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Abstract— Recently, unsupervised person re-identification
(Re-ID) has received increasing research attention due to its
potential for label-free applications. A promising way to address
unsupervised Re-ID is clustering-based, which generates pseudo
labels by clustering and uses the pseudo labels to train a Re-ID
model iteratively. However, most clustering-based methods take
each cluster as a pseudo identity class, neglecting the intra-cluster
variance mainly caused by the change of cameras. To address this
issue, we propose to split each single cluster into multiple proxies
according to camera views. The camera-aware proxies explicitly
capture local structures within clusters, by which the intra-ID
variance and inter-ID similarity can be better tackled. Assisted
with the camera-aware proxies, we design two proxy-level
contrastive learning losses that are, respectively, based on offline
and online association results. The offline association directly
associates proxies according to the clustering and splitting results,
while the online strategy dynamically associates proxies in terms
of up-to-date features to reduce the noise caused by the delayed
update of pseudo labels. The combination of two losses enables
us to train a desirable Re-ID model. Extensive experiments
on three person Re-ID datasets and one vehicle Re-ID dataset
show that our proposed approach demonstrates competitive
performance with state-of-the-art methods. Code will be available
at: https://github.com/Terminator8758/O2CAP.

Index Terms— Unsupervised person re-identification, con-
trastive learning, proxies.

I. INTRODUCTION

PERSON re-identification (Re-ID) is the task of identifying
the same person in non-overlapping cameras. Due to its

significance in video surveillance and public security, this
task has been extensively studied for decades. State-of-the-
art performance is achieved mostly by supervised methods
[1], [2], requiring full labels that are expensive and time-
consuming to annotate. Recently, semi-supervised [3], [4] and
unsupervised [5], [6] Re-ID have been attracting more and
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more research interest, in a hope to reduce annotation cost and
make the techniques more practical to real-world deployments.
Although considerable progress has been achieved in these
tasks, there is still a big gap in performance compared to the
supervised counterparts.

This work focuses on the purely unsupervised Re-ID task
that requires no labels and thus fully releases the annotation
burden. A promising research line for unsupervised Re-ID
is clustering-based, which generates pseudo labels from the
clustering results and uses the pseudo labels to learn a Re-ID
model iteratively. With the popularity of contrastive learn-
ing [7], [8], [9], the integration of clustering and contrastive
learning demonstrates great potential in recent unsupervised
studies [10], [11], [12]. However, the pseudo labels generated
by clustering is far from perfect, impeding Re-ID models from
getting further improved.

The noise of clustering-based pseudo labels mainly stems
from two aspects. On one hand, pedestrian images are of
high intra-ID variance and inter-ID similarity, which makes
it extremely challenging for clustering algorithms such as
DBSCAN [13] or K-Means to achieve accurate clusters.
On the other hand, most methods perform clustering in an
offline manner based on the features extracted at the beginning
of each epoch, while instance features used for matching
are extracted via a model updated on the fly. It implies that
the generated pseudo labels might be out of date. To deal
with the inevitable label noise, efforts have been made in
label refinement [14], [15], [16], hybrid contrastive learning
[10], [12], [17] that combines cluster- and instance-level
contrasts together, online pseudo label generation [18], and
other techniques [19], [20].

In this work, we propose camera-aware proxies to bet-
ter deal with the intra-ID variance and inter-ID similar-
ity. Our approach is inspired by the following observation.
Since severe intra-ID variance is mainly caused by the
change of camera views, an ID’s intra-camera images tend to
gather more tightly in a feature space than its inter-camera
images. As a result, the clusters obtained by unsupervised
clustering often present multiple sub-clusters, roughly cor-
responding to different camera views. Therefore, as shown
in Figure 1, we propose to split each cluster, which is
obtained by a camera-agnostic clustering method, into multiple
camera-aware proxies according to camera views. Based on
the pseudo labels that are generated from these camera-
aware proxies, we design a proxy-level contrastive learning
(CL) method that is more effective than cluster-level CL
and requires less memory footprints than instance-level CL
methods [10], [12], [17].
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Fig. 1. An illustration of the proposed camera-aware proxies, together
with offline and online associations. Each cluster obtained by a camera-
agnostic clustering step is split into multiple camera-aware proxies according
to camera views. Proxies are further associated via an offline strategy and an
online strategy to perform proxy-level contrastive learning. The offline strategy
straightforwardly associates proxies split from the same cluster together. The
online strategy dynamically associates positive proxies for an anchor instance
(marked by red circles) in terms of up-to-date features. (Instances belonging
to the same ID are represented by the same shape and those coming from the
same camera are in the same color).

To deal with the noise arisen from the offline clustering
criterion as well as the delayed update of pseudo labels,
we further propose a strategy that employs offline and online
associations to complimentarily mine positive and hard nega-
tive proxies. Offline association is based on the offline clus-
tering results. It straightforwardly associates the proxies split
from a positive cluster as the positive ones. Online association
aims to utilize up-to-date features of instances and proxies to
associate positive proxies. To this end, we design an instance-
proxy balanced similarity and a camera-aware nearest neighbor
criterion to produce reliable associations, which are vital to
make online association effective. Finally, two proxy-level
contrastive learning losses are defined, respectively, according
to the results of offline association and online association.

The main contributions are summarized as follows:
• Instead of using camera-agnostic clusters, we propose

camera-aware proxies that explicitly capture local struc-
tures within clusters. They enable us to perform proxy-
level contrastive learning, which can tackle the intra-ID
variance and inter-ID similarity better.

• With the assistance of the camera-aware proxies,
we design a strategy that combines offline and
online association based proxy-level contrastive learning
together. This strategy can, to some extent, conquer the
noise caused by the offline clustering criterion and the
delayed update of pseudo labels.

• Extensive experiments on three person Re-ID datasets and
one vehicle Re-ID dataset show that the proposed method
is competitive to state-of-the-art purely unsupervised and
UDA-based Re-ID methods.

Note that this work is an extended version of our pre-
liminary work CAP [11]. In contrast to CAP, we make the
following improvements:
• This work proposes an online association scheme to

utilize up-to-date features for proxy association, based on
which an additional proxy-level contrastive learning loss
is designed.

• We discard the intra-camera contrastive learning loss that
is used in CAP and analyze why this loss is not helpful
to the new model in this work.

• More experiments on ablation studies and sensitivity
analysis, as well as on a vehicle Re-ID dataset, are
conducted to make a thorough validation.

• Experiments show that this work improves CAP by a
considerable margin on all datasets. Especially, on the
most challenging dataset MSMT17, 4.6% Rank-1 and
5.5% mAP improvements are gained.

II. RELATED WORK

A. Unsupervised Person Re-ID

According to whether external labeled datasets are used
or not, previous unsupervised methods can be classified into
purely unsupervised and UDA-based groups.

Purely unsupervised person Re-ID requires no annotations
and therefore is more attractive. Existing methods commonly
resort to pseudo labels for learning. Clustering [5], [20],
k-NN [21], [22], graph [23], [24], or hypergraph [15] based
techniques have been developed to generate pseudo labels.
Clustering-based methods such as BUC [5] and HCT [20]
conduct learning in a camera-agnostic way, which can capture
the similarity within IDs but neglect the intra-ID variance
mostly caused by the change of camera views. Alternatively,
TAUDL [21], DAL [22], UGA [24], and IICS [25] divide
the Re-ID task into intra- and inter-camera learning stages,
by which the discriminative ability learned within cameras can
further facilitate ID association across cameras. Our prelim-
inary CAP [11] proposes camera-aware proxies to deal with
the intra-ID variance and conducts the unsupervised learning
also from both intra- and inter-camera perspectives. But, in this
extension work we find out that the intra-camera learning is not
necessary, or even harmful, to perform effective learning when
intra-camera pseudo labels are noisy. We therefore merely
focus on the inter-camera learning while propose a combi-
nation of offline and online association to boost performance.

Unsupervised domain adaptation (UDA) based person Re-
ID demands a source dataset that is fully labeled, but leaves
the target dataset unlabeled. To address this task, existing
methods either transfer image styles [26], [27], [28], [29]
or reduce distribution discrepancy[30], [31], [32] between
different domains. These methods pay much attention to
transfer knowledge from source domain to target domain.
In addition, to sufficiently exploit unlabeled data in the target
domain, clustering [10], [32], [33], [34], [35] or k-NN [6], [29]
based methods have also been adopted, analogous to those
introduced in the purely unsupervised task. Differently, these
methods either take both original and transferred data [6], [10],
[29], [33] into account, or integrate a clustering procedure
together with an adversarial learning step [34]. Although
external labeled datasets are used, UDA-based methods do not
gain noticeable advantage against recent purely unsupervised
counterparts.

In both purely unsupervised and UDA-based person Re-ID,
early methods [21], [26], [27], [33] often use ID classification
loss or triplet loss [36] for learning. Recently, contrastive
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learning (CL) [7], [8], [9] has attracted a surge of research
interest. Various CL-based methods [6], [10], [11], [12], [18],
[32], [35], [37], [38] have been developed for unsupervised
Re-ID. Moreover, the issue of pseudo label noise occurred in
unsupervised Re-ID has also been noticed recently and various
methods [14], [16], [18], [19], [20] have been proposed to
address it. We will introduce these related work and state the
difference of our work in Section II-C and II-E.

B. Utilization of Camera Information

As one type of valuable meta information, camera index
has been extensively utilized in previous unsupervised Re-ID
methods. For instance, CAMEL [39] and UCDA-CCE [30]
aim to align distributions under different cameras by learn-
ing camera-specific projections or performing camera-aware
domain adaptation. TAUDL [21], UTAL [40], UGA [24],
IICS [25], and MGH [15] combine intra-camera and inter-
camera learning together to boost unsupervised Re-ID per-
formance. Besides, we notice that camera information is also
implicitly used in SpCL [10]. Although SpCL [10] does not
explicitly use camera information in its model, it designs a
MultiGallerySampler to ensure in-batch images of each ID to
be sampled from diverse cameras, which enhances its perfor-
mance further. These methods leverage camera information
in various ways, but they do not pay attention to the intra-
cluster variance caused by camera discrepancy. In this work,
we propose camera-aware proxies to capture the camera-
specific variance within each cluster, based on which offline
and online association strategies are designed.

C. Pseudo Label Refinement

Clustering-based methods take a dominant role in recent
unsupervised Re-ID. However, the pseudo labels generated
by an offline clustering technique such as DBSCAN [13]
inevitably contain noise. In order to reduce the label noise,
various methods [14], [16], [18], [19], [20] have been devel-
oped recently. For instance, RLCC [16] refines pseudo labels
via clustering consensus over consecutive training generations.
MGH [15] adopts a hypergraph to propagate and refine pseudo
labels generated by global DBSCAN, intra-camera DBSCAN,
and global KNN. HCT [20] utilizes hierarchical clustering
and Zheng et al. [18] propose an online clustering strategy to
generate high quality pseudo labels. MMT [14] refines pseudo
labels by the combined use of offline hard pseudo labels and
online soft pseudo labels. In contrast to these methods, we pro-
pose camera-aware proxies (CAP) to conquer the clustering
noise resulted from high complex data structures, and further
design offline and online association strategies specific to CAP
to deal with the noise stemmed from the clustering criterion
as well as the delayed update of pseudo labels.

D. Metric Learning With Proxies

Metric learning plays an important role in person Re-ID and
many other vision tasks. A loss extensively utilized in metric
learning is the triplet loss [36]. It measures the distances of an
anchor to a positive instance and a negative instance that are

usually sampled within a batch. Along with the increment of
the batch size, the number of triplets increases dramatically,
resulting in a slow convergence and an inferior performance.
To overcome this issue, Proxy-NCA [41] and Center loss [42]
propose to use proxies or centers, which represent sets of
data instances, for the measurement of similarity and dis-
similarity. The use of proxies instead of instances is able to
capture more contextual information and greatly reduces the
total number of triplets, enabling metric learning to achieve
better performance. Further, with the awareness of intra-
class variances, Magnet [43], MaPML [44], SoftTriple [45],
GEORGE [46], and ProxyGML [47] adopt multiple proxies
to represent a single cluster, by which local structures can
be represented better. Our work is inspired by these studies.
However, in contrast to set a fixed number of proxies for each
class or design a complex strategy to find an appropriate proxy
number, we split a cluster into a variant number of proxies
simply according to the involved camera views, making our
proxies more suitable for the Re-ID task.

E. Contrastive Learning

Contrastive learning (CL) performs learning also via com-
paring similarities of samples and therefore belongs to a
special metric learning technique. In recent years, CL has
attracted great interest due to its success in unsupervised
representation learning tasks [7], [8], [9]. Some losses such as
Instance loss [48] adopt a parametric form to conduct instance-
level discrimination, while most typical contrastive losses such
as InfoNCE [7], [8], [9], [49] perform in a non-parametric
way, aiming to pull positive samples together while push
negative samples apart. The losses are primitively focused
on the contrast of instances and later extended to prototypes
or proxies [50], [51] as well. A crucial problem in CL is
how to select positive and negative instances/proxies for effec-
tive comparison. Nowadays, this problem still remains open
although various hard negative mining strategies [52], [53]
for contrastive learning have been proposed.

Recently, contrastive learning has also been widely applied
to UDA-based [10], [18], [32], [35] and purely unsuper-
vised [11], [12], [37], [38], [54] person Re-ID tasks. For
instance, SpCL [10] constructs a hybrid memory and exe-
cutes contrastive learning at source-domain class-level, target-
domain cluster-level, and un-clustered instance-level. Our
CAP [11] constructs a proxy-level memory bank to perform
intra- and inter-camera contrastive learning at proxy-level.
Later on, ICE [12] and Liu et al. [37] boost SpCL and CAP
via augmenting the models with instance-level contrastive
learning, while MGH [15] and Isobe et al. [32] integrate
contrastive learning with hypergraph and Fourier augmenta-
tion. In contrast to them [12], [15], [17], [32], [37], [38], this
work extends CAP via sticking on the proxy-level contrastive
learning alone to keep the approach simple yet effective.

III. A CLUSTERING-BASED RE-ID BASELINE

We first set up a baseline model for the purely unsuper-
vised Re-ID task. As the common practice in clustering-
based methods [5], [20], [33], the baseline learns a Re-ID
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model iteratively and, at each epoch, it alternates between
a clustering step and a model updating step. In contrast to
previous methods that utilize an ID classification loss [33] or
a triplet loss [20], we adopt a non-parametric Softmax loss [7]
for the model updating. This non-parametric loss, also termed
as an InfoNCE loss [9], [55], plays an important role in recent
contrastive learning techniques that have been successfully
applied to various unsupervised learning tasks [5], [6], [7],
[8], [9], [10]. It also makes our baseline model effective and
extensible. In the followings, we briefly introduce the details.

Given an unlabeled dataset D = {xi }
N
i=1, where xi is the

i-th image and N is the total number of images. We build the
baseline model on a convolutional neural network (CNN) fθ
that is parameterized by θ . The parameters are initialized from
an ImageNet-pretrained [56] network. When image x is input,
the network extracts a d-dimensional feature fθ (x). Then,
at each epoch, we adopt DBSCAN [13] to cluster the features
of all images, and further select reliable clusters by simply
discarding isolated outliers. All images within each cluster are
assigned with a same pseudo ID label. By this means, we get a
labeled dataset D′ = {(xi , ỹi )}

N ′
i=1, in which ỹi ∈ {1, . . . , Y } is

a generated pseudo label. N ′ is the number of images remained
in the selected clusters and Y is the number of clusters.

Once pseudo labels are generated, we adopt the contrastive
learning technique for model updating. It is implemented via
an external memory bank and an InfoNCE loss. Specifically,
we construct a cluster-level memory bank K ∈ Rd×Y . During
back-propagation, when image xi is input, we update the
memory entry of its target ID class ỹi via a moving average
scheme. That is,

K[ỹi ] ← µK[ỹi ] + (1− µ) fθ (xi ), (1)

where K[ỹi ] is the ỹi -th entry of the memory bank, storing
the updated feature centroid of class ỹi , and µ ∈ [0, 1] is an
updating rate.

Then, the loss of the baseline model is defined by

LBase = −

B∑
i=1

log
exp(K[ỹi ]

T fθ (xi )/τ)∑Y
j=1 exp(K[ j]T fθ (xi )/τ)

, (2)

where τ is a temperature factor and B is the batch size. This
loss is a cluster-level contrastive learning loss, which aims to
pull an instance close to the centroid of its class while push
it away from the centroids of all other classes.

Considering that hard negative mining strategies may boost
the performance of contrastive learning [52], [53], we addi-
tionally define an alternative loss of the baseline model as
follows:

LBase2 = −

B∑
i=1

log
exp(K[ỹi ]

T fθ (xi )/τ)∑
j∈{ỹi }∪Q0

exp(K[ j]T fθ (xi )/τ)
, (3)

where Q0 contains the memory indexes of the hard negatives
that are sampled via selecting the K1-nearest negative clusters.

IV. THE CAMERA-AWARE PROXY ASSISTED METHOD

Like previous clustering-based methods [5], [20], [33], [34],
the above-mentioned baseline model conducts the clustering

and model updating steps in a camera-agnostic way. This
way is able to maintain the similarity within each cluster, but
may neglect the intra-cluster variance. Considering that severe
intra-cluster variance is mainly caused by the change of cam-
era views, we split each single cluster into multiple camera-
specific proxies. Each proxy represents the instances coming
from the same camera. The obtained camera-aware proxies
provide us with an explicit way to deal with the variance within
clusters. Besides, the proxies enable the contrastive learning
to pay more attention to the hardest negative instances, which
helps to reduce the inter-ID similarity. Therefore, with the
assistance of the proxies, we design two inter-camera con-
trastive learning losses, which respectively take advantage of
offline and online associated proxies, for the model updating.
The entire framework is illustrated in Figure 2, in which the
modified clustering step and the improved model updating step
are alternatively iterated.

More specifically, at each epoch, after the camera-agnostic
clustering we split the clusters into camera-aware proxies, and
generate a new set of pseudo labels that are assigned in a
per-camera manner. That is, the proxies within each camera
view are independently labeled. It also means that two proxies
split from the same cluster may be assigned with two different
labels. We denote the newly labeled dataset of the c-th camera
by Dc = {(xi , ỹi , z̃i , ci )}

Nc
i=1. Here, image xi , which previously

is annotated with a global pseudo label ỹi , is additionally
annotated with an intra-camera pseudo label z̃i ∈ {1, · · · , Zc}

and a camera label ci = c ∈ {1, · · · , C}. Nc and Zc are,
respectively, the number of images and proxies in camera c,
and C is the camera number. Then, the entire labeled dataset
is D′′ =

⋃C
c=1Dc.

Consequently, we construct a proxy-level memory bank
K′ ∈ Rd×Z , where Z =

∑C
c=1 Zc is the total number of

proxies in all cameras. Each entry of the memory stores a
proxy, which is updated by the same scheme as introduced
in Eq. (1) but in proxy-wise. With the proxies stored in
the memory bank, we design offline and online association
strategies to match the per-camera labeled proxies over all
cameras, based on which two contrastive learning losses are
proposed.

A. The Contrastive Learning on Offline Associated Proxies

We first design a contrastive learning loss according to the
camera-agnostic clustering and camera-aware splitting that are
conducted offline. As pointed out in [52], it is crucial to select
appropriate positive and negative samples in order to perform
effective contrastive learning. Fortunately, our camera-aware
splitting strategy provides us with a straightforward way to
find positive and negative proxies.

Specifically, given image xi , we retrieve its positive proxies
from all cameras, which share the same global pseudo label ỹi .
That is, all proxies split from the cluster ỹi are associated
as positive ones. We refer to this association way as offline
association because the proxies are associated according to
the results of offline clustering and splitting. The memory
index set of these retrieved positive proxies is denoted by P1.
Besides, we retrieve the K1-nearest negative proxies from all
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Fig. 2. An overview of our proposed method. It iteratively alternates between a clustering step and a model updating step. In the clustering step, a global
clustering is performed and then each cluster is split into multiple camera-aware proxies. In the model updating step, assisted with an external memory bank,
two proxy-level contrastive learning losses LO f f and LOn , which are respectively based on the results of offline and online associations, are optimized.

Fig. 3. An illustration of different contrastive learning losses. An anchor instance and its positives are marked with red boundary, and its hard negatives are
marked with blue boundaries. (a) The cluster-level contrast loss pulls the anchor instance close to the centroid of the cluster it belongs to, and pushes the anchor
away from other cluster centroids. (b) The proxy-level offline contrast loss Lof f pulls the anchor instance close to its positive proxies (e.g. Proxy 1 and 2)
which are split from the positive cluster, and pushes the anchor away from the sampled hard negative proxies (e.g. Proxy 3 and 5). (c) The online contrast
loss Lon pulls the anchor close to the positive proxies (e.g. Proxy 2 and 3) that are associated online, while repels it away from its hard negative proxies
(e.g. Proxy 4 and 5). In this toy example, Proxy 3 is a false negative recalled by offline association but it is correctly associated as a positive proxy via online
association.

remaining proxies as the hard negative ones, whose memory
indexes are recorded by a set Q1. By this means, we define
the first contrastive learning loss as follows.

LO f f

= −

B∑
i=1

 1
|P1|

∑
u∈P1

log
S(u, xi )∑

p∈P1

S(p, xi )+
∑

q∈Q1

S(q, xi )

 ,

(4)

in which S(u, xi ) = exp(K′[u]T fθ (xi )/τ), and |P1| is the
cardinality of P1.

Note that this loss is an inter-camera contrastive learning
term as both positive and negative proxies are retrieved
across cameras. It in essence maximizes the multiplication of
probabilities of xi being recognized as each positive proxy
class. Thus, this loss pulls an instance close to all positive
proxy centroids, which encourages a balanced learning for

instance-rich and instance-deficient proxies within each clus-
ter, leading to a high intra-ID compactness. Meanwhile, this
loss also pushes the instance away from its hard negative
proxies. In contrast to the cluster-level loss defined in Eq. (3),
the proxy-level hard negatives can capture local structures at
a finer granularity and pay more attention to those hardest
negative instances, as shown in Figure 3 (b). Therefore, the
proxy-level learning can conquer the inter-ID similarity better.

B. The Contrastive Learning on Online Associated Proxies

The contrastive learning loss defined above still suffers from
noise. As shown in Figure 3 (b), this loss may push false nega-
tives away or pull false positives together due to the inaccurate
clustering results. Considering that the inaccuracy arises from
the density based clustering criterion (DBSCAN) as well as the
out-of-date pseudo labels generated by offline clustering the
features extracted at the beginning of each epoch, we propose
an online association strategy that utilizes the nearest neighbor
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Fig. 4. An example of the instance-proxy balanced similarity. For the anchor
instance, the instance-to-proxy similarity tends to pull a false positive proxy
(Proxy 3) close, while the proxy-to-proxy similarity pulls a true positive proxy
(Proxy 4) together.

criterion and up-to-date information for rectification. More
specifically, it takes advantage of instance features extracted
via the up-to-date Re-ID model together with the updated
proxy entries to dynamically associate positive proxies for
each anchor instance. In order to retrieve positive proxies more
accurately, we design an instance-proxy balanced similarity
and a camera-aware nearest neighbor criterion for association.
Further, we define a contrastive learning loss based on the
online association results.

The instance-proxy balanced similarity measures the simi-
larity between an instance and a proxy based on the combi-
nation of an instance-to-proxy similarity and a proxy-to-proxy
similarity. It is defined by

sim( fθ (xi ),K′[ j]) = w f T
θ (xi )K′[ j] + (1− w)K′[z̃i ]

TK′[ j].
(5)

Here, z̃i is the pseudo label of the proxy that xi belongs
to, termed as the self-proxy, and j is the index of any proxy.
w ∈ [0, 1] is a weight to balance the instance-to-proxy and
proxy-to-proxy similarities. In contrast to a single instance-
to-proxy similarity that is commonly used elsewhere, this
balanced similarity is less sensitive to noise. A toy example is
illustrated in Figure 4. For the anchor instance marked with a
red triangle, the instance-to-proxy similarity tends to associate
a false proxy (Proxy 3) as a positive one, while the proxy-
to-proxy similarity can associate a positive proxy (Proxy 4)
correctly. The balanced similarity is helpful for such scenarios.

The camera-aware nearest neighbor criterion is designed
to associate at most one positive proxy within each camera.
We propose this criterion based on the following observation:
an ID’s instances coming from the same camera are very
likely to be grouped into the same cluster and thus into
the same proxy. It implies that, for most anchor instances,
there is at most one positive proxy existing in each camera.
Therefore, directly using the global KNN, which tends to
associate multiple proxies within one camera, may result in
false positives. To reduce false positives, we propose the
camera-aware nearest neighbor criterion. Specifically, given
an instance image xi , it first selects the 1-nearest neighbor
proxy in each camera according to the instance-proxy balanced
similarity, and then chooses Top-K2 proxies from the selected
ones as the positive proxies (K2 is less than the number of
cameras). The memory indexes of the associated positives are

Algorithm 1 The O2CAP Algorithm

recorded in a set P2. In addition, we select K1-nearest proxies
from the remaining in terms of the instance-to-proxy similarity
as the hard negatives and denote them by Q2.

Based on the online associated proxies, we define the second
contrastive learning loss as

LOn

= −

B∑
i=1

 1
|P2|

∑
u∈P2

log
S(u, xi )∑

p∈P2

S(p, xi )+
∑

q∈Q2

S(q, xi )

 .

(6)

C. A Summary of the Proposed Method

The proposed method iteratively alternates between the
camera-aware proxy clustering step and the contrastive learn-
ing based model updating step. The entire loss used for model
updating is

L = LO f f + LOn, (7)

To enable better understanding of our offline-online associ-
ated camera-aware proxies (O2CAP) based method, we sum-
marize the overall procedure in Algorithm 1.

A proxy-balanced sampling strategy. A mini-batch in
Algorithm 1 involves an update to the Re-ID model using
a small set of samples. Apart from the loss optimization,
the strategy of choosing appropriate samples in each batch is
also important for model updating, especially when the data
distribution is imbalanced [57], [58]. In this work, we propose
a proxy-balanced sampling strategy that randomly chooses
P proxies and K samples per proxy in each mini-batch.
In contrast to the commonly used instance- or cluster-balanced
sampling [36], the proposed sampling strategy makes sure each
proxy gets equal chance to be sampled. It thus facilitates the
learning of image-deficient proxies, as well as the learning of
the proxy-level contrastive losses.
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TABLE I
THE STATISTICS OF EACH DATASET. #CAMERAS, #IDS, AND #IMAGES ARE THE NUMBER OF CAMERAS, IDS, AND IMAGES, RESPECTIVELY.

CID IS THE AVERAGED CAMERA-PER-ID VALUE AND IID IS THE AVERAGED IMAGE-PER-ID VALUE

D. An Alternative of O2CAP

In the O2CAP model, we adopt two contrastive learning
losses to, respectively, utilize the proxies obtained via offline
and online association. Intuitively, there is another alternative
way to utilize these offline and online associated proxies. That
is, we get a positive proxy set via merging the offline and
online associated positive proxies, i.e. P3 = P1 ∪ P2. And
then we select K1-nearest proxies from the remaining as the
hard negatives and denote them by Q3. By this means, instead
of L defined in Eq. (7), we use the following alternative loss
LMerge for the model training,

LMerge

= −

B∑
i=1

 1
|P3|

∑
u∈P3

log
S(u, xi )∑

p∈P3

S(p, xi )+
∑

q∈Q3

S(q, xi )

 .

(8)

However, in experiments we will show that LMerge is infe-
rior to the loss L that considers offline and online associated
proxies separately.

E. Discussion on the Intra-Camera Contrastive Learning

All losses introduced above belong to inter-camera con-
trastive learning. In our preliminary CAP [11], an intra-camera
contrastive learning loss is defined to learn the discriminative
ability within cameras. We here make a brief introduction and
discussion about it. Given image xi , together with its per-
camera pseudo label z̃i and camera label ci , we set A =∑ci−1

c=1 Zc to be the total proxy number accumulated from the
first to the ci − 1-th camera, and j = A + z̃i to be the index
of the corresponding entry in the proxy-level memory. Then,
the intra-camera contrastive learning loss is defined by

LI ntra

= −

C∑
c=1

 1
Nc

∑
xi∈Dc

log
exp(K′[ j]T fθ (xi )/τ)∑A+Nci

k=A+1 exp(K′[k]T fθ (xi )/τ)

 .

(9)

This loss performs contrastive learning within each camera.
It pulls an instance close to the proxy to which it belongs,
while pushes away from all other proxies in the same camera
and ignores the proxies in other cameras.

The combination of this loss with LO f f (denoted as LI nter
in CAP [11]), together with the proxy-balanced sampling
strategy, enable CAP to gain the best performance among
its model variants. However, during experiments we observe

that adding this intra-camera loss to the O2CAP model is not
necessary any more. Considering that the per-camera pseudo
labels generated by camera-aware proxies inevitably contain
noise, we conjecture that this loss is more effective when a
Re-ID model is relatively weak. When O2CAP has already
achieved great discriminative ability by the synergy of offline
and online association, the intra-camera loss learned from
noisy labels may bring confusion to the model and lead to
a performance degeneration. Therefore, we discard this loss
in our O2CAP model.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

We evaluate the proposed method on three person Re-ID
datasets: Market-1501 [59], DukeMTMC-reID [60], [61],
and MSMT17 [26]. The Market-1501 and DukeMTMC-reID
datasets are collected on university campus, containing out-
door scenarios only. The MSMT17 dataset is a larger and more
challenging dataset, which contains both indoor and outdoor
scenarios under different weather conditions. In order to vali-
date the generalization ability of our method, we additionally
evaluate it on a vehicle Re-ID dataset, VeRi-776 [62]. The
statistics of these datasets, including the number of cameras,
IDs, and images contained in training, gallery, and query sets,
are summarized in Table I. Meanwhile, the averaged Camera-
per-ID (CID) value and the averaged Image-per-ID (IID) value
are also provided for reference.

For performance evaluation, we adopt the commonly used
mean Average Precision (mAP) and Cumulative Matching
Characteristic (CMC) as the metrics. The CMC metric is
reported via Rank-1, Rank-5, and Rank-10. To make a fair
comparison, we do not use any post-processing techniques
(e.g. Re-ranking [63]) during evaluation.

B. Implementation Details

We adopt a slightly modified ResNet-50 [64] as the network
backbone. The modifications are as follows: we discard the
classification layer in ResNet-50 but additionally add a Batch
Normalization (BN) layer right after the Global Average Pool-
ing (GAP) layer, following [36], [65], [66]. The scale and shift
parameters of the additional BN layer are initialized as 1 and
0 respectively. The remaining parameters of the backbone
are initialized from the original ResNet-50 that is trained on
ImageNet. The BN layer outputs a 2048-dimensional feature
for each image. Each feature is further normalized by L2 norm
and then used for the computation of the losses as well as the
update of memory entries during training. The L2 normalized
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TABLE II
COMPARISON OF THE PROPOSED METHOD AND ITS VARIANTS. PBsampling IS THE PROXY-BALANCED SAMPLING STRATEGY. WHEN PBsampling IS NOT

SELECTED, THE MODELS USE THE CONVENTIONAL CLUSTER-BALANCED SAMPLING STRATEGY. NOTE THAT LO f f IS THE SAME AS LI nter IN
CAP [11]. AND DUE TO RE-IMPLEMENTATION WITH SOME HYPER-PARAMETERS ALTERED (E.G. ITERATION NUMBER PER EPOCH), THE

PERFORMANCE VALUES OF CAP AND ITS VARIANTS ARE NOT EXACTLY THE SAME WITH
THOSE REPORTED IN THE PRELIMINARY WORK [11]

features are also used for the distance computation during test
time.

The hyper-parameters involved in our model are empirically
set as follows. The memory updating rate µ is 0.2 and the
temperature factor τ in all contrastive losses is set to 0.07. The
number of hard negatives, i.e. K1, is fixed to 50. The balancing
weight w in Eq. (5) is 0.15. The number of positive proxies
associated online, i.e. K2, is set to 3 for both Market-1501
and MSMT17, 2 for DukeMTMC-reID, and 8 for VeRi-776,
roughly close to but less than their CID values listed in
Table I. At the beginning of each epoch, we compute Jaccard
distance [63] of all features and then use DBSCAN [13] with
a threshold of 0.5 and neighborhood eps = 4 to conduct the
camera-agnostic clustering.

In addition, we adopt the commonly used random flipping,
cropping, and erasing to augment data for training. The
model is trained by ADAM [67] optimizer with β1 = 0.9,
β2 = 0.999, and weight decay of 0.0005. The learning
rate is initially set to 0.00035 with a warmup in the first
10 epochs, and is divided by 10 after each 20 epochs. The
number of total epochs is 50. The number of iterations in each
epoch is set to 400, as the common practice [10], [12], [14].
The batch size is 32. Following the proposed proxy-balanced
sampling strategy, we randomly sample 8 camera-aware prox-
ies and 4 images per proxy within each batch. Our model
is implemented with the Pytorch [68] framework. All exper-
iments are run on a single GTX 1080Ti GPU. The training
phase (50 epochs) takes about 2.5 hours for Market-1501 and
DukeMTMC-reID, 3.5 hours for MSMT17, and 4 hours for
VeRi-776 dataset.

C. Ablation Studies

In this subsection, we conduct a series of experiments to
validate the effectiveness of each proposed component. The
performance of our full model and its variants are presented
in Table II.

1) Effectiveness of the Proxy-Level Contrastive Learning:
Let us first compare CAP3 with Baseline2. The CAP3 model
(using LO f f only) and the Baseline2 model (using LBase2)

perform the contrastive learning, respectively, at the proxy-
level and cluster-level while keep other settings the same. They
pull an instance, respectively, close to its positive proxies or
its positive cluster. Since offline association straightforwardly
associates the proxies split from one positive cluster as the
positive proxies, both models in essence encourage high
compactness within the same clusters. However, as shown
in Figure 3, the proxy-level learning achieves a more bal-
anced learning of instance-rich and instance-deficient prox-
ies, leading to a higher intra-cluster compactness. The other
difference of these two models lies in that CAP3 pushes an
instance away from its hard negative proxies while Baseline2
pushes the instance away from its hard negative clusters.
Therefore, CAP3 pays more attention to the hardest negative
instances so that the inter-ID similarity is better conquered.
Last but not least, the pseudo labels generated from proxies
are less noisy than those obtained from clusters, which also
benefit the model learning. Due to these reasons, CAP3
outperforms Baseline2 by a great margin, especially on the
complex datasets such as MSMT17 and VeRi-776, as shown
in Table II.

2) Effectiveness of the Combination of Offline and Online
Association: From O2CAP1 vs. CAP and O2CAP vs. CAP4,
we observe that the models additionally integrated with the
online association based loss (LOn) can boost the perfor-
mance by a considerable margin on the datasets including
DukeMTMC-ReID, MSMT17, and VeRi-776. Besides, the
combination of offline and online association in O2CAP is
implemented via the sum of two contrastive losses LO f f and
LOn . To validate the effectiveness of this combination way,
we compare it with an alternative way that directly merges
the positive proxy sets obtained offline and online into one set
and adopts one loss LMerge to perform contrastive learning.
As shown in Table II, the O2CAP model (using LO f f and
LOn) performs comparable with the O2CAP3 model (using
LMerge) on Market-1501 and DukeMTMC-ReID, but signif-
icantly outperforms O2CAP3 on MSMT17 and VeRi-776,
demonstrating the superiority of the two-loss combination way
in complex scenarios.
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Fig. 5. The statistics of associated positive proxies during training on MSMT17. (a) is the averaged IoU of offline and online associated proxies for each
instance. (b) includes the averaged recall of offline, online associated positive proxies and their union. (c) includes the averaged precision of offline, online
associated positive proxies and their union.

To further analyze the complementarity of offline and online
association, we investigate some typical association statistics.
Specifically, the offline and online proxy sets associated to
each anchor instance xi are denoted as P i

1 and P i
2, respectively,

and the union set is P i
3 = P

i
1 ∪ P

i
2. We further assign each

proxy with a ground-truth ID label via taking the ID of its
majority instances, by which the ground-truth positive proxy
set P i

gt of xi can be roughly obtained. Then, the averaged
Intersection over Union (IoU) of offline and online associated
proxies, together with the averaged precision and recall of
the proxies associated in different ways, are computed as
followings:

I oU =
1
N ′

N ′∑
i=1

|P i
1 ∩ P

i
2|

|P i
1 ∪ P

i
2|

, (10)

precision =
1
N ′

N ′∑
i=1

|P i
r ∩ P i

gt |

|P i
r |

, (11)

recall =
1
N ′

N ′∑
i=1

|P i
r ∩ P i

gt |

|P i
gt |

(12)

in which N ′ is the total training images and r = 1, 2, or
3 denotes the offline, online, or union association set.

Figure 5 plots the detailed association statistics varying
during training on MSMT17. As shown in Figure 5 (a), the IoU
between offline and online associated proxies increases from
an initial value of 0.34 to a converged value of 0.65. It indi-
cates that the two associations are getting more consistent as
training goes on, but a part of them are still unique, leading
to their complementarity and synergy. Figure 5 (b) and (c)
present the recall and precision of two association schemes.
An intuitive observation is that the precision and recall of two
associations are improving during training, and offline asso-
ciation achieves higher performance than online association.
Nevertheless, the union of offline and online associations gen-
erates higher recall than either alone, showing that offline and
online association indeed complement each other, and together
they retrieve more positive proxies to benefit model learning.
On the other hand, the precision of the union association is
lower than offline or online association, which may explain
the compromised performance of O2CAP3.

TABLE III
COMPARISON OF THE ONLINE ASSOCIATION STRATEGIES AND THEIR

COUNTERPARTS. EXPERIMENTS ARE CONDUCTED ON THE O2CAP
MODEL. GLOBAL KNN CHOOSES K-NEAREST NEIGHBORS
GLOBALLY AND ‘CA’ IS OUR CAMERA-AWARE CRITERION.

FOR THE SIMILARITY MEASUREMENTS, ‘BALANCED’
REFERS TO THE BALANCED SIMILARITY

AND ‘ORIGINAL’ IS THE SINGLE
INSTANCE-TO-PROXY SIMILARITY

3) Effectiveness of the Strategies in Online Association:
In the design of our online association, we propose an
instance-proxy balanced similarity and a camera-aware near-
est neighbor criterion to select positive proxies. In order to
validate their effectiveness, we compare them, respectively,
with the original instance-to-proxy similarity and the global
KNN that are ordinarily used [6], [15]. Table III presents the
comparison results. Compared to the global KNN, the camera-
aware criterion can avoid to associate multiple proxies within
one camera and therefore reduce false associations. It plays a
vital role to make online association effective. From Table III
and Table II we see that, when the global KNN is adopted, the
online association is sensitive to the similarity measurement
and is not always leading to performance enhancement. On the
contrary, the models adopting the camera-aware criterion
consistently improve performance no matter which similarity
is used. When the camera-aware criterion is adopted, the
balanced similarity can boost the performance further. The best
performance is achieved when the balanced similarity is used
for the association of positive proxies while the instance-to-
proxy similarity is used for negative mining.

4) Effectiveness of the Proxy-Balanced Sampling Strategy:
In order to validate the effectiveness of the proposed proxy-
balanced sampling strategy, we compare it to the commonly
used cluster-balanced strategy that takes no consideration of
intra-cluster distributions. From CAP2 vs. CAP1, CAP4 vs.
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Fig. 6. The performance evaluation with different values of K1.

CAP3, and CAP vs. CAP5, we observe that the models using
the proxy-balanced sampling strategy consistently outperform
the counterparts using the cluster-balanced strategy on almost
all datasets. The results show that the proxy-balanced sampling
strategy facilitates the learning of all camera-specific proxies
and naturally fits to the proxy-level contrastive learning.

5) Analysis on the Intra-Camera Contrastive Learning: The
intra-camera contrastive learning loss (LI ntra) was proposed
in CAP [11] to take advantage of the per-camera pseudo labels
to learn discriminative ability within cameras and further boost
the learning of global discrimination. As shown by CAP1
and CAP2, this loss enables the models to gain considerable
discriminative ability. And from the full model CAP, we see
that the integration of LI ntra and LO f f does improve the
performance over the model CAP4 that utilizes LO f f only.
However, when comparing O2CAP with O2CAP1, we find
out that the integration of LI ntra , on the contrary, degrades
the performance on all datasets. Our conjecture is as follows.
The per-camera pseudo labels generated from camera-aware
proxies are, although more reliable than the cluster-level
pseudo labels, still noisy. Thus, the noisy label based intra-
camera learning may bring confusion to the O2CAP model
that has already achieved great discriminative ability.

D. Parameter Analysis

In this subsection, we analyze the sensitivity of the hyper-
parameters involved in O2CAP. Among all hyper-parameters,
the memory updating rate µ and the temperature factor τ

have been investigated in many other works so that we simply
follow [4], [11] to set them. Here, we conduct experiments on
DukeMTMC-reID and MSMT17 to investigate the sensitivity
of the remaining hyper-parameters, which include the number
of hard negative proxies (K1), the number of positive proxies
associated online (K2), and the weight w in the instance-proxy
balanced similarity. In addition, the sensitivity of the training
epochs is also investigated as a reference.

1) The Sensitivity of K1: K1 is the number of negative prox-
ies mined in offline or online association. Figure 6 presents
the performance of O2CAP when K1 varies from 10 to 500.
We observe that the performance goes up when the number of
hard negatives increases from 10 to 50. But the performance
gradually drops when more negative proxies are taken into
consideration. It indicates that easy negatives may hamper
the contrastive learning. Focusing on a small number of

Fig. 7. The performance evaluation with different values of K2.

Fig. 8. The performance evaluation with different values of w.

most informative negative proxies helps our model to better
discriminate confusing instances.

2) The Sensitivity of K2: K2 is the number of positive
proxies associated online for each instance. Figure 7 presents
the performance of O2CAP when K2 varies from 1 to 5.
We see that the performance increases first and then degener-
ates. We also notice that the best performed K2 value is closely
related to the CID value listed in Table I. If K2 is larger than
the CID value, false positives will be inevitably included and
if K2 is too small, no enough positive proxies will be recalled.
Therefore, we set K2 to be the value that is one less than CID
for each dataset.

3) The Sensitivity of w: The weight w is to balance the
instance-to-proxy and proxy-to-proxy parts in the balanced
similarity. When w = 1, the balanced similarity degenerates to
the instance-to-proxy similarity and when w = 0, it becomes
the proxy-to-proxy similarity. Figure 8 presents the perfor-
mance varying along with the change of w. As shown in the
figure, the performance on DukeMTMC-reID is less sensitive
to w when it increases from 0 to 1. On the contrary, setting w

to be a small value is more beneficial on MSMT17. Therefore,
we set w = 0.15 throughout all other experiments to achieve
a trade-off on all datasets.

4) The Sensitivity of Training Epochs: Finally, we investi-
gate the performance sensitivity with respect to the number of
training epochs. Figure 9 presents the performance of O2CAP
when the training epoch varies from 1 to 100. We observe that
both Rank-1 and mAP go up quickly in the first 30 epochs,
and then slowly converge at the 50-th epoch. After 50 epochs,
the performance fluctuates very slightly and no discernible
improvement is gained. Therefore, we set the total training
epoch to 50 in order to achieve a trade-off between training
time and model accuracy.
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS. BOTH PURELY UNSUPERVISED AND UDA-BASED METHODS ARE INCLUDED. WE ALSO PROVIDE

SEVERAL FULLY SUPERVISED METHODS FOR REFERENCE. O2CAP: OUR PROPOSED METHOD IN THIS WORK. O2CAP(IBN): O2CAP WITH
IBN-RESNET50 AS BACKBONE. O2CAP(IBN+GEMPOOL): O2CAP WITH IBN-RESNET50 AND GEM POOLING. O2CAP(W/GT):

OUR PROPOSED METHOD WITH GROUND TRUTH, INDICATING THE UPPER BOUND

Fig. 9. The performance evaluation with different training epochs.

E. Comparison to State-of-The-Arts

In this subsection, we compare the proposed method (named
as O2CAP) with state-of-the-art methods on both person and
vehicle Re-ID datasets. The comparison results are summa-
rized in Table IV and Table V.

1) Comparison With Purely Unsupervised Methods on Per-
son Re-ID: 14 representative or recent purely unsupervised
methods are included for comparison. Most of these methods
are clustering-based, and CAP [11] (our preliminary work),
ICE [12], MGH [15], MGCE-HCL [17], Liu et al. [37],
and HHCL [38] also adopt the contrastive learning technique
same as this work. Both ICE and MGH are built upon
CAP. The former extends CAP via introducing the instance-
level contrastive learning and the latter additionally introduces
hypergraph for label refinement. In contrast, our O2CAP sticks
to the proxy-level contrastive learning and improves CAP via
the combination of offline and online associations, keeping
the model simple yet effective. From the results we see that
O2CAP outperforms CAP and earlier methods by a significant
margin. When compared to other contrastive learning based
methods, O2CAP achieves competitive results on Market-1501
and DukeMTMC-ReID, while demonstrates a considerable
superiority on MSMT17.
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TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON VERI-776.

† INDICATES AN UDA-BASED METHOD WORKING UNDER
THE PURELY UNSUPERVISED SETTING

2) Comparison With UDA-Based Methods on Person
Re-ID: Table IV also presents 13 unsupervised domain adap-
tation based methods for comparison. Among them, ECN [6],
SpCL [10], Isobe et al. [32], Zheng et al. [18] and MCRN [35]
utilize contrastive learning as well. Although all UDA-based
methods exploit external labeled data to boost the Re-ID
performance on target datasets, they do not gain noticeable
advantage when compared to recent purely unsupervised coun-
terparts [11], [12], [15]. For instance, our O2CAP performs on
par or better than all UDA-based methods on DukeMTMC-
ReID and MSMT17. Especially on the most complex dataset
MSMT17, O2CAP outperforms them by a great margin due
to the exploit of camera-aware proxies.

3) Comparison With Fully Supervised Methods on Per-
son Re-ID: We additionally provide four representative fully
supervised methods for reference, including PCB [74], ABD-
Net [1], FlipReID [75] and TransReID [2]. Besides, we also
report the performance of our network backbone trained with
ground-truth labels, which indicates the upper bound perfor-
mance of our method. The results show that our unsupervised
O2CAP has already outperforms the well-known PCB on all
datasets with respect to all metrics, except Rank-1 on Market-
1501. The performance gap between the unsupervised O2CAP
and its supervised counterpart has also been greatly mitigated.
Note that recent supervised methods such as FlipReID [75] and
TransReID [2] have set up new state-of-the-art performance on
all Re-ID datasets. It implies the potential of our unsupervised
method to further improve performance if a more advanced
backbone network could be adopted.

4) O2CAP With a More Advanced Backbone: The backbone
used in O2CAP is ResNet50, which is a relatively plain
network. In order to investigate the generalization ability of
our method to different backbones, we additionally conduct
an experiment using the IBN-ResNet50 backbone. It replaces
batch normalization in ResNet50 via instance batch normal-
ization (IBN) [76], which has been proved effective to boost
the Re-ID performance [10], [12]. As shown in Table IV,
O2CAP with IBN-ResNet50 is able to improve the perfor-
mance further. And using GeM (Generalized Mean) pooling
together with IBN-ResNet50 gives additional improvement.
Especially on MSMT17, 5.3% Rank-1 and 5.9% mAP
improvements have been gained. The results show that our

method is orthogonal to network design and could further
benefit from better backbones.

5) Comparison on Vehicle Re-ID: Table V presents the
comparison results on a vehicle Re-ID dataset VeRi-776 [62].
Three state-of-the-art unsupervised methods including
SSML [77], SpCL† [10] and RLCC [16] are taken for
comparison. Four fully supervised method VSCR [78],
VehicleNet [79], TransReID [2] and HRCN [80], together
with our network trained with ground truth, are also provided
for reference. Compared to RLCC [16], our method achieves
4.1% Rank-1 and 2.3% mAP improvements, validating its
effectiveness for the unsupervised vehicle Re-ID task.

VI. CONCLUSION

In this paper, we have presented a camera-aware proxy
assisted method for the purely unsupervised person Re-ID.
The proposed camera-aware proxies are able to deal with the
large intra-ID variance via explicitly considering the variance
within clusters resulted from the change of camera views. They
can also better tackle the inter-ID similarity by paying more
attention to the hardest negative instances when compared to
the cluster-level counterparts. With the assistance of camera-
aware proxies, two proxy-level contrastive learning losses
based on offline and online associations are designed to
optimize the Re-ID model. Extensive experiments on both
person and vehicle Re-ID datasets, especially on the most
challenging ones, have demonstrated the superiority of our
method.
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