest version of the YOLO series algorithms. Based on YOLOVS5, this
research has invented an improved YOLOVS5 algorithm for small object detection with
the name SF(Small-Fast)-YOLOvV5, which can not only significantly reduce the number of
parameters and calculated amount of the model, but also has better performance compared
with the original version in the small object detection direction.

The major innovations and contributions of this research are as follows:

*  In the default network structure of YOLOVS5, the network layer that originally used to
generate the large object detection feature map has been reasonably clipped. While
realizing the lightweight model, the computing resources required by the model are
effectively released and the speed of the model is greatly improved.

¢ Based on the PANet [26] and BiFPN [27], a new feature fusion method (PB-FPN) for
small object detection is proposed, which improved the detection performance of the
algorithm for small targets.

*  The (SPP [12]) layer at the end of the backbone network is introduced into the feature
fusion network and connected with multiple prediction heads to improve the feature
expression ability of the final output feature map and further enhance the ability of
the algorithm.

The other parts of this paper are arranged as follows: Section 2 introduces the ba-
sic idea and network structure of the classical algorithm YOLOVS5; Section 3 illustrates
the improvement strategy of SF-YOLOV5 in detail; Section 4 presents the experimental
environment, dataset selection, experimental result analysis, ablation experiment, algo-
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rithm comparison, and algorithm generalization ability test; Finally, Section 5 provides the
conclusion, and introduces follow-up work and improvement direction.

2. Relevant Work
2.1. Some Classical Algorithms

The detection of small objects belongs to the problem of abnormal scale in object
detection. Most of the classical algorithms are full-size detection algorithms, that is, the
algorithm itself will give priority to ensuring the detection ability of objects of various
sizes, and make various optimizations for small object detection on this basis. Common
optimization strategies include the using of image pyramids [22] or FPN [23]. Adding
more detection heads [4] can also attain a good effect, although it will greatly increase the
calculation cost.

At present, common detection algorithms (such as [11-21], etc.) have been introduced.
In addition, the latest YOLOv7 [28] (which is still under update) and various improved
algorithms based on ResNet [29,30] also have excellent performance.

YOLOVS5 is an algorithm with high reliability and stability, and it is easy to deploy and
train. At the same time, it is also one of the one-stage detection algorithms with the highest
accuracy at present; therefore, in this paper, we choose YOLOV5 for subsequent improve-
ment.

2.2. Basic Idea of YOLOv5

YOLOV5 continues the consistent idea of the YOLO series in algorithm design: namely,
the image to be detected was processed through a input layer (input) and sent to the
backbone for feature extraction. The backbone obtains feature maps of different sizes, and
then fuses these features through the feature fusion network (neck) to finally generate
three feature maps P3, P4, and P5 (in the YOLOV5, the dimensions are expressed with
the size of 80 x 80, 40 x 40 and 20 x 20) to detect small, medium, and large objects in
the picture, respectively. After the three feature maps were sent to the prediction head
(head), the confidence calculation and bounding-box regression were executed for each
pixel in the feature map using the preset prior anchor, so as to obtain a multi-dimensional
array (BBoxes) including object class, class confidence, box coordinates, width, and height
information. By setting the corresponding thresholds (confthreshold, objthreshold) to
filter the useless information in the array, and performing a non-maximum suppression
(NMS [31]) process, the final detection information can be output. The process of converting
the input picture into BBoxes is called the inference process, and the subsequent threshold
and NMS operations are called post-processing. The post-processing does not involve
the network structure. The default inference process of YOLOvV5 can be represented by
Figure 1.

Backbone
C5/32 5 >
C4/16 = o >
C3/8 E=—Z=—=== C3 >

C2/4 I i ]

Cl2 1 ]
Input

Figure 1. The default inference flowchart of YOLOV5.

In the details of bounding-box regression, different from the previous version of YOLO
algorithm, the process of YOLOVS5 can be explained by (1).
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Qx =20(sx) — 0.5+ 14
gy =20(sy) —0.5+r,
g = pn(20(sn))
8w = Puw(20(sw))?

In the above formula, set the coordinate value of the upper left corner of the feature
map to (0, 0). ry and r,, are the unadjusted coordinates of the predicted center point. gy,
8y, Sw, §n represents the information of the adjusted prediction box. p;, and py, are for the
information of the prior anchor. sy and s, represents the offset calculated by the model.
The process of adjusting the center coordinate and size of the preset prior anchor to the
center coordinate and size of the final prediction box is called bounding-box regression.

There are five versions of YOLOvV5, namely YOLOv5x, YOLOv5], YOLOv5m, YOLOV5s,
and YOLOvbn. The performance of each version is shown in Table 1.

M

Table 1. Comprehensive performance of five versions of YOLOv5 on COCO dataset [20].

Model Size mAP mAP Time Time Time Params (M) FLOPS
(Pixels) @0.5:0.95 @0.5 CPUb1(ms) V100bl(ms) V100b32 (ms) @640 (B)
YOLOV5n 640 28.0 45.7 45 6.6 0.6 19 4.5
YOLOv5s 640 374 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0
YOLOVv51 640 49.0 67.3 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7

In this paper, for the comprehensive consideration of computing resources, model
parameters, detection accuracy, deployment ability, and algorithm practicability, we chose
YOLOVS5s as the basic algorithm and made subsequent improvements and contributions
around it.

2.3. Network Structure of YOLOv5
Generally speaking, the network structure of YOLOVS5 refers to the backbone and neck.

2.3.1. Backbone

The backbone of YOLOVS5 is shown in Figure 2. The main structure is the stacking of
multiple CBS (Conv + BatchNorm + SiLU) modules and C3 modules, and finally one SPPF
module is connected. CBS module is used to assist C3 module in feature extraction, while
SPPF module enhances the feature expression ability of the backbone.

Backbone

: cs , cBS €  cB €  _ cB _ C | CB | C | SPPF
1 (646.22) (128,32) (128) (256,3,2) (256) (512,32) (512) (1024,32) (1024) (1024,5)

1 | |

R J . | 1
R cBs c3 ces
i Image ii[|  @s0) Upsample <= oce1y Y1 (s12) '_ UpSample (+— .1 1)

il ces c3 cBs c3
| (25632 612 [ 61232 (1024) Neck

)

Conv Conv Conv |:
1,64,80) 1,128,40) 1256,20) ) :

- ED @D
Head(Output)

Figure 2. Default network structure of YOLOV5.
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Therefore, in the backbone of YOLOVS5, the most important layer is the C3 module.
The basic idea of C3 comes from CSPNet (cross stage partial networks [32]). C3 can actually
be regarded as the specific implementation of CSPNet. YOLOVS5 uses the idea of CSPNet
to build the C3 module, which not only ensures that the backbone has excellent feature
extraction ability, but also curbs the problem of gradient information duplication in the
backbone.

2.3.2. Neck

In the neck, YOLOVS5 uses the methods of FPN [23] and PAN [26], as shown in Figure 3.
The basic idea of FPN is to up-sampling the output feature map (C3, C4, and C5) generated
by multiple convolution down sampling operations from the feature extraction network to
generate multiple new feature maps (P3, P4, and P5) for detecting different scales targets.

( rBackbone Hlnput] (BBoxesJ

Figure 3. The dotted line in the figure is the default feature fusion path of YOLOV5.

The feature fusion path of FPN is top-down. On this basis, PAN reintroduces a new
bottom-up feature fusion path, which further enhance the detection accuracy for different
scales objects.

3. Approach

The performance of YOLOV5 algorithm is very excellent for object detection, but when
the scenario is full of small targets, the detected results cannot obtain ideal results, so there
is still has large room for improvement. In order to solve these issues, some questions
were proposed:

*  YOLOVY5's feature extraction network set three different sizes of feature map output
for detection scenes of various scales. The process of obtaining the feature map
requires multiple convolution down sampling operations, which takes up a lot of
computing resources and parameters; however, in the actual detection for small
targets, is the down sampling operation and feature fusion process for high-level
feature map necessary?

¢  The feature fusion network of YOLOv5 combined a top-down path (FPN) with a
bottom-up path (PAN), which enhances the detection performance on various scale
objects; however, for dense small object scenes, can we set a new feature fusion path
to improve the feature expression potential of the output feature map? Can we fuse
features horizontally to further enhance the detection performance of the algorithm?

*  YOLOV5 adds an SPPF module at the end of the backbone, which improves the
performance of the feature extraction network through multiple convolution and
pooling operations with different sizes. Can we use this idea to further tap the feature
expression potential of the feature map in the end of the neck?

Aiming at the above three questions, we proposed a novel small object detection algo-
rithm: SF(Small-Fast)-YOLOVS5. In the multiple down sampling process of the backbone,
in order to bring about the lightweightness of the algorithm, we canceled the default C5
(fifth convolution down sampling operation) layer, and made corresponding adjustments
in the feature fusion part, leaving only the C3 and C4 feature maps for feature fusion. In the
part of the neck, based on PANet and BiFPN, we redesigned a new small object detection
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feature fusion path (PB-FPN), which aims to strengthen the fusion effect of the model on the
underlying features and strengthen the small object detection performance. Meanwhile, we
introduce the SPPF module that originally existed only in the backbone at the connection
between the neck and the head, which further tapped the feature expression potential of
the output feature maps.

3.1. Feature Map Clipping

YOLOVS5 outputed three sizes of feature maps by default, which are used to predict
the large, medium, and small objects, respectively. The way to obtain these feature maps
is to carry out continuous convolution down sampling operations and feature fusion
processes. Table 2 shows the numerical visualization results of YOLOvS5 default feature
extraction network.

Table 2. Parameter of backbone in YOLOvV5 network structure.

C From n Params Module Arguments

0 -1 1 3520 CBS [3,32,6,2,2]
1 -1 1 18,560 CBS [32, 64, 3, 2]

2 -1 1 18,816 C3 [64, 64, 1]

3 -1 1 73,984 CBS [64, 128, 3, 2]
4 -1 2 115,712 C3 [128,128, 2]

5 -1 1 295,424 CBS [128, 256, 3, 2]
6 -1 3 625,152 C3 [256, 256, 3]

7 -1 1 1,180,672 CBS [256, 512, 3, 2]
8 -1 1 1,182,720 C3 [512, 512, 1]

9 -1 1 656,896 SPPF [512,512, 5]

As shown in Table 2, C represents the position of the module, From —1 indicates that
the input of this layer comes from the previous layer, n indicates the amount of modules,
params indicates the parameter usage of this layer, module indicates the name of the mod-
ule, arguments represent the input channel value, output channel value, and convolution
kernel attribute, respectively. The 7 and 8 layers indicates the C5 sampling layer in the fea-
ture extraction network; as can be seen, the sampling layer occupies enormous parameters.

In the proposed mathematical model, for the purpose of being lightweight, the default
C5 feature map of the traditional YOLOV5 is deleted. The feature map clipping corre-
sponding to the improved method in this section can be represented by the flowchart in
Figure 4.

Backbone

C4/16 ca_,
S
C2/4 | )
Cl2 - .
Input

Figure 4. The inference flowchart of SE-YOLOV5. The backbone has been cut accordingly, correspond-
ing to the improvement method proposed in Section 3.1, neck (PBS) represents a new feature fusion
network with PB-FPN and SPPF prediction head, which corresponds to the methods described in
Sections 3.2 and 3.3 of the improved algorithm in this paper.

3.2. Improvement for Feature Fusion Path (PB-FPN)

Early object detection algorithms usually used the high-level feature map that gen-
erated by multiple down sampling operations for detection, which will make the model
unable to effectively predict objects of various scales. The introduction of FPN [23] solves
this problem well, and its basic process is shown in Figure 5b.
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(a) Default (b) FPN (c) PAN (d) BIFPN

Figure 5. Some common feature fusion paths.

Taking the P4 node in Figure 5d as an example:

P — cono | PL Pi" + w; - Resize(Pi") )
- w1+ wy+¢€

®)

POt — Cono <w1/ - Pi* 4+ w)y - P 4 ), - Resize(P§"") )

/ / /
Wy +w, +wy + €

In the (2) and (3), Pid represents the intermediate feature map between C4 and P4, Pi”
and P{*! correspond to C4 and P4 respectively, Conv and Resize correspond to convolution
and sampling operation respectively, w and e represent weight and a preset small value to
avoid numerical instability, which is usually set to 0.0001.

Based on the previous analysis, we designed an improved feature fusion path, as
shown in Figure 6:

P5
C5
P4 P4
C4 C4
c3 P3 c3 P3
(a) Default PB-FPN (b) PB-FPN after cutting C5

Figure 6. The feature fusion path of PB-FPN.

Compared with the classical algorithms PANet [26] and BiFPN [27], this section
additionally introduces a new feature fusion path to further integrate the features from the
high-level into the bottom. Meanwhile, new branches are set horizontally to participate
in the fusion process of the bottom, which further enhances the detection effect of the
algorithm for small targets.

3.3. The Improved Feature Fusion Network (SPPF)

The latest version of YOLOVS5 used the SPPF (SPP-Fast) module. Compared with the
original SPP module, its structure comparison is shown in Figure 7. By simplifying the
pooling process, SPPF avoided the repeated operation of SPP and significantly improved
the running speed of the module.

SiLU MaxPool SiLU SiLU MaxPool SiLU
T v T T T
—— BatchNorm Maxfool BatcThNorm—> —> Batcf#}lorm MaxPool Bat(iFNorm—b
Conv MaxPool _} Conv Conv MaxPool _) Conv
CBS CBS CBS CBS

(a) SPPF (b) SPP

Figure 7. Structure comparison of SPPF and SPP.
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Scale

In this paper, we introduced several SPPF modules at the connection between the
feature fusion network and the model prediction head, in order to further tap the feature
expression potential of the finally output feature map by the neck and sent to the head, and
further enhance the performance of the model. The modified network in this section can be
expressed in Figure 8.

Figure 8. Structure diagram after adding SPPF at the junction of feature fusion network and predic-
tion head.

4. Experiments
4.1. Experimental Environment

In this experiment, the workstation is win10, 16 GB, the CPU is used AMD-4800H,
the GPU is used Nvidia-Rtx2060. The algorithm is based on PyTorch, using CUDA11.1 to
operation acceleration. The training epoch is set to 300, and the mosaic data enhancement
and a prior anchor adaptive adjustment strategy are used.

4.2. Dataset Introduction

In order to testify the performance of the improved algorithm (SF-YOLOV5) for the
small object detection, this study adopted the WIDER FACE [33] dataset to train and verify
the algorithm. This dataset contains the annotation information of 393,703 faces. As shown
in Figure 9, the dataset is highly variable in scale, posture, angle, light, and occlusion. The
dataset is complex and includes a great quantity of dense small targets.

Pose Occlusion

Expression Makeup Illumination

Figure 9. The WIDER FACE dataset contains a variety of complex and rich scenes [33].

Considering that the SF-YOLOv5 mainly detects small objects, while the original
WIDER FACE dataset contains not only small targets, but also large targets, which will
affect the experimental results; therefore, we first screened according to the number and
size of face images in a single image in the original dataset. In total, 4441 images were used
to train the algorithm and 1123 images were used to verify the algorithm. The number
proportion of the train and verify was 4:1, same as the original dataset. Figure 10 is an
attribute visualization result of the new dataset.
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0

face

Figure 10. The attribute visualization results of the dataset used in this paper.

Figure 10a expressed the number of labels in the dataset. Figure 10b shows the
central coordinate position of the object. Figure 10c shows the size of the object. It can be
seen that this dataset is sufficient to ensure the training and verification of small object
detection algorithm.

4.3. Evaluation Criterion

At present, the mainstream general indicators for evaluating the performance of object
detection algorithms include precision, recall, AP (average precision), mAP (mean AP),
parameters(the number of parameters in model), FLOPs (floating point operations per
second), inference time, etc.

Considering that mAP can more reasonably reflect the accuracy of the algorithm than
precision and recall, in this experiment, we choose mAP@0.5, mAP@0.5:0.95, parameters,
FLOPs, and inference time to evaluate the algorithm.

4.4. Analysis of Experimental Results

The experimental performance comparison between YOLOv5s and SF-YOLOVS5 is
illustrated in Table 3. Compared with the traditional algorithm YOLOv5s, the mAP@0.5 and
mAP@0.5:0.95 of SF-YOLOVS has been increased by 1.6 and 0.8, respectively, which proved
the improvement in comprehensive detection performance of SF-YOLOV5. At the same
time, the parameters (M) value and FLOPs (G) value of SF-YOLOVS5 are reduced by 68.2%
and 12.7%, respectively, indicating that SE-YOLOV5 can further decrease the number of
parameters and lessen computing power required for model operation under the condition
of improving the detection accuracy, which enhances the deployment performance of the
algorithm on various low-end workstations and small mobile devices. The reduction in
inference time (ms) shows that the model can process more images and videos in the same
time, which ensures the speed of SF-YOLOVS5 in detecting small objects.

4.5. Ablation Experiment

Table 3 expressed the ablation experimental data of improved methods 1, 2, and 3
proposed in this paper. YOLOvV5-N5 is a new algorithm obtained by cutting the feature
layer with the default YOLOV5, which corresponds to the improved method 1 proposed in
this paper. It is not difficult to find that although this improvement has increased by 0.2
in mAP@0.5, the value of mAP@0.5:0.95 has decreased by 0.2. The calculation formula of
GIOU [34] used by YOLOVS5 is shown in (4).

|A—PuUPS|

L=1-1IoU+
Al

4)
where P and P$! express the area of the prediction box and ground truth box, respectively,
and A is the minimum area of the area composed of P and P$'. We hope the value of L to
be infinitely close to 0. In this case, the lower the value of IOU, the lower the requirement
for the position coincidence when verifying the accuracy of the algorithm.
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Table 3. Performance comparison of SF-YOLOV5 and other algorithms on small object datasets.

Methods Size mAP@0.5 mAP@0.5:0.95 Parameters (M) FLOPs (G) Inference Time (ms)
YOLOv5s 640 69.7 35.5 7.01 15.8 13.1
YOLOvV5-N5 640 69.9 35.3 1.88 11.2 10.4
YOLOvV5-PB 640 70.8 36.0 2.03 12.7 11.3
SF-YOLOv5 640 71.3 36.3 2.23 13.8 12.2
improvement - +1.6 +0.8 —68.2% —12.7% —6.9%
YOLOv5n 640 63.9 30.8 1.76 4.20 8.60
SF-YOLOv5 640 71.3 36.3 2.23 13.8 12.2
improvement - +7.4 +5.5 +26.7% +228.6% +41.9%
YOLOv7-tiny 640 68.4 33.0 6.01 13.0 13.9
SF-YOLOv5 640 71.3 36.3 2.23 13.8 12.2
improvement - +2.9 +3.3 —62.9% +6.2% —12.2%
YOLOv3 640 74.5 39.5 61.5 154.7 447
SF-YOLOv5L 640 75.1 39.7 15.5 91.2 494
improvement - +0.6 +0.2 —74.8% —41.0% +10.5%
YOLOv7 640 76.1 39.5 36.5 103.2 18.0
SF-YOLOvV5L 640 75.1 39.7 15.5 91.2 494
improvement - -1.0 +0.2 —57.5% —11.6% +174.4%
ResNeXt-CSP 640 73.7 37.6 31.8 58.9 32.6
SF-YOLOv5L 640 75.1 39.7 15.5 91.2 494
improvement - +14 +2.1 —51.3% +54.8% +51.5%

It can be seen from Table 3 and formula (4), the improved method 1 can achieve
significant weight improvements after removing the high-level feature map. Although the
detection performance has been slightly affected: the model can identify more objects; the
position of the prediction box will deviate to a certain extent.

YOLOVS5-PB is a new algorithm obtained by setting the feature fusion path as PB-FPN
on the basis of the improved method 1, corresponding to the improved method 2 in this
paper. Compared with YOLOv5-N5, this algorithm slightly increases the computational
resources and number of parameters, but greatly enhances the detection accuracy, the value
of mAP@0.5 and mAP@0.5:0.95 by 0.9 and 0.7, respectively. It proves the feasibility of
introducing a more efficient feature fusion path to enhance the ability of algorithm.

The final SF-YOLOVS5 was obtained by adding SPPF module at the junction between
the neck and head of YOLOV5-PB, corresponding to the improved method 3. Compared
with the improved method 2, YOLOV5-PB slightly increases the number of parameters and
further enhances the detection accuracy of the algorithm.

Figure 11 shows the visualization of ablation experimental data of improved methods
1,2, and 3. Figure 12 shows the detection results of SF-YOLOVS5.

(aQ)mAP@0.5 (b)mAP@0.5:0.95 (c)Loss

Figure 11. The ablation experimental results of the improved methods 1, 2, and 3.
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Figure 12. Detection effect of SF-YOLOv5 on WIDER FACE dataset.

4.6. Comparison with Other Classical Algorithms

We compare SF-YOLOVS5 with several classical detection algorithms, and the results
are expressed in Table 3. Among them, YOLOvbn is the latest lightweight algorithm of
YOLOV5, and YOLOV3 is a relatively mature large-scale one-stage detection algorithm.
YOLOv?7 [28] is the latest algorithm of YOLO family at present, which has the strongest
comprehensive performance in full-scale detection, and YOLOv7Z-tiny is a lightweight
version of YOLOv7, which has similar parameter quantities and calculation quantities
with SF-YOLOv5. ResNeXt-CSP is a new detector combined with classical algorithms
ResNeXt [29] and CSPNet [32], which have excellent performance. It is not difficult to find
that although YOLOvbn is lighter and faster, the detection accuracy is too low compared
with SF-YOLOv5. Compared with YOLOv7-tiny, SE-YOLOVS5 has advantages in detection
accuracy, speed, and lightweight effect in the small object dataset, but it slightly increases
the amount of calculation.

Because YOLOv3, YOLOv7, and ResNeXt-CSP are not lightweight algorithms, it is
difficult to directly compare with SE-YLOV5, so we adjusted the scaling coefficient of SF-
YOLOV5. This operation is adopted in YOLOv4, YOLOvVS5, and YOLOv?. The default value
(0.33, 0.25) is adjusted to the same (1, 1) as YOLOv?. The adjusted SF-YOLOv5 was named
SE-YOLOVSL. It has the same network structure and improvement idea as SF-YOLOVS5,
and the only difference is in the model size. The comparison of these algorithms is shown
in Table 3. On the whole, SF-YOLOV5L is better than YOLOvV3, ResNeXt-CSP, and its
performance is close to that of the latest YOLOV?7. This proved the feasibility and reliability
of the improved method proposed in this paper.

4.7. Performance of Novel SF-YOLOuv5 on Other Datasets

In this section, we further prove the ability of SE-YOLOV5 on other datasets, so as
to judge whether the improvement made by SF-YOLOVS5 in the direction of small object
detection is universal.

TinyPerson [35], VisDrone [36], and VOC2012 [37,38] public datasets were selected
for testing experiment in this section. Among them, TinyPerson and VisDrone contain a
large number of small targets, which is suitable for the verification of SF-YOLOV5 proposed
in this paper. Because there are not only small targets, but also a large number of large
targets in VOC2012, it is mainly used to verify the performance of improved methods 2
and 3 proposed in this paper in the full-scale detection; therefore, in the experiment for
VOC2012, we fine tuned the prediction head of SF-YOLOvV5 and re added the P5 detection
head. The algorithm is named SF-YOLOv5-P5. Table 4 shows the performance comparison
of SE-YOLOvV5 and YOLOvV5s on these datasets.
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Table 4. Performance comparison between YOLOv5s and SF-YOLOVS5 on other datasets.

Dataset Methods Size mAP@0.5 mAP@0.5:0.95 Parameters (M) FLOPs (G) Inference Time (ms)
YOLOv5s 640 18.7 6.0 7.02 15.8 12.8
TinyPerson =~ SE-YOLOv5 640 20.0 6.5 2.23 13.8 11.0
improvement - +1.3 +0.5 —68.2% —12.7% —14.1%
YOLOvb5s 640 33.0 17.9 7.04 15.9 12.6
VisDrone SF-YOLOv5 640 34.3 18.2 2.24 13.8 11.5
improvement - +1.3 +0.3 —68.2% —13.2% —8.7%
YOLOV5s 640 60.8 37.0 7.06 15.9 25.8
VOC2012 SF-YOLOV5-P5 640 61.2 38.3 4.59 15.7 24.8
improvement - +0.4 +1.3 —34.9% —1.3% —3.9%

To sum up, SF-YOLOWS5 still achieved improvement in detection accuracy and compre-
hensive performance on TinyPerson, VisDrone and VOC2012 datasets. It is proved that the
improved methods 1, 2, and 3 have obvious improvement effect in the direction for small
object detection and have certain versatility in full-scale detection. Other experimental
results in this section are shown in Figures 13 and 14.

100 150 200 250 300 0 0 100 150 2 15
Epochs Epochs Epochs

(a) TinyPerson (b) VisDrone (c) VOC2012

Figure 13. Comparison of detection accuracy between SF-YOLOv5 and YOLOv5s on other datasets.

Figure 14. Detection effect of SF-YOLOV5 on other dataset.

5. Conclusions

In this paper, a lightweight small object detection algorithm based on an improved
feature fusion mode is proposed, which is dedicated to improving the detection effect on
small targets. When the algorithm is significantly lighter, the detection accuracy is also
significantly improved. By reducing the convolution down sampling operation in the
network structure and trimming the output feature map, the model parameter amount
and computation amount are significantly reduced under the premise of ensuring the
detection accuracy. Ablation experiments show that the contribution of high-level feature
maps generated by multiple convolution downsampling can be replaced by more effective
feature fusion methods when detecting small objects. Besides this, in order to improve
the small object detection accuracy of the model, a new feature fusion method (PB-FPN)
is proposed based on PANet and BiFPN. By setting a fast SPP operation at the junction
of the neck and the head, the feature expression potential of the output feature map of
the backbone is fully exploited, and the detection performance of the algorithm is further
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improved. The revised model has good generalization ability and can also be applied to
small object detection scenarios of other types of targets.

In the follow-up research, we will continue to improve the detection effect of the
algorithm on ultra-small targets, and we will further explore the detection potential of
the small object detection feature fusion method (PB-FPN) proposed in this paper on
full-scale targets.
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