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Abstract—Accurately detecting multiscale small objects and
accomplishing real-time detection using remote sensing imagery
(RSI) remain challenging, especially for time-sensitive tasks such
as military reconnaissance and emergency rescue. To obtain
precise locations and classifications for those small objects, one
of the most applicable solutions is to fuse the complementary
information in multimodal images to enhance the detection ca-
pability. Most of the existing solutions primarily design a complex
deep neural network to learn strong feature representations for
objects separated from the background, which often results in a
heavy computation burden.

In this paper, we propose an accurate yet fast small object
detection method for RSI, named SuperYOLO, which fuses
multimodal data and performs high resolution (HR) object
detection on multiscale objects by utilizing the assisted super
resolution (SR) learning and considering both the detection
accuracy and computation cost. First, we construct a compact
baseline by removing the Focus module to keep the HR features
and significantly overcomes the missing error of small objects.
Second, we utilize pixel-level multimodal fusion (MF) to extract
information from various data to facilitate more suitable and ef-
fective features for small objects in RSI. Furthermore, we design a
simple and flexible SR branch to learn HR feature representations
that can discriminate small objects from vast backgrounds with
low-resolution (LR) input, thus further improving the detection
accuracy. Moreover, to avoid introducing additional computation,
the SR branch is discarded in the inference stage and the
computation of the network model is reduced due to the LR input.
Experimental results show that, on the widely used VEDAI RS
dataset, SuperYOLO achieves an accuracy of 73.61% (in terms
of mAP50), which is more than 10% higher than the SOTA large
models such as YOLOv5l, YOLOv5x and RS designed YOLOrs.
Meanwhile, the GFOLPs and parameter size of SuperYOLO
are about 18.1x and 4.2x less than YOLOv5x. Our proposed
model shows a favorable accuracy-speed trade-off compared
to the state-of-art models. The code will be open sourced at
https://github.com/icey-zhang/SuperYOLO.

Index Terms—Object detection, multimodal remote sensing
image, super resolution, feature fusion.

I. INTRODUCTION

OBJECT detection plays an important role in vari-
ous fields involving computer-aided diagnosis or au-
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tonomous piloting. Over the past decades, numerous excel-
lent deep neural network (DNN) based objection detection
frameworks [1], [2], [3], [4], [5] have been proposed, updated,
and optimized in computer vision. The remarkable accuracy
enhancement of DNN-based object detection frameworks owes
to the application of large-scale natural datasets with accurate
annotations [6], [7], [8].

Compared with natural scenarios, there are several vital
challenges for accurate object detection in remote sensing
imagery (RSI). First, the number of labeled samples is rela-
tively short, which limits the training of DNNs to achieve high
detection accuracy. Second, the size of objects in RSI is much
smaller, accounting for merely tens of pixels in relation to the
complicated and broad backgrounds [9], [10]. Moreover, the
scale of those objects is diverse with multiple categories [11].
As shown in Fig. 1(a), the object car is considerably small
within a vast area. While shown in Fig. 1(b), the objects have
large-scale variations, to which the scale of a car is smaller
than that of a camping vehicle.

Currently, most object detection techniques are solely de-
signed and applied for a single modality such as RGB
and Infrared (IR) [12], [13]. Consequently, with respect to
object detection, its capability to recognize objects on the
Earth’s surface remains insufficient due to the deficiency
of complementary information between different modalities
[14]. As imaging technology flourishes, RSIs collected from
multimodality become available and provide an opportunity to
improve the detection accuracy. For example, as shown in Fig.
1, the fusion of two different multimodalities (RGB and IR)
can effectively enhance the detection accuracy in RSI.

In this study, our motivation is to propose an on-board
real-time object detection framework for multimodal RSIs to
achieve high detection accuracy and high inference speed
without introducing additional computation overhead. Inspired
by recent advances in real-time compact neural network
models, we choose small-size YOLOv5s [15] structure as
our detection baseline. It can reduce deployment costs and
facilitate rapid deployment of the model. Considering the high
resolution (HR) retention requirements for small objects, we
remove the Focus module in the baseline YOLOv5s model,
which not only benefits defining the location of small dense
objects but also enhances the detection performance. Consider-
ing the complementary characteristics in different modalities,
we propose a multimodal fusion (MF) scheme to improve the
detection performance for RSI. We evaluate different fusion
alternatives (pixel-level or feature-level) and choose pixel-level
fusion for low computation cost.
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Fig. 1. Visual comparison of RGB image, IR image, and ground truth (GT). The IR image provides vital complementary information for resolving the
challenges in RGB detection. The object car in (a) is considerably small within a vast area. In (b), the objects have large-scale variation, to which the scale
of a car is smaller than that of a camping vehicle. The fusion of RGB and IR modalities effectively enhances the detection performance.

Lastly and most importantly, we develop a super resolution
(SR) assurance module to guide the network to generate
HR features that are capable of identifying small objects in
vast backgrounds, thereby reducing false alarms induced by
background-contaminated objects in RSI. Nevertheless, a naive
SR solution can significantly increase the computation cost.
Therefore, we set the auxiliary SR branch engaged in the
training process and remove it in the inference stage, facili-
tating spatial information extraction in HR without increasing
computation cost.

In summary, this paper makes the following contributions.
• We design a compact baseline detection network to

achieve higher accuracy of small multiscale objects in
RSIs and realize real-time detection.

• We explore different fusion alternatives and choose the
computation-friendly pixel-level fusion method for mul-
timodal information combinations to further enhance the
detection accuracy. The proposed pixel-level efficiently
decreases the computation cost compared with feature-
level fusion.

• We further introduce an assisted SR branch into multi-
modal object detection for the first time. Our approach
not only makes a breakthrough in limited detection per-
formance but also paves a more flexible way to study
outstanding HR feature representations that are capable
of discriminating small objects from vast backgrounds
with LR input.

• Considering the demand of high-quality results and low-
computation cost, the SR module functioning as an aux-
iliary task is removed during the inference stage without
introducing additional computation. Our proposal can
greatly improve the detection performance while retaining
similar FLOPs with those of the baseline framework.

The SR branch is general and extensible and can be
utilized in the existing fully convolutional network (FCN)
framework.

• The proposed SuperYOLO markedly improves the perfor-
mance of object detection, outperforming SOTA detectors
in real-time multimodal object detection. On the widely
used VEDAI RS dataset, SuperYOLO accomplishes
73.61% mAP50, exceeding the YOLOv5s framework
by 16.68%, and exceeding YOLOv5l, YOLOv5x and
YOLOrs by more than 10%. The GFOLPs and param-
eters, and are about 18.1x and 4.2x less than YOLOv5x.
Our proposed model shows a favorable accuracy-speed
trade-off compared to the state-of-art models.

The rest of this paper is organized as follows. Section II
outlines the related work of object detection using multimodal
data and SR technique. Section III briefly describes the base-
line architecture of the widely used YOLOv5 model. Section
IV presents our proposed SuperYOLO architecture. Section
V conducts experiments and analyzes the results. Section VI
concludes this paper and discusses the future work.

II. RELATED WORK

A. Object Detection with Multimodal Data

Recently, multimodal data has been widely leveraged in
numerous practical application scenarios, including visual
question answering [16], auto-pilot vehicles [17], saliency
detection [18], and remote sensing classification [19]. It is
found that combining the internal information of multimodal
data can efficiently transfer complementary features to avoid
certain information of a single modality from being omitted.

In the field of RSI processing, there exist various modali-
ties (e.g., Red-Green-Blue (RGB), Synthetic Aperture Radar
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Fig. 2. The overview of the proposed SuperYOLO framework. Our new contributions include 1) removal of the Focus module to reserve high resolution,
2) multimodal fusion, and 3) assisted SR branch. The architecture will be optimized in terms of Mean Square Error (MSE) loss for the SR branch and
task-specific loss for object detection. During the training stage, the SR branch guides the related learning of the spatial dimension to enhance the high
resolution information preservation for the backbone. During the test stage, the SR branch is removed to accelerate the inference speed equal to the baseline.

(SAR), Light Detection and Ranging (LiDAR), Infrared (IR),
panchromatic (PAN) and multispectral (MS) images) from
diverse sensors, which can be fused complementary character-
istics to enhance the performance of various tasks [20], [21],
[22]. For example, the additional IR modality [23] captures
longer thermal wavelengths to improve the detection under
difficult weather conditions. Manish et al. [23] proposed a
real-time framework for object detection in multimodal remote
sensing imaging, in which the extended version conducted
mid-level fusion and merged data from multiple modalities.
Despite that multi-sensor fusion can enhance the detection
performance as shown in Fig 1, hardly can its low-accuracy
detection performance and to-be-improved computing speed
meet the requirements of real-time detection tasks.

The fusion methods are primarily grouped into three strate-
gies, i.e., pixel-level fusion, feature-level fusion, and decision-
level fusion methods [24]. The decision-level fusion methods
fuse the detection results during the last stage, which may
consume enormous computation resources due to repeated cal-
culation for different multimodal branches. In the field of re-
mote sensing, feature-level fusion methods are mainly adopted
with multi branches. The multimodal images will be input
into the parallel branches to extract respective independent
features of different modalities, and then these features will
be combined by some operations, such as attention module or
simple concatenation. The parallel branches bring a repeated
computation as the modalities increase, which is not friendly
in the real-time tasks in remote sensing.

In contrast, the adoption of pixel-level fusion methods can

reduce unnecessary computation. In this paper, our proposed
SuperYOLO fuses the modalities at pixel-level to significantly
reduce the computation cost.

B. Super Resolution in Object Detection

Conducted in a pre-processing step, SR has proven to
be effective and efficient in various object detection tasks
[25], [26]. Shermeyer et al. [27] quantified its effect on
the detection performance of satellite imaging by multiple
resolutions of RSI. Based on generative adversarial networks
(GANs), Courtrai et al. [28] utilized SR to generate HR
images, which were fed into the detector to improve its
detection performance. Rabbi et al. [29] leveraged a Laplacian
operator to extract edges from the input image to enhance the
capability of reconstructing HR images, thus improving its
performance in object localization and classification. Hong et
al. [30] introduced a cycle-consistent GAN structure as an
SR network and modified faster R-CNN architecture to detect
vehicles from enhanced images that are produced by the SR
network. In these works, the adoption of SR structure has
effectively addressed the challenges regarding small objects.
However, compared with single detection models, additional
computation is introduced, which attributes to the enlarged
scale of the input image by HR design.

Recently, Wang et al. [31] proposed an SR module that can
maintain HR representations with LR input while reducing
the model computation in segmentation tasks. Inspired by
the [31], we design an SR assisted branch. In contrast to
the aforementioned work in which the SR is realized in the
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start stage, the assisted SR module guides the learning of
high-quality HR representations for the detector, which not
only strengthens the response of small dense objects but also
improves the performance of object detection in spatial space.
Moreover, the SR module is removed in the inference stage
to avoid extra computation.

III. BASELINE YOLOV5S ARCHITECTURE

YOLOv5 model is known as an advanced structure em-
ployed to generate low-level texture features and high-level
semantic features. It is one of the most widely used object
detection frameworks. We follow the YOLOv5 [15] design
and take it as our baseline framework. Unlike the previous
generation of YOLO models, YOLOv5 [15] releases four
models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x,
where the basic structures are identical. The depths and widths
of the models depend on the number of bottleneck layers and
convolution kernels, respectively. The multi-model character-
istics make YOLOv5 have higher flexibility and versatility in
practical applications. To realize real-time object detection,
the small-scale model size and fast reasoning speed are the
fundamental reasons we choose YOLOv5s as the baseline.

As shown in Figure 2, the baseline YOLOv5 network
consists of two main components: the Backbone and Head
(including Neck). The backbone is designed to extract low-
level texture and high-level semantic features. Next, these
hint features are fed to Head to construct the enhanced
feature pyramid network from top to bottom to transfer robust
semantic features and from bottom to top to propagate a strong
response of local texture and pattern features. This resolves the
various scale issue of the objects by yielding an enhancement
of detection with diverse scales.

A. Backbone Module and Its Limitations

In Fig. 3, CSPNet [32] is utilized as the Backbone to
extract the feature information, consisting of numerous sam-
ple Convolution-Batch-normalization-SiLu (CBS) components
and Cross Stage Partial (CSP) modules. The CBS is com-
posed of operations of convolution, batch normalization, and
activation function SiLu [33]. The CSP duplicates the feature
map of the previous layer into two branches and then halves
the channel numbers through 1 × 1 convolution, by which
the computation is therefore reduced. With respect to the two
copies of the feature map, one is connected to the end of the
stage, and the other is sent into ResNet blocks or CBS blocks
as the input. Finally, the two copies of the feature map are
concatenated to combine the features, which is followed by a
CBS block. The SPP (Spatial Pyramid Pooling) module [34]
is composed of parallel Maxpool layers with different kernel
sizes and is utilized to extract multiscale deep features. The
low-level texture and high-level semantic features are extracted
by stacked CSP, CBS, and SPP structures.
Limitation 1: It is worth mentioning that the Focus module is
introduced to decrease the number of computation. As shown
in Fig. 2 (bottom left), inputs are partitioned into individual
pixels and reconstructed at intervals and finally concatenated
in the channel dimension. The inputs are resized to a smaller

scale to reduce the computation cost and accelerate the net-
work training and inference speed. However, this may sacrifice
object detection accuracy to a certain extent, especially for
small objects vulnerable to resolution.
Limitation 2: It is known that the backbone of YOLO employs
deep convolutional neural networks to extract hierarchical
features with a stride step of 2, through which the size of the
extracted features is halved. Hence, the feature size retained
for multiscale detection is far smaller than that of the original
input image. For example, when the input image size is 608,
the sizes of output features for the last detection layer are 76,
38, and 19, respectively. LR features may result in the missing
of some small objects.

B. Head Module
The Head (including the Neck module) module is devised

to efficiently combine the multiscale and multilevel features
generated by the Backbone. It integrates FPN [35] and PANet
[36] (shown in Fig. 2) to generate a feature pyramid network.
It can enhance the detection with diverse receptive fields and
therefore recognize the same object with different scales and
sizes. The design of this structure is based on the following ra-
tionale: neurons in higher layers strongly respond to the entire
object while other neurons are more likely to be activated by
local texture and patterns [37]. This implies that deeper-layer
neurons carry increasingly less information about the contents
of an entire object and increasingly more information related
to the class of the object, whereas lower-layer neurons are
more likely to be activated by local representations such as
textures and patterns. On one hand, the FPN module mainly
acts to transfer top-down robust semantic features to enhance
detection, especially for small-size targets. On the other hand,
the PANet module further enhances the localization capability
of the entire feature hierarchy by propagating a solid response
of low-level features, including bottom-up local textures and
patterns, thus improving the detection effect on large objects.

As shown in Fig. 2, three scale features y1, y2 and y3

from the Head are used to complete the last detection work.
The output feature map at each detection head is a 4D tensor
denoted as y1,y2,y3 ∈ RA×F×F×V . Specifically, mode-1
corresponds to the serial number of the anchor of each layer,
mode-2 the width-index of each cell, mode-3 the height-index
of each cell, and mode-4 the bounding boxes. A = 3 denotes
the 3 anchors, the F denotes the feature map size, V is the
sum of 4 bounding box offsets, 1 objectness prediction, and
the number of class predictions. For each predicted bounding
box, our method returns an output feature vector in mode-4,
which is written as:

vk|k=1,2,3 = [tx, ty, tw, th, o, p1, p2, p3,......, pN ] , (1)

where (tx, ty) are the output corresponding to the center
coordinates of the bounding box in the top-left corner of the
cell, tw and th are the output corresponding to the width and
the height of the predicted bounding box , respectively, o is the
objectness score in [01] about the possibility of the bounding
box containing an object , and pj(j = 1, 2, ......, N) is the class
score indicating the categories of the predicted object between
the range of [0, 1] with N being the number of categories..



SUBMISSION TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2021 5

Backbone

CBS

Conv

BN

SiLU

CBS

CBS

Resblock

CBS
Resblock

CC

CBS

CSP2 SPPSPPCSP1_

Maxpool Maxpool Maxpool

CBS

CC

CBS

CC

CBS CBS

CBS

CBS

CBS CBS

n

n

Input

Backbone

CBS

Conv

BN

SiLU

CBS

CBS

Resblock

CBS
Resblock

C

CBS

CSP2 SPPCSP1_

Maxpool Maxpool Maxpool

CBS

C

CBS

C

CBS CBS

CBS

CBS

CBS CBS

n

n

Input
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IV. SUPERYOLO ARCHITECTURE

As summarized in Fig. 2, we introduce three new contri-
butions in our SuperYOLO network architecture. First, we
remove the Focus module in the Backbone and replace it
with a CBS module, to avoid the resolution degradation
and thus accuracy degradation. Second, we explore different
fusion methods and choose the computation-efficient pixel-
level fusion to fuse RGB and IR modalities to refine dissimilar
and complementary information. Finally, we add an assisted
SR module in the training stage, which reconstructs the HR
images to guide the related Backbone learning in spatial
dimension and thus maintain HR information. In the infer-
ence stage, the SR branch is discarded to avoid introducing
additional computation overhead.

A. Focus Removal

As presented in Section III-A and Fig. 2 (bottom left), the
Focus module in the YOLOv5 backbone partitions images at
intervals on spatial domain and then reorganizes the new image
to resize the input images. Specifically, this operation is to

collect a value for each pixel in an image and then reconstruct
it to obtain smaller complementary images. The size of the
rebuilt images decreases with the increase of the number of
channels. As a result, it causes resolution degradation and
spatial information loss for small targets. Considering that the
detection of small targets depends more heavily on higher
resolution, the Focus module is abandoned and replaced by
a CBS module with convolution operations (shown in Fig. 4)
to prevent the resolution from being degraded. In addition,
we deleted the PANet structure and two detectors, which are
responsible for enhancing large-scale target detection because
we mainly focus on small objects in remote sensing.

B. Multimodal Fusion

The more information is utilized to distinguish objects,
the better performance can be achieved in object detection.
Multimodal fusion is an effective path for merging different
information from various sensors. The decision-level, feature-
level and pixel-level fusions are the three mainstream fu-
sion methods that can be deployed at different depths of
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Fig. 6. Feature-level visualization of backbone for SuperYOLO and YOLOv5s with the same input: (a) RGB input, (b) IR input; (c), (d), and (e) are the
features of YOLOv5s; (f), (g), and (h) are the features of SuperYOLO. The features are upsampled to the same scale as the input image for comparison. (c)
and (f) are the features in the first layer. (d) and (g) are the low-level features. (e) and (h) are the high-level features in layers at the same depth.

the network. Since decision-level fusion requires enormous
computation, it is not considered in SuperYOLO. Next, we
describe how we perform feature-level fusion and pixel-level
fusion in SuperYOLO.

The feature-level fusion of different blocks is demonstrated
in Fig. 4. For a fair comparison, the IR image is expanded
to three bands. The fusion1, fusion2, fusion3, and fusion4
represent the fusion operation performed in the first, second,
third, and fourth blocks, respectively. The concatenation is
regarded as the fusion operation.

For the pixel-level fusion, we first normalize an input RGB
image and an input IR image into two intervals of [0, 1], and
then we concatenate them with relatively low computation
compared with the other two fusion methods that conduct the
fusion operation in later procedures to accelerate the inference.
As will be presented in Section V-D, the pixel-level fusion
achieves superior performance than feature-level fusion to
merge different complementary information.

To be more specific, the fusion image is defined as:

X = Concat(R,G,B, I), (2)

where, fusion images are X ∈ RC×H×W , C represents the
channel number, H and W represent the image height and
width, respectively, {R,G,B} and {I} represent the RGB
image and IR image, respectively, and Concat(·) denotes the
concatenation operation along the channel-axis. Then, X is
subsampled to 1/n size of the original image to accomplish
the SR module discussed in subsection IV-C and to accelerate
the training process. The sampled image is denoted as X′ ∈
RC×H

n ×
W
n and generated by:

X′ = D(X), (3)

where D(·) represents n times downsampling operation using
bilinear interpolation. The subsampled result is then fed to the
Backbone to produce multi-level features, as shown in Fig. 4.

C. Super Resolution

As mentioned in Section III-A, the feature size retained for
multiscale detection in the backbone is far smaller than that
of the original input image. Most of the existing methods
conduct upsampling operations to recover the feature size.
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TABLE I. The Influence of Removing the Focus Module in the Network on the First Fold of the Validation Set.

Method Parameters ↓ GFLOPs↓ Mean Precision ↑ Mean Recall ↑ mAP50 ↑

YOLOv5s Focus 7.0739M 5.3 70.8 51.1 62.2
noFocus 7.0705M 20.4 69.3 (-1.5) 65.4 (+14.3) 69.5 (+7.3)

YOLOv5m Focus 21.0677M 16.1 60.8 62.1 64.5
noFocus 21.0625M 63.6 69.4 (+8.6) 68.3 (+6.2) 72.2 (+7.7)

YOLOv5l Focus 46.6406M 36.7 72.6 55.6 63.7
noFocus 46.6337M 145.0 76.0 (+4.5) 64.6 (+8.9) 72.5 (+8.6)

YOLOv5x Focus 87.2487M 69.7 73.6 60.4 64.0
noFocus 87.2400M 276.6 71.9 (-1.7) 62.6 (+2.2) 69.2 (+5.2)

Unfortunately, this approach has produced limited success due
to the information loss in texture and pattern, which explains
that it is inappropriate to employ this operation to detect small
targets in RSI that require HR preservation.

To address this issue, as shown in Fig. 2, we introduce
an auxiliary SR branch. First, the introduced branch shall
facilitate the extraction of HR information in the backbone and
achieve satisfactory performance. Second, the branch should
not add more computation to reduce the inference speed. It
shall realize a trade-off between accuracy and computation
time during the inference stage. Inspired by the study of Wang
et al. [31] where the proposed super resolution succeeded in
facilitating segmentation tasks without additional requirement,
we introduce a simple and effective branch named SR into the
framework. Our proposal can improve the detection accuracy
without computation and memory overload, especially under
circumstances of LR input.

Specifically, the SR structure can be regarded as a simple
Encode-Decoder model. We select the backbone’s low-level
and high-level features to fuse local textures and patterns
and semantic information, respectively. As depicted in Fig.
4, we select the result of the fourth and ninth modules
as the low-level and high-level features, respectively. The
Encoder integrates the low-level feature and high-level feature
generated in the backbone. As illustrated in Fig. 5, in Encoder,
the first CR module is conducted on low-level feature. For
high-level feature, we use a Upsampling operation to match the
spatial size of low-level feature and then we use concatenation
operation and two CR modules to merge the low-level and
high-level features. The CR module includes a convolution and
ReLU. For the Decoder, the LR feature is upscaled to the HR
space in which the SR module’s output size is twice larger than
that of the input image. As illustrated in Fig. 5, the Decoder
is implemented using three deconvolutional layers. The SR
guides the related learning of spatial dimension and transfers
it to the main branch, thereby improving the performance
of object detection. In addition, we introduce EDSR [38] as
our Encoder structure to explore the SR performance and its
influence on detection performance.

To present a more visually interpretable description, we
visualize the features of backbones for YOLOv5s and Su-
perYOLO in Fig. 6. The features are upsampled to the same
scale as the input image for comparison. By comparing the
pairwise images of (b) and (f), (c) and (g), (d) and (h) in

Fig. 6, it can be observed that SuperYOLO contains clearer
object structures with higher resolution with the assistance of
the SR. Eventually, we obtain a bumper harvest in high-quality
HR representation with the SR branch and utilize the Head of
YOLOv5 to detect small objects.

D. Loss Function

The overall loss of our network consists of two components:
detection loss Lo and SR construction loss Ls, which can be
expressed as

Ltotal = c1Lo + c2Ls, (4)

where c1 and c2 are the coefficients for a balance of the two
training tasks. The L1 loss (rather than L2 loss) [39] is used to
calculate the SR construction loss Ls between the input image
X and SR result S , to which the expression is written as

Ls = ‖S−X‖1 . (5)

The detection loss involves three components [15]: loss of
judging whether there is an object Lobj , loss of object location
Lloc, and loss of object classification Lcls, which are used to
evaluate the loss of the prediction as

Lo = λloc

3∑
l=0

alLloc + λobj

3∑
l=0

blLobj + λcls

3∑
l=0

clLcls. (6)

Here, Equation 6, l represents the layer of the output in
head, al, bl, and cl are the weights of different layers for the
three loss functions, the weights λloc, λobj , and λcls regu-
late error emphasis among box coordinates, box dimensions,
objectness, no-objectness and classification.

V. EXPERIMENTAL RESULTS

A. Dataset

The popular Vehicle Detection in Aerial Imagery (VEDAI)
dataset [40] is used in the experiments, which contains cropped
images obtained from the much larger Utah Automated Ge-
ographic Reference Center (AGRC) dataset. Each image col-
lected from the same altitude in AGRC has approximately
16, 000× 16, 000 pixels, with a resolution of about 12.5cm×
12.5cm per pixel. RGB and IR are the two modalities for each
image in the same scenes. The VEDAI dataset consists of 1246
smaller images that focus on diverse backgrounds involving
grass, highway, mountains, and urban areas. All images are in
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resolution of 1024× 1024 or 512× 512. The task is to detect
11 classes of different vehicles such as car, pickup, camping,
and truck. In this study, 512 × 512 and 1024 × 1024 images
are used to validate the importance of the resolution in object
detection assignment. The default image resolution used in the
testing process is 512× 512 unless otherwise specified.

TABLE II. Distribution of Available Class Instances in the VEDAI Dataset
Across 10 Folds.

Classes Total Instances Distribution Across 10 Folds

Car 1349 9 folds of 135; 1 fold of 134
Pickup 941 9 folds of 94; 1 fold of 95

Camping car 390 10 folds of 39
Truck 300 10 folds of 30
Other 200 10 folds of 20

Tractor 190 10 folds of 19
Boat 170 10 folds of 17
Van 100 10 folds of 10

The classes with less than 50 instances are neglected in our
study. Hence, we solely follow the 8 classes in the dataset
shown in TABLE II, where the available instances per class
used in the test are divided into 10 folds. Images without
annotation are removed. The annotations for each object in
the image contain the coordinates of the bounding box center,
the orientation of the object concerning the positive x-axis, the
four corners of the bounding box, the class ID, a binary flag
identifying whether an object is occluded, and another binary
flag identify whether an object is cropped. The annotations
of the VEDAI dataset are converted to YOLOv5 format, and
the We transfer the ID of the interested class are transferred
to 0, 1, ..., 7, i.e., N = 8. Then the center coordinates of
the bounding box are normalized and absolute coordinate is
transformed to relative coordinate. Similarly, the length and
width of the bounding box are normalized to [0, 1].

TABLE III. The Comparison Results of Model Size and Inference Ability in
Different Baseline YOLO Frameworks.

Method Layers ↓ Parameters ↓ GFLOPs ↓ mAP50 ↑
YOLOv3 270 61.5M 52.8 62.6
YOLOrs 241 20.2M 46.4 55.8
YOLOv4 393 52.5M 38.2 65.7
YOLOv5s 224 7.1M 5.32 62.2
YOLOv5m 308 21.1M 16.1 64.5
YOLOv5l 397 46.6M 36.7 63.9
YOLOv5x 476 87.3M 69.7 64.0

B. Accuracy Metrics
The accuracy assessment measures the agreements and dif-

ferences between the detection result and the reference mask.
The recall, precision, and mAP (mean Average Precision)
are used as accuracy metrics to evaluate the performance of
the methods to be compared with. The calculations of the
precision and recall metrics are defined as

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
. (8)

where the true positive (TP) and true negative (TN) de-
note correct prediction, and the false positive (FP) and false
negative (FN) denote incorrect outcome. The precision and
recall are correlated with the commission and omission errors,
respectively. The mAP is a comprehensive indicator obtained
by averaging AP values, which uses an integral method to
calculate the area enclosed by the Precision-Recall curve and
coordinate axis of all categories. Hence, the mAP can be
calculated by

mAP =
AP

N
=

∫ 1

0
p(r)dr

N
, (9)

where p denotes Precision, r denotes Recall, and N is the
number of categories.

In addition, PSNR and SSIM are used for image quality
evaluation of SR branch. Generally, higher PSNR values and
SSIM values represent the better quality of the generated
image.

C. Implementation Details
Our proposed framework is implemented in PyTorch and

runs on a workstation with an NVIDIA 2080Ti GPU. Follow-
ing [23], the VEDAI dataset is used to train our SuperYOLO.
In order to realize the SR assisted branch, the input images
of the network are downsampled from 1024 × 1024 size to
512× 512 during the training process. In the test process, the
image size is 512 × 512, which is consistent with the input
of other algorithms compared. In addition, data is augmented
with Hue Saturation Value (HSV), multi-scale, translation, left-
right flip, and mosaic. The augmentation strategy is canceled
in the test stage. The standard Stochastic Gradient Descent
(SGD) [41] is used to train the network with the momentum
of 0.937, weight decay of 0.0005 for the Nesterov accelerated
gradients utilized, and the batch size of 2. The learning rate is
set to 0.01 initially. The entire training process involves 300
epochs, which cost nearly 6 hours.

D. Ablation Study
First of all, we verify the effectiveness of our proposed

method by designing a series of ablation experiments which
are conducted on the first fold of the validation set.

1) Validation of the Baseline Framework: In Table III, the
model size and inference ability of different base frameworks
are evaluated in terms of the number of layers, parameter size
and GFLOPs. The detection performances of those models
are measured by mAP50, i.e., detection metric of mAP at
IOU (Intersection over Union) = 0.5. Although YOLOv4
achieves the best detection performance, it has 169 more
layers than YOLOv5s (393 vs. 224), its parameter size is
7.4 times larger than that of YOLOv5s (52.5M vs. 7.1M),
and its GFLOPs is 7.2 times higher than that of YOLOv5s
(38.2 vs. 5.3). With respect to YOLOv5s, although its mAP
is slightly lower than those of YOLOv4 and YOLOv5m,
its number of layers, parameter size and GFLOPs are much
smaller than those of other models. Therefore, it is easier to
deploy YOLOv5s on board to achieve real-time performance
in practical applications. The above fact verifies the rationality
of YOLOv5s as the baseline detection framework.
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TABLE IV. The Influence of Different Resolutions for Input Image on Network Performance on the First Fold of the Validation Set.

Method Train-Val
Size

Test
Size Parameters ↓ GFLOPs ↓ Mean

Precision ↑ Mean
Recall ↑ mAP50 ↑

YOLOv5s
512-512 512 7.0739M 5.3 70.8 51.1 62.2

1024 7.0739M 21.3 32.7 12.4 10.6

1024-1024 1024 7.0739M 21.3 78.1 69.8 77.7
512 7.0739M 5.3 45.4 57.2 48.2

YOLOv5s
(noFocus)

512-512 512 7.0705M 20.4 69.3 65.4 69.5
1024 7.0705M 81.5 20.8 16.9 13.4

1024-1024 1024 7.0705M 81.5 83.7 71.3 79.3
512 7.0705M 20.4 64.2 59.2 62.9

YOLOv5s
(noFocus)

+SR
512-512 512 7.0705M 20.4 74.5 73.4 78.0

2) Impact of Removing Focus Module: As presented in
Section IV-A, the Focus module reduces the resolution of
input images, which imposes encumbrance on the detection
performance of small objects in RSI. To investigate the in-
fluence of the Focus module, we conduct experiments on the
four YOLOv5 network frameworks: YOLOv5s, YOLOV5m,
YOLOv5l, and YOLOv5x. Note that the results here are col-
lected after the pixel-level fusion of RGB and IR modalities.
As listed out in Table I, the mean recall scores of those frame-
works are improved by removing the Focus module. In partic-
ular, the mean recall score of YOLOv5s is improved by 14.3%
(51.1%→69.3%). This is because by removing the Focus
module, not only can the resolution degradation be avoided,
but also the spatial interval information be retained for small
objects in RSI, thereby reducing the missing errors of object
detection. At the same time, the mean precision scores are
improved for YOLOv5m and YOLOv5l, and slightly dropped
for YOLOv5s and YOLOv5x. Overall, after removing the
Focus module, we observe the noticeable improving of the de-
tection performance of YOLOv5s (62.2%→69.5% in mAP50),
YOLOv5m (64.5%→72.2%), YOLOV5l (63.7%→72.5%),
YOLOv5x (64.0%→69.2%). Generally, removing the Focus
module brings more than 5% improvement in the detection
performance (mAP50) of the whole frameworks.

TABLE V. The Comparison Result of Pixel-level and Feature-level Fusions
in YOLOv5s for Multimodal Dataset on the First Fold of the Validation Set.

Method Parameters ↓ GFLOPs ↓ mAP50 ↑

Pixel-level Fusion 7.0705M 20.37 69.5

Feature-level
Fusion

Fusion1 7.0887M 21.76 66.0
Fusion2 7.0744M 22.04 68.5
Fusion3 7.1442M 24.22 64.8
Fusion4 7.0870M 24.50 63.8

Meanwhile, we notice that the above removal in-
creases the inference computation cost (GFLOPs) in
YOLOv5s (5.3→20.4), YOLOv5m (16.1→63.6), YOLOV5l
(36.7→145), YOLOv5x (69.7→276.6). However, the GFLOPs
of YOLOv5s-noFocus (20.4) is smaller than those of YOLOv3
(52.8), YOLOv4 (38.2), and YOLOrs (46.4), as shown in Table

TABLE VI. The Effective Validation of the Super Resolution branch for the
Different Baseline.

Method Layers Parameters GFLOPs mAP50

YOLOv3 270 61.5M 52.8 62.6
YOLOv3+SR 270 61.5M 52.8 71.8

YOLOv4 393 52.5M 38.2 65.7
YOLOv4+SR 393 52.5M 38.2 69.0

YOLOv5s 224 7.1M 5.3 62.2
YOLOv5s+SR 224 7.1M 5.3 64.4

III. The parameters of these models are slightly reduced after
removing the Focus module. In summary, in order to retain the
resolution to better detect more smaller objects, priority shall
be given to the detection accuracy, for which the convolution
operation is adopted to replace the Focus module.

3) Comparison of Different Fusion Methods: To evaluate
the influence of the devised fusion methods, we conduct
experiments with pixel-level and feature-level fusion methods
on YOLOv5-noFocus, as presented in Section IV-B. The final
result is listed out in TABLE V. The parameter size, GFLOPs,
mAP50 of pixel-level fusion are 7.0705M, 20.37 and 69.5%,
respectively, which are the best among all the compared
methods. The above results suggest that the pixel-level fusion
can accurately detect objects while reducing the computation.
Therefore, we choose the pixel-level fusion as our final fusion
strategy, which exhibits relatively competitive performance for
the VEDAI multimodal dataset with objects that are difficult
to distinguish.

4) Impact of High Resolution: We compare different
training and test modes to explore more possibilities in terms
of the input image resolution in TABLE IV. First, we compare
for cases where the image resolutions of the training set and
test set are the same. By comparing the result of YOLOv5s,
the detection metric mAP50 is improved from 62.2% to 77.7%,
causing 15.6% increase when the image resolution (size)
is doubled from 512 to 1024. Similarly, YOLOv5s-noFocus
(1024) outperforms YOLOv5s-noFocus (512) by 9.8% mAP50
score (79.3% vs. 69.5%). The mean recall and mean precision
increase simultaneously, suggesting that ensuring resolution
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TABLE VII. The Ablation Experiment Results about the Influence of SR Branch on Detection Performance.

YOLOv5s
(noFocus)

+SR

Small-scale
Detector

Decoder
(EDSR) L1 Loss Parameters ↓ GFLOPs ↓ mAP50 ↑ PSNR ↑ SSIM ↑

X X 4.8259M 16.68G 79.0 23.811 0.602
X X X 4.8259M 16.68G 79.9 23.902 0.604
X X X X 4.8259M 16.68G 80.9 26.203 0.659

TABLE VIII. Class-wise Average Precision AP, Mean Average Precision mAP50, Parameters and GFLPs for Proposed SuperYOLO, YOLOv3, YOLOv4,
YOLOv5s-x Including Unimodal And Multimodal Configurations on VEDAI Dataset.

Method Car Pickup Camping Truck Other Tractor Boat Van mAP50 Params. ↓ GFLOPs ↓

YOLOv3
IR 80.21 67.03 65.55 47.78 25.86 40.11 32.67 53.33 51.54 61.5351M 49.55

RGB 83.06 71.54 69.14 59.30 48.93 67.34 33.48 55.67 61.06 61.5351M 49.55
Multi 84.57 72.68 67.13 61.96 43.04 65.24 37.10 58.29 61.26 61.5354M 49.68

YOLOv4
IR 80.45 67.88 68.84 53.66 30.02 44.23 25.40 51.41 52.75 52.5082M 38.16

RGB 83.73 73.43 71.17 59.09 51.66 65.86 34.28 60.32 62.43 52.5082M 38.16
Multi 85.46 72.84 72.38 62.82 48.94 68.99 34.28 54.66 62.55 52.5085M 38.23

YOLOv5s
IR 77.31 65.27 66.47 51.56 25.87 42.36 21.88 48.88 49.94 7.0728M 5.24

RGB 80.07 68.01 66.12 51.52 45.76 64.38 21.62 40.93 54.82 7.0728M 5.24
Multi 80.81 68.48 69.06 54.71 46.76 64.29 24.25 45.96 56.79 7.0739M 5.32

YOLOv5m
IR 79.23 67.32 65.43 51.75 26.66 44.28 26.64 56.14 52.19 21.0659M 16.13

RGB 81.14 70.26 65.53 53.98 46.78 66.69 36.24 49.87 58.80 21.0659M 16.13
Multi 82.53 72.32 68.41 59.25 46.20 66.23 33.51 57.11 60.69 21.0677M 16.24

YOLOv5l
IR 80.14 68.57 65.37 53.45 30.33 45.59 27.24 61.87 54.06 46.6383M 36.55

RGB 81.36 71.70 68.25 57.45 45.77 70.68 35.89 55.42 60.81 46.6383M 36.55
Multi 82.83 72.32 69.92 63.94 48.48 63.07 40.12 56.46 62.16 46.6046M 36.70

YOLOv5x
IR 79.01 66.72 65.93 58.49 31.39 41.38 31.58 58.98 54.18 87.2458M 69.52

RGB 81.66 72.23 68.29 59.07 48.47 66.01 39.15 61.85 62.09 87.2458M 69.52
Multi 84.33 72.95 70.09 61.15 49.94 67.35 38.71 56.65 62.65 87.2487M 69.71

SuperYOLO
IR 87.90 81.39 76.90 61.56 39.39 60.56 46.08 71.00 65.60 4.8256M 16.61

RGB 90.30 82.66 76.69 68.55 53.86 79.48 58.08 70.30 72.49 4.8256M 16.61
Multi 90.86 84.35 78.11 68.11 53.26 82.33 60.95 70.94 73.61 4.8259M 16.68

reduces the commission and omission errors in object detec-
tion. Based on the above analysis, we argue that the charac-
teristics of HR significantly influence the final performance of
object detection.

However, it is noteworthy that maintaining an HR input im-
age of the network introduces a certain amount of calculation.
The GFLOPs with a resolution of 1024 × 1024 is higher than
that with 512 × 512 in both YOLOv5s (21.3 vs. 5.3) and
YOLOv5s-noFocus (81.5 vs. 20.4). Note that the GFLOPs is
calculated in the test processing.

As shown in Table IV, the use of different sizes of image
during the training process (train size) and the test process
(test size) results in the score reduction of mAP, i.e., (10.6%
vs. 62.1%), (48.2% vs. 77.7%), (13.4% vs. 69.5%) and (62.9%
vs. 79.3%). This may attribute to the inconsistent scale of
objects in the test process and in the training process, where
the size of the predicted bounding box is not suitable for the
objects of test images anymore.

Finally, the mAP50 of YOLOv5s-noFocus+SR is close to the
YOLOv5-noFocus (1024) HR one (78.0% vs. 79.3%), and the
GFOLPs is equal to that of YOLOv5-noFocus (512) LR one
(20.4 vs. 20.4). Our proposed network decreased the resolution
of input images in the test process to reduce computation and

maintain accuracy by remaining the identical resolution of the
training and testing data, thereby highlighting the advantage
of the proposed SR branch.

5) Impact of Super Resolution Branch: Table VI shows
the favorable accuracy-speed tradeoff of SR branch. At the dif-
ferent baseline, the influence of the SR branch on object detec-
tion is positive. Compared with bare baseline, baseline added
super resolution shows favorable performance: YOLOv3+SR
performs mAP50 9.2% better than YOLOv3, YOLOv4+SR is
mAP50 3.3% better than YOLOv4, YOLOv5s+SR performs
mAP50 2% better than YOLOv5s. Notably, Super resolution
can be removed in the inference stage. Hence no extra
parameters and computation costs are introduced, which is
impressive considering that the SR branch does not require a
lot of manpower to refine the design of the detection network.
The SR branch is general and extensible and can be utilized
in the existing fully convolutional network (FCN) framework.
In addition, some ablation experiences about the SR branch
are completed in Table VII. When we utilize EDSR network
as Decoder and L1 loss as SR loss function in the SR branch,
which is powerful in the SR task, not only the performance
of SR is improved but also the performance of the detection
network enhanced meantime, because the SR branch helps



SUBMISSION TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2021 11

Fig. 7. Visual results of object detection using different methods involving YOLOv4, YOLOv5s, YOLOv5m and the proposed SuperYOLO.

the detection network to extract more effective and superior
features in the backbone, accelerating the convergence of the
detection network and thus improving the performance of the
detection network. The performance of super resolution and
object detection is complementary and cooperative.

E. Comparisons with Previous Methods

The visual detection results of the compared YOLO methods
and SuperYOLO are shown in Fig. 7, for a diverse set of
scenes. It can be observed that SuperYOLO can accurately
detect those objects that are not detected, or predicted into a

wrong category or with uncertainty, in YOLOv4, YOLOv5s,
and YOLOv5m. The objects in RSIs are challenging to detect
on small scales. In particular, Pickup and Car or Van and
Boat are easily confused in the detection process due to their
similarities. Hence, improving the detection classification is
of essential necessity in object detection tasks except for
location detection, which can be accomplished by the proposed
SuperYOLO with better performance.

TABLE VIII summarizes the performance on the YOLOv3,
YOLOv4, and YOLOv5s-x and our proposed SuperYOLO.
Note that the AP scores of multimodal modes are signifi-
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cantly higher than those of unimodal (RGB or IR) modes
for most classes. The overall mAP50 of multimodal modes
outperforms those of RGB or IR modes. These results confirm
that multimodal fusion is an effective and efficient strategy
for object detection based on information complementation
between multimodal input. However, it should be noted that
the slight increase of parameters and GFLOPs with multimodal
fusion reflects the necessity of choice pixel-level fusion.

It is obvious that the SuperYOLO achieves higher AP
and mAP50 than the other frameworks. In particular, the
SuperYOLO outperforms the YOLOv5x by a 10.96% mAP50
score in multimodal mode. Meanwhile, the GFOLPs and
parameter size of SuperYOLO are about 18.1x and 4.2x less
than YOLOv5x. In addition, it can be noticed that the top
performance is achieved for the classes of Car, Pickup,
Tractor and Camping, which has most training instances as
shown in TABLE II. Especially, the detection performance in
Boat and Van is significantly improved in the SuperYOLO
compared with other methods. YOLOv5s performs superior
on GFLOPs, which depends on the Focus module to slim the
input image, but results in lousy detection performance, espe-
cially for small objects. The SuperYOLO performs 16.82%
better than YOLOv5s. Our proposed SuperYOLO shows a
favorable speed-accuracy trade-off compared to the state-of-
the-art models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented SuperYOLO, a real-time
lightweight network that is built on top of the widely-used
YOLOv5s to improve the detection performance of small
objects in RSI. First, we have modified the baseline network
by removing the Focus module to avoid resolution degra-
dation, through which the baseline is significantly improved
and overcomes the missing error of small objects. Second,
we have conducted pixel-level fusion of multimodality to
improve the detection performance based on mutual infor-
mation. Lastly and most importantly, we have introduced
a simple and flexible SR branch facilitating the backbone
to construct a HR representation feature, by which small
objects can be easily recognized from vast backgrounds with
merely LR input required. We remove the SR branch in the
inference stage, accomplishing the detection without changing
the original structure of the network to achieve the same
GFOLPs. With joint contributions of these ideas, the proposed
SuperYOLO achieves 73.61% mAP50 with lower computation
cost on VEDAI dataset, which is 16.82% higher than that of
YOLOv5s, and 10.96% higher than that of YOLOv5x.

The performance and inference ability of our proposal
highlight the value of SR in remote sensing tasks, paving way
for the future study of multimodal object detection. Our future
interests will be focusing on the design of low-parameter mode
to extract HR features, thereby further satisfying real-time and
high-accuracy motivations.
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