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Locality-Aware Channel-Wise Dropout for
Occluded Face Recognition
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Abstract— Face recognition remains a challenging task in
unconstrained scenarios, especially when faces are partially
occluded. To improve the robustness against occlusion, augment-
ing the training images with artificial occlusions has been proved
as a useful approach. However, these artificial occlusions are
commonly generated by adding a black rectangle or several
object templates including sunglasses, scarfs and phones, which
cannot well simulate the realistic occlusions. In this paper, based
on the argument that the occlusion essentially damages a group
of neurons, we propose a novel and elegant occlusion-simulation
method via dropping the activations of a group of neurons in
some elaborately selected channel. Specifically, we first employ
a spatial regularization to encourage each feature channel to
respond to local and different face regions. Then, the locality-
aware channel-wise dropout (LCD) is designed to simulate occlu-
sions by dropping out a few feature channels. The proposed LCD
can encourage its succeeding layers to minimize the intra-class
feature variance caused by occlusions, thus leading to improved
robustness against occlusion. In addition, we design an auxiliary
spatial attention module by learning a channel-wise attention
vector to reweight the feature channels, which improves the
contributions of non-occluded regions. Extensive experiments on
various benchmarks show that the proposed method outperforms
state-of-the-art methods with a remarkable improvement.

Index Terms— Occluded face recognition, locality-aware
channel-wise dropout, spatial attention module.

I. INTRODUCTION

W ITH the huge success of deep learning, a remarkable
improvement has been achieved for face recognition
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under controlled settings (i.e., occlusion-free images, near-
frontal poses, neutral expressions, normal illuminations, etc.).
However, in realistic unconstrained scenarios, face recognition
remains a challenging task due to various factors including
very large poses, very low resolution and occlusions. Among
these factors, the occlusion is an intractable problem which
leads to a severe degeneration in recognition accuracy.

The occlusions always bring about two primary issues, i.e.,
the missing of facial information and the noise from occlusion.
To improve the robustness against occlusion, many efforts
[1]–[6] have been made to recover the occluded faces. The
work in [2] uses a multi-scale spatial long short-term mem-
ory (LSTM) encoder to encode occluded face patches, and then
another LSTM is employed to reconstruct the occlusion-free
face image. Based on the Generative Adversarial Network
(GAN) [7], another work [5] proposes a face completion
model to generate visually plausible contents for the occluded
face regions. Although a huge progress has been made, the
performance of occlusion removal is still far from satisfactory.
The main reason is that these methods are commonly trained
with artificial occluded images. For instance, the images are
manually generated by randomly putting a black rectangle or
several object templates including sunglasses, scarfs, phones,
and cups on them, which differ significantly from real-life
occlusions. Therefore these methods always suffer from poor
generalizations under realistic scenarios. Besides, how to well
recover the occluded face regions as well as preserve the
identity information is another challenge for these methods.

Another type of methods focus on suppressing the noise
caused by occlusions. They attempt to discard the corrupted
feature elements which are extracted from the occluded
regions [8]–[13]. PDSN [12] builds a mask dictionary in
advance by comparing the features extracted from normal
faces and those from occluded faces. During the recognition
process, the occluded facial regions are detected by a segmen-
tation network and then the noise is removed by discarding the
corrupted feature elements retrieved from the mask dictionary.
To some extent, the occlusion discarding method relieves
the influence of occlusions. However, it may be non-trivial
to precisely detect the real-world occlusions which usually
have various shapes and textures since the occlusion detection
modules are also trained with artificial occlusions. Even if the
corrupted feature elements have been located perfectly, directly
zeroing out them will incorporate a peculiar pattern into the
final feature representation. Moreover, due to the uncertain
size of the occluded region, the final feature will have an
unfixed number of valid elements. Thus, the traditional metrics
designed for the fixed-length vectors may fail for evaluations.
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One simple way of tackling occluded face recognition
problem is to leverage a massive number of occluded faces
in the real world to directly train deep neural networks, which
are forced to learn occlusion-robust face features. However,
it is hard to collect such a training set. As an alternative,
augmenting the training images with artificially synthesized
occlusions has been studied and significant improvements
have been witnessed in [14]–[17]. However, the image-level
occlusion simulation is still not an elegant solution since the
artificial occluded images are also generated by using limited
hand-craft occlusion templates, which cannot fully represent
the arbitrary patterns in realistic occlusions.

The common issue of all the aforementioned methods is
that the artificially synthesized occlusion cannot precisely
represent the real-world occlusions, leading to poor general-
izations under realistic scenarios. In this paper, we propose a
novel and elegant method which can better simulate realistic
occlusions. Here, we hold the opinion that the occlusion essen-
tially damages a group of neurons. To synthesize different
occlusions, a natural approach is to drop out the activations
of various neurons. However, conventional dropout operation
cannot simulate the real-life occlusion. The reason is that
real-life occlusion affects a contiguous region in an activation
map, while the conventional dropout operation discards dis-
crete activations. To better simulate the feature damaged by
occlusions, we propose the revised dropout method, namely
the locality-aware channel-wise dropout (LCD) to drop a group
of activations which are affected by the same facial occlusion.
For conventional neural networks, partial occlusion usually
affects activations across a large number of feature channels,
which makes it difficult to simulate occlusions with a few
channels. Inspired by [18], we encourage each feature channel
to only respond to local and different face regions via the
spatial regularization. As shown in Fig. 1, the heat maps of
3 different feature channels are visualized and it can be seen
that these channels respond to various face regions. Then, LCD
can simulate the occlusion at local regions by dropping out a
few feature channels.

Setting our LCD at a middle depth in the neural network
can encourage its succeeding layers to minimize the intra-class
feature variance caused by occlusions, leading to improved
robustness against occlusion. Furthermore, we design an
auxiliary spatial attention module which learns a channel-
wise attention vector to reweight the channels during the
feature extraction process. After jointly trained with our
LCD, the deep network is optimized to focus more on
the channels which activated on the non-occluded regions
and suppress others which are affected by the occluded
regions.

Compared with previous works, our method has three major
advantages: 1) our method does not require artificially synthe-
sized occlusions. Instead, it gracefully simulates the realistic
occlusions in intermediate features. 2) Different from previous
works which use additional module to detect or recover the
occluded region, our method imposes minor increase in model
complexity during the inference phase. 3) Our method is a
more practical approach which can be seamlessly integrated
with any existing face recognition method for improving
robustness to occlusions.

The main contributions of this paper are summarized as
follows:

• We propose a novel method to better simulate realistic
occlusions by dropping a group of activations in inter-
mediate features. It significantly improves the robustness
to occlusions by encouraging the neural network to
emphasize on learning discriminative features from the
non-occluded face regions.

• An auxiliary spatial attention module is designed to
improve the contributions of non-occluded regions by
adaptively reweighting the feature channels.

• Our method significantly outperforms the state-of-the-
art methods on IJB-C, LFW and MegaFace benchmarks,
especially on the IJB-C dataset with large-scale real-
occluded face images.

The rest of the paper is organized as follows. Section II
gives a brief overview of the related works. Section III
introduces the detailed formulation of the proposed method,
followed by a discussion with other state-of-the-art methods
in Section IV. Section V presents the ablation study and the
experimental results on three databases. Finally, the conclusion
is summarized in Section VI.

II. RELATED WORKS

The existing occlusion robust face recognition methods
can be broadly grouped into the following three categories:
occluded face completion methods, occlusion-aware discard-
ing methods and occlusion-robust feature extraction methods.
In this section, we provide a brief overview of the recent works
which are most relevant to this paper.

A. Occluded Face Completion Methods

The occluded face completion methods are pixel-level
approaches which aim to recover the occluded face regions.
Considering the low-rank property of non-occluded images,
early works attempt to solve the problem by using robust
principal component analysis (PCA) to reconstruct the cor-
rupted low-rank face images [19]–[23]. The work in [21]
proposes the robust principal component analysis (RPCA)
which improves the performance of removing shadows from
face images. In [22], an important extension of RPCA, namely
the low-rank representation (LRR) is presented to extend
the recovery of corrupted images from a single subspace
to multiple subspaces. Both RPCA and LRR assume that
the occluded pixels are sparse, while real-world face images
usually contain dense occlusions, which make the matrix non-
sparse. To this end, [23] presents the double nuclear norm-
based matrix decomposition to remove the dense occlusions.

Recently, more works resort to deep learning for improving
the occluded face completion [1]–[6], [24]. In [1], the dif-
ference between the activation values of two stacked sparse
denoising auto-encoders (SSDAs) is used to indicate occluded
and un-occluded face regions. Then, the final occlusion-free
image is reconstructed by transferring the encoding activations
of the un-occluded region to the occluded region. In [3], the
context encoder combines the auto-encoder architecture with
context information of the occluded part to produce visually
pleasing images. To further improve the context encoder, [4]
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Fig. 1. The overall architecture of the proposed locality-aware channel-wise dropout (LCD). Two spatial regularization losses are employed to encourage
each feature channel to respond to local and different face regions. Then, our LCD achieves a feature-level occlusion simulation by randomly dropping out
a few feature channels. Furthermore, the auxiliary spatial attention module learns a channel-wise attention vector to reweight the feature channels, which
improves the contributions of non-occluded regions.

introduces both global and local discriminators. Specifically,
the global discriminator pursues the global consistency of
the overall image and the local discriminator looks at a
small area centered at the reconstructed region to judge the
quality in details. To ensure the new generated contents more
photo-realistic, a semantic parsing loss is developed in [5].
To refine local face textures, a 3D morphable model (3DMM)
is utilized in [6] to further assist the learning of the local
discriminator. In the unsupervised face normalization method
(FNM) [24], multiple local discriminators are integrated into
a novel unsupervised framework. It generates impressive high
quality faces which have dispelled various face variations
including occlusions.

Overall, the above-mentioned face completion methods have
shown promising results of transforming occluded faces to
un-occluded ones. However, two major issues still remain.
Firstly, except for a few methods (e.g., the FNM [24]),
most previous methods require pair-wise training data (i.e.,
one occluded face and one un-occluded face of the same
person). Unfortunately, such training sets containing a mass
of pair-wise faces with natural occlusion are extremely rare.
An alternative and commonly used approach is using synthet-
ically occluded faces. However, these synthetically occluded
faces, e.g., using manually designed occlusion templates or a
black/white rectangle cannot fully represent natural occluded
faces. Secondly, the faces generated by GAN-based meth-
ods are usually visually pleasing. However, how to remove
the occlusion while preserving the identity information still
remains a challenging problem.

B. Occlusion-Aware Discarding Methods

These approaches aims to remove the noise caused by
occlusions with two pipelines, which either discards the
occluded pixels before the face feature extraction, or discards
the corrupted feature elements during the feature extraction.

Following the former pipeline, some works detect the occlu-
sions first and then extract a feature representation from the
non-occluded regions only. The early works [8]–[10], [25]
usually employ a nearest neighbor classifier (NNC) or a
support vector machine (SVM) to classify the occluded face
regions. Since these methods are designed based on the
traditional feature descriptors, it is non-trivial for them to
obtain discriminative ability for face recognition in complex
scenarios. Recently, the LPD [13] designs a neural network

to locate the latent facial parts which are less affected by
a specific occlusion (i.e., the respirator), and then extracts
discriminative features from the selected latent part.

Following the spirit of the latter pipeline, the mask leaning
methods [11], [12] locate and discard the corrupted feature
elements rather than the occluded pixels. In [11], the MaskNet
adaptively learns feature masks for occluded face images and
automatically assigns lower weight to the hidden units acti-
vated by the occluded face regions. The PDSN [12] establishes
a mask dictionary to represent the correspondence between
the occluded facial block and the corrupted feature elements.
During the testing phase, a segmentation network is employed
to detect the occluded facial blocks, and then the corrupted
feature elements are set to zero by retrieving the relevant
dictionary items.

Although above-mentioned occlusion-aware discarding
methods can alleviate the occlusion issue, completely dis-
carding the occluded regions still takes the risk of reducing
the system reliability. Firstly, precise and fine-grain occlusion
detection is an essential prerequisite for these methods. How-
ever, such occlusion detection is non-trivial to obtain and a
coarse detection will increase the risk of losing discriminative
information or inducing unreliable information. Furthermore,
even if the occluded face regions or the corrupted feature
elements have been located perfectly, directly zeroing out the
corrupted elements still incorporates a peculiar pattern into
the final feature, which may harm the recognition accuracy.
Moreover, due to the arbitrary occlusion, the feature vectors
for occluded faces have unfixed number of valid elements.
Thus, the conventional metrics for fixed-length vectors are
not fully applicable. Although works on the instance-to-
class distance [26] and the reconstruction-based similarity
measurement [27] are proposed to tackle the above problem,
the commonly used window sliding makes them relatively
time-consuming. On the other side, directly ignoring occluded
elements will potentially break the global cues of face images
such as chin contours, which is also harmful to face recogni-
tion system.

C. Occlusion-Robust Feature Extraction Methods

Directly learning occlusion-robust feature is the most
straightforward and effective way to handle occlusion face
recognition. For this purpose, many efforts are devoted to
seeking a feature space that is less affected by occlusion and
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meanwhile preserves the discriminative capability of distin-
guishing identities. Many works seek such feature space via
the sparse representation classification (SRC) [28], in which
the occluded image is represented by a linear combination
of training samples plus a sparse constraint term accounting
for occlusions. The LR-LUM [29] combines both the robust
sparsity constraint and the low-rank constraint which out-
performs previous methods in handing structured occlusion
such as sunglasses and scarfs. Other works [30]–[32] extend
the sparse representation by combining more discriminative
feature descriptors. In [32], the JCR-ACF proposes a joint
and collaborative representation with local adaptive convo-
lution feature, which can improve the recognition accuracy
by employing information from different local face regions.
Although these SRC-based methods have made considerable
progresses, they do not generalize well in practical scenarios
since they requires that the test samples have identical identi-
ties with a pre-defined close-set.

Owing to leveraging massive training sets, recent deep
learning methods reveal significant superiority on face recog-
nition. Enlarging the training datasets with sufficient occluded
faces may be an effective way to improve the occlusion
robustness of face embedding. Unfortunately, such training
sets of a mass of identities are extremely rare. As an alternative
solution, synthetic image augmentation method has been stud-
ied by previous works [14]–[17]. The work in [14] enriches
the training set by synthesizing occluded faces with various
pre-defined hairstyles and glasses templates. Although an
accuracy gain has been witnessed, the diversity of the manually
designed occlusion templates needs to be further improved.
More recently, BFL [17] proposes an enhanced augmentation
schema to randomly generate multi-scale spatially occluded
samples and then modifies the loss to balance the impact of
normal and occluded samples for training. To some extent,
these augmentation methods improve the robustness of neural
network, but the discrepancy between the synthetic and real
occluded faces still limits the further improvements of the
robustness.

Another line of researches [33]–[35] focus on the attention
mechanism for robust feature extraction. The state-of-the-art
method named InterpretFR [35] employs a Siamese network
to compare the feature elements from a normal face with and
without synthetic occlusion. Then it encourages the neural
network to identify the input face solely based on the feature
elements which are less sensitive to occlusions. However,
it still needs synthesizing occluded faces by using artificial
occlusion templates and fails to generalize well on unseen
occlusions. In contrast, our method can realistically simulate
arbitrary occlusions via dropping out a random group of filter
responses, leading to an improved performance under real
world scenarios.

III. METHODOLOGY

A. Overview

The proposed method attempts to learn occlusion robust face
features by simulating occlusions during the training process.
Different from previous methods which augment face images
with synthesized occlusions, we propose to directly simulate

Fig. 2. The visualization of four feature channels regularized by the spatial
regularization. As seen, each feature channel activates on relatively consistent
face regions and the occlusion on that region makes the corresponding feature
channel less activated.

the influence of arbitrary occlusions on intermediate features.
As the occlusion essentially damages a group of neurons,
we propose a revised dropout method, namely the locality-
aware channel-wise dropout (LCD) to simulate occlusions by
dropping a group of feature channels. Considering that, for the
conventional neural networks, the occlusion usually affects the
activations from most channels which is even impossible to
simulate the occlusions by dropping several channels. There-
fore, we first employ a spatial regularization to encourage each
feature channel to respond to local and different face regions.
Then, our LCD simulates the occlusions by dropping out a
few feature channels, in which sense we name this method as
locality-aware channel-wise dropout. Moreover, to improve the
contributions of non-occluded regions for learning occlusion
robust features, we design an auxiliary spatial attention module
to reweight the feature channels. The whole framework shown
in Fig. 1 is end-to-end trainable and can be easily applied on
any existing convolution neural network.

B. Locality-Aware Channel-Wise Dropout

1) Spatial Regularization of Feature Channels: For the
purpose of locality-awareness of the filters (i.e., channels),
we need to enforce each feature channel to respond to different
local face regions. We noticed that the spatial activation diver-
sity loss exploited in [35] (modified from [18]) can actually
achieve this effect. Therefore, we borrow the two diversity
losses L f ilter

S R and Lresponse
S R , in [35], respectively encouraging

the filters and their responses to be orthogonal. Here, L f ilter
S R

is designed to constrain the filters orthogonal by penalizing
their correlations:

L f ilter
S R =

∑
i �= j

∣∣∣∣∣∣∣
∑

p

〈
wp

i , wp
j

〉
∥∥wp

i

∥∥
F

∥∥∥wp
j

∥∥∥
F

∣∣∣∣∣∣∣, (1)

where wp
i denotes the column of filter wi at spatial location p.

The second term Lresponse
S R is exploited to further decorrelate
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the filters’ response maps:

Lresponse
S R =

∑
i �= j

∥∥∥∥∥
〈
fi , f j

〉
‖fi‖F

∥∥f j
∥∥

F

∥∥∥∥∥
2

, (2)

where fi denotes the response of i -th filter (i.e., the i -th
channel of features).

We visualize four feature channels regularized by the spatial
regularization in Fig. 2, in which each column shows the same
feature channel for different images. As seen, each feature
channel activates on relatively consistent face parts, e.g., eye
corner, eyes, mouth and chin. Moreover, if there is a natural
occlusion, e.g., eyeglass or scarf, the corresponding feature
channel is less activated, while other feature channels activated
on non-occluded regions are not affected.

2) Simulating Occlusions via Channel-Wise Dropout: Given
an input feature map F ∈ R

c×h×w , we first generate an all-one
mask matrix M ∈ R

c×h×w with the same size as F , where c,
h, w denotes the channel number, the height, the width of
the feature map, respectively. Second, we randomly sample
γ distinct channel indexes {r1, r2, .., rγ } from the c channels.
Then, the mask values for these channels are set to zero:

Mi, j,k =
{

0 i ∈ {r1, r2, .., rγ }
1 others

. (3)

Finally, the output of the LCD is obtained by the product
of the mask matrix and the input:

Fdrop = F ◦ M, (4)

where ◦ denotes Hadamard product. As shown in Fig. 1, all the
γ × h ×w feature elements within the γ feature maps will be
dropped out to zero. At the training stage, our LCD performs
as an effective occlusion simulation and encourages the net-
work to identify the input face solely based on the remaining
features, which makes it more robust to occlusions. It should
be mentioned that similar to the conventional dropout, the
LCD is not employed during the inference process.

In our method, γ is a crucial parameter which controls
how many feature channels will be dropped out. In other
words, it determines how many face regions will be discarded
during the training process. A larger γ simulates a more severe
occlusion where more regions in the face are occluded. To sim-
ulate the complex pattern of realistic occlusions, a dynamic
γ for each training samples is required. With this in mind,
the γ is designed as a stochastic variable satisfying uniform
distribution within

[
γmin, γmax

]
. A larger γmax (e.g., γmax =

0.6 ∗ c) is recommended to improve the robustness to severer
occlusions.

Since the activations of convolutions layers are commonly
normalized by batch-normalization (BN) layers, how to make
the LCD compatible with the BN layers is worth exploring.
In a conventional BN layer, the feature elements sharing the
same channel index will be normalized together. However,
this process will have some problems when applying the
LCD before the BN layer. Specifically, for a mini-batch with
n samples, let xt,i, j,k denote its t, i, j, k-th element in the
n × c × h × w feature tensor. The conventional BN layer

Fig. 3. (a) Due to the occlusion by sunglass and hat, the feature channels
corresponding to the forehead and the eyes are less activated. (b) The spatial
attention module attempts to reweight the features, making the network focus
on the channels which activated on the non-occluded facial parts.

computes the mean for i -th channel:

ui = 1

nhw

n∑
t

h∑
j

w∑
k

xt,i, j,k . (5)

However, since features of a sub-set channels are set to zero,
the number of valid samples for the i -th channel is no longer
equal to n. To resolve this problem, the calculation of ui must
be modified to:

ui = 1

(n − ηi )hw

n∑
t

h∑
j

w∑
k

xt,i, j,k, (6)

where ηi denotes the number of training samples which have
zero values in the i -th channel. Besides, the calculation of the
channel variance also requires similar modification. To be free
from these modifications, always setting the LCD after the
conventional BN layer is an alternative solution. Moreover,
this simple setting is even more favorable to obtain stable
BN parameters as all the training samples are involved in the
computation of mean and variance.

C. Spatial Attention Module

By randomly dropping out feature channels which respond
to local and different face regions, the channel-wise dropout
with the spatial regularization achieves occlusion-invariant
feature learning by implicitly simulating various occlusions
in the training stage. To further attentively emphasize the
non-occluded facial features of the current input face image
during the inference stage, we design an attention module to
explicitly reweight the feature channels. As shown in Fig. 3,
it makes the network focus on the feature channels activated
on some non-occluded facial parts. It is worth noting that,
by utilizing the aforementioned spatial regularization, each
feature channel is encouraged to respond to local and different
face regions. In this sense, reweighting these feature channels
actually performs as a spatial-wise attention approach, which
is named as the spatial attention module (SAM).
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For the input feature map F = [f1, f2, . . . , fc], our goal is to
learn an attention vector v = [v1, v2, . . . , vc] which controls
the weight of each feature channel. As shown in Fig. 1, a light-
weight module is designed to learn the attention vector v.
Specifically, we first employ a 1 × 1 convolution layer and
a fully-connected layer to obtain a global view of all input
feature maps. Then, another fully-connected layer is utilized
to extract the channel-wise attention vector. It is worth noting
that previous attention block in SENet [36] utilizes a global
average pooling as a global descriptor, while in our method the
global pooling of dropped zero value feature maps will suffer
from local minimum. To this end, the 1×1 convolution layer in
our proposed module is a necessary and effective information
aggregation strategy to achieve attentions.

The refined feature map F̃ is obtained by channel-wise mul-
tiplication between each feature map fx and its corresponding
attention scalar vx :

F̃ = F · v = [f1 · v1, f2 · v2, . . . , fc · vc]. (7)

D. Joint Loss Function

In our framework, we employ ArcFace [37] as the face
identification loss. Suppose that we have a training batch with
n images, yi denotes the class label of i -th training image. θ j
is defined as the angle between the feature vector and the j -th
class center. The ArcFace loss is formulated as:

Larc f ace = − 1

n

n∑
i=1

es(cos(θyi +m))

es(cos(θyi +m)) + ∑
j �=yi

es cos(θ j )
, (8)

where m denotes the angular margin and s is the feature
scaling parameter.

The joint loss function is a weighted sum of the face iden-
tification loss and the aforementioned spatial regularization
losses:

Ltotal = Larc f ace + αL f ilter
S R + βLresponse

S R , (9)

where α and β are the loss weights for the filter orthogonal
loss and the response orthogonal loss, respectively.

During the training process, we first conduct the forward
propagation of the backbone’ shallow stages (1, 2, 3) and
obtain the intermediate features. Then, as shown in Fig. 1,
we calculate the filter orthogonal loss L f ilter

S R and the response
orthogonal loss Lresponse

S R . Whereafter, for each training sample
i , we get a random drop out rate γi and randomly drop out γi
channels in its intermediate features. Then, the spatial attention
module learns the attention vector vi and the refined feature F̃i
is calculated by Eq. 7. Taking F̃i as input, the succeeding lay-
ers in the backbone will extract the final face embedding and
the face identification loss will be calculated. After obtaining
the joint loss via Eq. 9, the whole network will be updated by
backward propagation. Formally, the Algorithm 1 summarizes
the training process.

IV. DISCUSSION

The proposed LCD method can be categorized as a form of
structured dropout. Conventionally, other structured dropout

Algorithm 1 Training With the Locality-Aware Channel-Wise
Dropout and the Spatial Attention

methods are designed for the purposes of alleviating the over-
fitting issue and improving the generalization ability. In con-
trast, our LCD is designed for simulating facial occlusions and
achieving occlusion robustness. In this section, we discuss the
comparisons of our LCD with two representative structured
dropout methods, i.e., the DropBlock [38] and the weighted
channel dropout (WCD) [39]. Furthermore, we also provide
a comparison with the occluded face recognition method
InterpretFR [35] which is most relevant to our method.

A. Differences From DropBlock [38]

Both our method and DropBlock drop some activations in
the intermediate feature layers, but they differ in two aspects.
1) The Dropblock drops partial regions within each feature
channel for enhancing feature learning while our method
employs spatial regularization to enforce each feature channel
to respond to local face regions and further drop several feature
channels to simulate partial occlusions. 2) Our method further
proposes spatial attention module to improve the contributions
of undamaged neurons to further promote the robustness to
occlusion. Experimental results on IJB-C datasets show our
method significantly outperforms Dropblock for occluded face
recognition.

B. Differences From the Weighted Channel Dropout [39]

Both our method and the weighted channel dropout (WCD)
drop channels but for different purposes and in different
ways. Firstly, in terms of designing purpose, the WCD is
for alleviating the over-fitting issue when fine-tuning neural
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network on small datasets, while our method aims to improve
the robustness to partial occlusion for face recognition. Sec-
ondly, in terms of what channels to drop, the WCD drops out
the feature channels which have relatively lower activation
magnitudes, while in our method each feature channel is
enforced to respond to local facial regions and thus can be
dropped to simulate the feature corruption due to the occlusion
of that region. Comparison experiments on IJB-C datasets
show the superiority of our method in handling occluded face
recognition problem.

C. Differences From InterpretFR [35]

Both our method and InterpretFR resort to occlusion robust
feature learning for tackling face recognition under occlusions.
However, we have two major differences. 1) InterpretFR
synthesizes occlusions by putting black boxes on faces, which
is unrealistic and the performance may severely degenerate
under real world scenarios. Instead of simply utilizing fixed
templates to synthesize occlusion, we propose the locality-
aware channel-wise dropout to simulate more realistic occlu-
sions, leading to performance improvement for occluded face
recognition. 2) During training, InterpretFR masks out the
elements of the final face representation sensitive to the occlu-
sion, which may be sub-optimal as it only leverages remain-
ing features for recognition without considering information
recovering. Differently, we perform channel-wise dropout on
the stage 3 of ResNet and design spatial attention module
in the stage 4 to implicitly recover the absent information as
verified by experiment in Section V-C, which is more favorable
to tackle face recognition under occlusions.

V. EXPERIMENTS

A. Datasets

The training images are collected from the MS-Celeb-
1M dataset [40]. Since this dataset contains many labeling
noise, we manually clean it and finally collect 3.7 Million
images from 50K identities. The revised dataset is used as
our training set for the experiments. We extensively test our
method on three popular benchmarks, including IJB-C [41],
MegaFace [42] and LFW [43].

1) IJB-C: As an extension of previous IJB-A [44] and
IJB-B [45], the IJB-C [41] is a large-scale dataset which
contains 117, 542 video frames and 31, 334 images. As 57%
of the face images in IJB-C are natural occluded, this dataset
is a commonly used benchmark for occlusion-robust face
recognition. In this work, we employ two evaluation settings.
First, we conduct comparisons on the holistic IJB-C dataset
(including both occluded faces and non-occluded faces) for
general evaluations. Second, to further verify the effectiveness
of tackling occlusions, the occlusion subset of IJB-C (the
occluded face images only) is employed for evaluations. All
the two settings follow the standard IJB-C testing protocol.
The true accept rate (TAR) and the false accept rate (FAR)
are used as the evaluation metrics.

2) MegaFace: The MegaFace challenge 1 (MF1) bench-
mark [42] evaluates how the face recognition method performs
with a huge scale of distracters. Specifically, the gallery set in
MF1 contains one million face distractors, and the probe set

TABLE I

PERFORMANCE ON IJB-C OCCLUSION SUBSET WITH CHANNEL-WISE
DROPOUT APPLIED AT DIFFERENT DEPTHS OF THE NETWORK

Facescrub [46] contains 106,863 face images of 530 identities.
In the testing pipeline, each Facescrub image will be added
into the galley set and the remaining images of the same
identity are exploited as probes. The rank-1 identification
accuracy is used as the measurement of the face recognition
performance. It should be noted that the un-cleaned version
of MegaFace datasets are employed in the evaluation for the
fair comparison with the state-of-the-art methods.

3) LFW: The LFW [43] is a well-known unconstrained face
verification benchmark. It contains 13,233 images form 5,749
identities. In our work, we follow the standard 10-fold cross
validation protocol to report the mean accuracy on the 6,000
testing image pairs.

B. Implementation Details

In our experiments, the face images are aligned based on
five facial landmarks detected by [47] and normalized to a size
of 112 × 112. We employ the ResNet-50 [48] as the baseline
network and implement our method on the Tensorflow [49]
platform. The Arcface loss [37] with the margin of 0.5 and
the scale of 64 is utilized as the identification loss in our
experiments. All the models in our experiments are trained
on four NVIDIA TITAN XP GPUs by SGD. The loss weight
of the ArcFace loss is set to 1 and the loss weights of the
filter orthogonal regularization and the response orthogonal
regularization are 100 and 1, respectively.

C. Where to Deploy the Channel-Wise Dropout

Here, we investigate the best stage to deploy the channel-
wise dropout. We first integrate the channel-wise dropout
into four different stages of the plain ResNet-50, respec-
tively. Then, we apply the channel-wise dropout after more
stages (stage 2 + 3 or stage 1 + 2 + 3). Specifically, the
channel-wise dropout is conducted on the outputs of the last
3 × 3 convolution layer in the stages specific to each setting.

Table I summarizes the results on the IJB-C occlusion
subset of the three different settings. As seen, the channel-
wise dropout deployed only after stage 3 achieves the best
results among all the models. It outperforms the baseline
by an improvement up to 18.19% in terms of TAR when
FAR = 0.0001. This setting works better than the channel-
wise dropout conducted in the shallow stages. The reason
behind it is that features in stage 3 have larger receptive
field than those in stage 2 and stage 1, which can well
characterize facial components, leading to better simulation
of partial occlusions on faces. Besides, conducting channel-
wise dropout in the stage 4 performs severely worse than
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Fig. 4. The experiment designed to explore why the channel-wise dropout
can improve the robustness against occlusions.

Fig. 5. The experiment designed to verify the roles of the channel-wise
dropout and the neural layers behind it.

that in the stage 3, or even worse than the baseline model.
We argue that employing several succeeding neural layers to
compensate the damaged activations plays an important role
for face recognition under occlusions. We conduct a further
experiment to verify this analysis as bellow.

For a face recognition model, we compare the similarity
of output features from stage 4 with and without conducting
channel-wise dropout in stage 3, as shown in Fig. 4. The
features similarity is evaluated by mean square error (MSE)
as shown in Eq. 10:

M SE = 1

L

L∑
i=1

(
f original
i − f dropped

i

)2
, (10)

where the L denotes the length of the final feature vector and
fi denotes the i -th elements within the feature vector.

We compare the baseline mode and our model trained with
the channel-wise dropout integrated in the stage 3. The results
are shown in Fig. 5. As seen, our model trained with channel-
wise dropout integrated in the stage 3 achieves notably lower
MSE than baseline, which means the final features of our
method on “occluded face” are much closer to those on clean
face, leading to occlusion-robust face recognition model. The
result proves that after integrating the channel-wise dropout in
the stage 3, the succeeding layers in the following stage 4 play
a crucial role in compensating the absent of facial information
caused by occlusions. This experimental results also explain
why conducting the channel-wise dropout in the stage 4 leads
to poor results in Table I. If the occlusion is simulated in the
last stage, no succeeding layers are enforced to learn features

TABLE II

THE ABLATION STUDY FOR EACH COMPONENT OF OUR METHOD. CD:
THE CHANNEL-WISE DROPOUT. SR: THE TWO SPATIAL REGULARIZA-

TION LOSSES. SAM: THE SPATIAL ATTENTION MODULE

TABLE III

PERFORMANCE ON IJB-C DATASET

TABLE IV

PERFORMANCE ON IJB-C OCCLUSION SUBSET

robust to occlusions. Based on this analysis, the channel-wise
dropout integrated into the stage 3 of the ResNet-50 are treated
as the best setting for all the following experiments.

D. Ablation Study

We conduct ablation studies to evaluate the effectiveness
of each component in our method. The results on the IJB-C
occlusion subset are shown in Table II. As seen, all the three
components are beneficial to the performance improvement.
Specifically, when only the channel-wise dropout (CD) is con-
ducted, the TAR when FAR = 0.0001 is improved by 18.19%.
Moreover, by jointly training with the spatial regularization
(SR), a further improvement of 6.83% is witnessed. Besides,
the spatial attention module (SAM) alone can promote the
baseline a lot, but its marriage with CD and SR leads to a
greater improvement up to 36.58% in terms of TAR when
FAR = 0.0001. We attribute this improvement to the com-
plement of SAM to CD. Specifically, CD with SR achieves
occlusion-invariant feature learning by implicitly simulating
various occlusions in the training stage, while SAM can
further attentively emphasize the non-occluded facial features
of the current input face image during the inference stage. For
simplicity, our method consisting of all the three components
is abbreviated as LCD in the following experiments.

E. Comparisons With State-of-the-Art Methods

1) Evaluations on the IJB-C Benchmark: We firstly eval-
uate our LCD on the IJB-C dataset and compare it with
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the state-of-the-art occlusion robust method named Inter-
pretFR [35]. The results are shown in Table III, where the
result of InterpretFR is directly quoted from [35]. As seen,
our LCD outperforms InterpretFR with an improvement up
to 2.2% of TAR when FAR = 0.001, which demonstrates
the effectiveness of our locality-aware channel-wise dropout
and spatial attention module. Besides, we compare with the
image augmentation method Cutout [53], which randomly
puts black box on faces to simulate occlusions. Attributed
to simulating more realistic occlusion by LCD, our method
significantly surpasses Cutout with 15.1% improvement in
terms of TAR when FAR = 0.0001. Since DropBlock [38]
follows the similar spirit by randomly zeroing out continuous
activations of all channels to enhance the feature represen-
tations, we conduct further comparison with DropBlock and
our method also significantly outperforms it, demonstrating the
superiority of proposing LCD for occlusion synthesis. Detailed
analysis between our method and DropBlock are illustrated
in Section IV.

To further verify the effectiveness of our LCD for tackling
face recognition under occlusions, we make more challenging
experiments on the IJB-C occlusion subset, which only con-
sists of occluded faces. Similar conclusion can be achieved that
our LCD outperforms InterpretFR with an improvement up to
2.0% in terms of TAR when FAR = 0.001, demonstrating
the superiority of our method again. It is worth mentioning
that our LCD significantly surpasses Cutout and DropBlock
with improvements up to 28.4% and 25.3% in terms of TAR
when FAR = 0.0001, respectively. Our LCD can simulate
more realistic occlusions than both Cutout and DropBlock,
which markedly improves the robustness to occlusions for face
recognition. Furthermore, comparing to the weighted channel-
wise dropout (WCD), our method achieves an improvement
up to 3.3% of TAR when FAR = 0.001, demonstrating that
our method is more superior in dealing with occluded face
recognition. Detailed analysis between our method and WCD
are illustrated in Section IV.

2) Evaluations on the LFW Benchmark: Table V summa-
rizes the accuracy results on the LFW dataset. As seen, our
LCD performs better than the occlusion discarding method
PDSN [12]. Furthermore, when comparing with stronger com-
petitor CurricularFace [54] which utilizes a larger backbone
of ResNet100 and much more training images, our LCD still
achieves a comparable result of 99.78%. It is worth noting
that the LFW is a general face recognition benchmark which
mainly consists of non-occluded faces. Therefore, these results
indicate that our method also generalizes well under non-
occluded scenarios.

3) Evaluations on the MegaFace Benchmark: Finally,
we evaluate our method on the MegaFace which is a more
challenging benchmark for general scenarios. Table VI shows
the rank-1 accuracies of recent methods on this benchmark.
By leveraging only 3.8 million face images for training, our
method with a light backbone of ResNet-50 surpasses both
ArcFace [37] and CurricularFace [54] which use ResNet-
100 as a backbone and are trained with 5.8 million face
images. Attributed to the LCD which encourages the net-
work to learn more comprehensive features from faces, our
method not only improves the robustness to occlusions but

TABLE V

VERIFICATION PERFORMANCE (%) OF VARIOUS METHODS ON LFW
DATASET. #IMAGE IS THE NUMBER OF IMAGES USED FOR TRAINING

TABLE VI

RANK-1 IDENTIFICATION ACCURACY (%) ON MEGAFACE CHALLENGE 1.
#IMAGE IS THE NUMBER OF IMAGES USED FOR TRAINING

also enhances the feature representation learning for general
face recognition.

VI. CONCLUSION AND FUTURE WORK

Different from previous methods which augment face
images with synthesized occlusions, we propose a novel
method to better simulate realistic occlusions by dropping a
group of activations in intermediate features. We first employ
a spatial regularization to encourage each feature channel to
respond to different face regions. Then, the locality-aware
channel-wise dropout is proposed to simulate occlusions by
dropping out a few feature channels. In addition, we design
an auxiliary spatial attention module to reweight the fea-
ture channels, which can further emphasize the contribu-
tions of non-occluded regions. By directly simulating the
influence of arbitrary occlusion on intermediate features, the
proposed method improves the robustness against occlusion
by encouraging the neural network to capture more dis-
criminative information from the non-occluded face regions.
Extensive experiments on various benchmarks have shown that
the proposed method is a practical and effective approach
which outperforms state-of-the-art methods with a remarkable
improvement. From the practice in this work, we can conclude
that the well-known dropout strategy is not only effective for
improving the generalizability but also good for achieving
occlusion robustness after simple modification. Our work also
shows that the simulation of occlusion in feature-level rather
than image-level can be a good direction to further study.

As a possible future work, we would like to try the methods
as in [69] or [70] to automatically optimize the dropout rate
in Eq. 3 during the training process.
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