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Abstract

Pseudo-LiDAR 3D detectors have made remarkable
progress in monocular 3D detection by enhancing the ca-
pability of perceiving depth with depth estimation networks,
and using LiDAR-based 3D detection architectures. The ad-
vanced stereo 3D detectors can also accurately localize 3D
objects. The gap in image-to-image generation for stereo
views is much smaller than that in image-to-LiDAR gener-
ation. Motivated by this, we propose a Pseudo-Stereo 3D
detection framework with three novel virtual view gener-
ation methods, including image-level generation, feature-
level generation, and feature-clone, for detecting 3D objects
from a single image. Our analysis of depth-aware learning
shows that the depth loss is effective in only feature-level
virtual view generation and the estimated depth map is ef-
fective in both image-level and feature-level in our frame-
work. We propose a disparity-wise dynamic convolution
with dynamic kernels sampled from the disparity feature
map to filter the features adaptively from a single image for
generating virtual image features, which eases the feature
degradation caused by the depth estimation errors. Till sub-
mission (November 18, 2021), our Pseudo-Stereo 3D de-
tection framework ranks 1st on car, pedestrian, and cyclist
among the monocular 3D detectors with publications on the
KITTI-3D benchmark. The code is released at https:
//github.com/revisitq/Pseudo-Stereo-3D.

1. Introduction
Detecting the 3D objects from monocular image enables

the machine to perceive and understand the 3D real world,
which has a wide applications including virtual reality,
robotics and autonomous driving. Monocular 3D detection
is a challenging task because of the lack of accurate 3D in-
formation in a single image. However, the huge potential in
such a cheap and easy-to-deploy solution to 3D detection at-
tracts more and more researchers. Remarkable progress has
been made in Pseudo-LiDAR detectors [11, 29, 34, 43, 52]
that use a pre-trained depth estimation network to generate
Pseudo-LiDAR representations, e.g. pseudo point clouds

Figure 1. Overview of our Pseudo-Stereo 3D detection framework
with novel virtual view generation methods: (a) Image-level to use
the generated disparity map for forward warping the input left im-
age into a virtual right image, (b) Feature-level to convert the left
features into virtual right features. A feature conversion baseline
is to clone the left features as the special case in stereo views.

and pseudo voxels, and then feed them to LiDAR-based
3D detectors. It shows that enhancing the capability of per-
ceiving depth can improve monocular 3D detection perfor-
mance. However, there is a huge performance gap between
Pseudo-LiDAR and LiDAR-based detectors because of the
errors in image-to-LiDAR generation [32].

Apart from LiDAR-based detectors, the stereo 3D detec-
tors [9,17] can also accurately localize 3D objects. Also, the
gap in image-to-image generation for stereo views is much
smaller than that in image-to-LiDAR generation, which is
a cross-modality conversion. Instead of Pseudo-LiDAR,
we propose a novel Pseudo-Stereo 3D detection framework
for monocular 3D detection. Our Pseudo-Stereo 3D detec-
tion framework generates a virtual view from a single input
image to compose Pseudo-Stereo views with the generated
virtual view and the input view. Then, we feed the Pseudo-
Stereo views to stereo 3D detectors for detecting 3D objects
from the single input image. We use one of the most ad-
vanced stereo 3D detectors, LIGA-Stereo [17], as the base
detection architecture. Thus, the virtual view generation is
the key to our Pseudo-Stereo 3D detection framework.

We take KITTI-3D as an example only to explain how
to generate a virtual view. Note that the virtual view does
not require the ground-truth actual view in the dataset for
training. In KITTI-3D, the monocular 3D detection is per-
formed on the left image from the stereo views. Our aim
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is to construct Pseudo-Stereo views by generating the vir-
tual right view from the input left view in either image-level
or feature-level for monocular 3D detection. As shown in
Figure 1, we propose two types of virtual view generation:
(a) image-level to generate the virtual right image from the
input left image and (b) feature-level to convert the left fea-
tures into virtual right features. In image-level, we con-
vert the estimated depth map from the input left image into
disparities and use them to forward warp the input left im-
age into a virtual right image to compose the Pseudo-Stereo
views with the input left view. In feature-level, we propose
a disparity-wise dynamic convolution with dynamic kernels
sampled from disparity feature map to filter the left features
adaptively for generating virtual right features, which eases
the feature degradation caused by the depth estimation er-
rors. Also, a simple feature conversion is to clone the left
features as the virtual right features, which is the special
case of stereo views that the virtual right view is the same
as the left view. We summarize our contributions:

• We propose a Pseudo-Stereo 3D detection framework
with three novel virtual view generation methods, in-
cluding image-level generation, feature-level genera-
tion and feature-clone, for detecting 3D objects from
a single image, achieving significant improvements in
monocular 3D detection. The proposed framework
with feature-level virtual view generation ranks 1st

among the monocular 3D detectors with publications
across three object classes on KITTI-3D benchmark.

• In our framework, we analyze two major effects of
learning depth-aware feature representations, includ-
ing the estimated depth map and the depth loss as the
depth guidance. It is very interesting to find that the
depth loss is effective in feature-level virtual view gen-
eration only and the estimated depth map is effective
in both image-level and feature-level for depth-aware
feature learning.

• In our feature-level virtual view generation method, we
propose a disparity-wise dynamic convolution with dy-
namic kernels from disparity feature map to adaptively
filter the features from a single image for generating
virtual image features, which avoids the feature degra-
dation caused by the depth estimation errors.

2. Related Works
The architectures for monocular 3D object detection can

be mainly categorized into two groups: Pseudo-LiDAR
based methods [11, 34, 43] that use pre-trained depth net-
works to generate pseudo LiDAR representations, e.g.
pseudo point clouds and pseudo voxels, and then feed them
to LiDAR-based 3D detectors, and the rest monocular 3D
detection methods that use 2D feature learning from a sin-
gle image with optional 3D cues matching, concatenating
or guiding for 3D perception [24, 26, 31, 38, 39, 54, 57].

Monocular 3D Detection. There are a few monocular
3D detectors use 2D feature learning in 2D backbone with
optional 3D cues concatenated or matched to 2D features
for 3D perception. Chabot et al. [6] estimate the similar-
ity between the detected vehicle and a pre-defined 3D vehi-
cle shape template used as 3D cues in 2D backbone. They
solve the 3D location and 3D rotation angle of the detected
vehicle in a standard 2D/3D matching algorithm [22]. Bara-
banau et al. [2] use 2D features to predict the rotation and
key points of a car in a 2D backbone. Then, they use a
geometric reasoning between the key points and the corre-
sponding points in CAD models to get the depth and 3D
locations of the car. But it is difficult to get CAD mod-
els of all object classes. GrooMeD-NMS [21] extracts 2D
features for monocular 3D detection, with a differentiable
NMS selecting the best 3D box candidate. GS3D [23] uses
a specifically designed 2D backbone to extract the surface
features for tackling the representation ambiguity between
2D bounding box and 3D bounding box. MonoEF [56]
employs a 2D backbone with a camera extrinsic parameter
aware module to deconstruct camera extrinsic parameters
from 3D detection parameters. M3D-RPN [4] extracts 2D
image feature to predict both 2D and 3D bounding boxes
directly by minimizing the distance error between the 2D
projection of the predicted 3D bounding box and the pre-
dicted 2D bounding box. Following M3D-RPN [4], many
works [28, 33, 35] enhance the 2D feature learning with the
2D-3D detection head for monocular 3D detection.

Some methods aggregate the 2D image feature and the
depth features extracted from the depth map to get 2D
depth-aware features [12, 33]. D4LCN [12] employs a
depth-guided convolution with the weights and the recep-
tive fields learning from the estimated depth for depth-
aware feature extraction. DDMP-3D [47] uses a depth-
conditioned propagation based on graph to learn 2D depth-
aware features for monocular 3D detection. DD3D [33]
adds a depth prediction head to the 3D detection head and
uses a depth loss to learn 2D features that are sensitive to
depth information for monocular 3D detection. DD3D [33]
also pre-trains the depth prediction head on a large-scale
dataset and fine-tunes the overall network on monocular 3D
detection task. Other methods extract 2D features and con-
struct 3D feature volume from the transformation of 2D
features to improve 3D perceiving capacity. CaDDN [38]
uses the estimated depth distributions to construct a frus-
tum feature grid. Then, the frustum feature is converted into
a voxel grid using known camera calibration parameters to
construct 3D voxel feature volumes. ImVoxelNet [39] uses
2D backbone to extract 2D image feature and projects the
2D features into 3D feature volumes following [31]. Then,
the 3D feature volumes go through 3D backbone to enhance
the 3D features for monocular 3D detection.

Pseudo-LiDAR. Pseudo-LiDAR architecture converts
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the estimated depth map from a single image into Pseudo
3D data representations [5, 46] which are then fed to 3D
backbone to learn point-wise, voxel-wise or bird’s eye view
(BEV) features for monocular 3D detection. RefinedMPL
[46] uses PointRCNN [41] for point-wise feature learning
in a supervised or an unsupervised scheme from pseudo
point clouds prior. AM3D [30] uses a PointNet [36] back-
bone for point-wise feature extraction from pseudo point
clouds, and employs a multi-modal fusion block to enhance
the point-wise feature learning. MonoFENet [1] enhances
the 3D features from the estimated disparity for monocu-
lar 3D detection. Decoupled-3D [5] recovers the missing
depth of the object using the coarse depth from 3D object
height prior with the BEV features that are converted from
the estimated depth map. However, the performance and
the generalization capability of these methods rely on the
accuracy of image-to-LiDAR generation, which has a huge
gap between the two data modalities.

3. Preliminaries of Stereo 3D Detector
Volume-based stereo 3D detectors aim to generate 3D

anchor space from stereo image [37] and localize 3D objects
from 3D feature volume [9, 17, 48]. DSGN [9] follows the
widely used 3D cost volume construction in stereo match-
ing [16, 45, 50] with 3D geometric information encoding.
The depth loss in stereo matching branch helps learn depth-
aware features for the detection branch, improving the de-
tection accuracy. Wang et al. [48] use a direct construction
of 3D cost volume to reduce the computational cost. Based
on DSGN [9], LIGA-Stereo [17] achieves significant im-
provements against other methods [3,9,53] in stereo 3D de-
tection. Thus, we use LIGA-Stereo [17] as our base stereo
3D detection architecture and feed the Pseudo-Stereo views
to LIGA-Stereo. We focus on how to generate the virtual
right view from the input left view and learn Pseudo-Stereo
features that are sensitive to depth information. Thus, we
introduce the stereo image feature extraction and the 3D
feature volume construction in LIGA-Stereo [17].

Stereo Image Feature Extraction. Given an image pair
(IL, IR) from stereo views, the LIGA-Stereo [17] first ex-
tracts the left features and the right features via a ResNet-
34 [18] with shared weights as the 2D image backbone. The
strides of the output feature map in the five blocks are 2, 2,
4, 4 and 4, respectively. The channels of the output fea-
ture map in the five blocks are 64, 64, 128, 128 and 128.
Then, we denote the left and the right features as F ′

L and
F ′
R that are the input to the spatial pyramid pooling (SPP)

module [7] with shared weights for getting the final left fea-
tures FL and right features FR. The strides of the final left
features FL and right features FR are 1, and the channels of
the final left features FL and the right features FR are 32.

The 3D Feature Volume Construction. With the left
features FL and the right features FR, the stereo volume

Vst is built by concatenating the left features FL with the
re-projected right features FR−>L at every candidate depth
level. Thus, the stereo volume construction can be formu-
lated with camera parameters as:

Vst(u, v, w) = concat[FL(u, v), FR−>L(u, v)] (1)
FR−>L(u, v) = FR(u− f ·b

d(w)·S , v) (2)

d(w) = w · vd + zmin (3)

where (u, v) are the pixel coordinates, w ∈ [0, 1, ...] indi-
cates the depth index, S is the stride of the feature map, vd is
the depth interval, zmin indicates the minimal depth value,
f is the camera focal length, and b represents the baseline
of the stereo camera pair. After the stereo volume Vst is
filtered by a stereo network 3D Hourglass [17], we get a re-
sampled stereo volume V ′

st and a depth distribution volume
Pst. The Pst describes the depth probability distribution of
pixels for all the candidate depth levels described in d(w).
A depth loss is computed between the depth map regressed
from the re-sampled stereo volume V ′

st and the ground-truth
depth map to guide the depth-aware learning of V ′

st. With
the camera calibration parameters, we can transform the
volume in stereo space V ′

st to the volume in 3D space V3d by
concatenating the semantic features from left image penal-
ized by the depth probability Pst and the re-sampled stereo
volume V ′

st. Following SECOND [51], the 3D feature vol-
ume V3d is collapsed to a bird’s eye view (BEV) feature
map FBEV by merging the dimension of height and chan-
nel. Finally, a 2D aggregation network is used to get a re-
fined BEV feature map F ′

BEV that is used for the regression
of 3D detection parameters.

4. Method

As shown in Figure 2, we propose three novel meth-
ods to generate the virtual right view from the input left
view and construct the Pseudo-Stereo views in (a) image-
level in Section 4.2, (b) feature-level in Section 4.3, and (c)
feature-clone as the baseline of feature-level generation in
Section 4.4. We describe the loss function in Section 4.5. In
Section 4.6, we analyze the depth-aware feature learning in
the proposed Pseudo-Stereo 3D detection framework.

4.1. Pseudo-Stereo 3D Detection Framework

We use LIGA-Stereo [17] as our base stereo 3D detec-
tion architecture and replace the stereo image feature ex-
traction block with our Pseudo-Stereo image feature extrac-
tion block. As shown in Figure 2, we propose three virtual
right view generation methods and extract Pseudo-Stereo
image features from the input left view and the generated
virtual right view. Then, we feed the Pseudo-Stereo image
features to LIGA-Stereo for detecting 3D objects from the
input left image only.
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Figure 2. Overview of our virtual view generation methods: (a) Image-level that uses the generated disparity map for forward warping
the input left image into a virtual right image, (b) Feature-level that converts the left features into virtual right features via the proposed
disparity-wise dynamic convolution (DDC), (c) Feature-clone that simply duplicates the left features as the virtual right features.

Figure 3. Left image (top) and the generated virtual right image
(bottom) using our image-level virtual view generation method.

4.2. Image-level Generation

In image-level, we generate a virtual right image ÎR from
the input left image IL using the estimated disparity map
as shown in Figure 2(a). Then, we extract Pseudo-Stereo
image features from the Pseudo-Stereo pair (IL, ÎR). With
a pair of pixel correspondences xl and xr in the left image
IL and the right image IR, the disparity d between the pair
of pixel correspondences can be computed as:

d = xl − xr (4)

Given the depth value z for the pixel xl in the input left im-
age and the camera calibration parameters, the relationship
between the disparity d and its corresponding depth value z
can be formulated as:

d =
f · b
z

(5)

where f and b are the camera focal length and the baseline
of the stereo camera pair, respectively.

To get the virtual right image, we first use a pre-trained
DORN [13] to estimate the depth map Z from the input left
image IL. Then, we convert the depth map Z to a disparity
map D according to Eqn. 5 with camera parameters. Fol-
lowing Eqn. 4, we use the disparity map to forward warp the
left image IL [40] into the virtual right image ÎR as shown

in Figure 3. To address ‘blurry’ edges, occlusions and colli-
sions, we sharpen the disparity map by identifying the flying
pixels and applying a Sobel edge filter response of greater
than 3 to the disparity map on those flying pixels [19, 49].
In image-level generation, we embed the estimated depth
information extracted from the left image into the virtual
right image for Pseudo-Stereo 3D detection. Then, we use
a ResNet-34 [18] with shared weights followed by a spa-
tial pyramid pooling (SPP) module with shared-weights to
extract the left features FL and the virtual right features
F̂R from the Pseudo-Stereo pair (IL, ÎR). We can use the
Pseudo-Stereo image features to construct the stereo vol-
ume Vst as detailed in Section 3.

4.3. Feature-level Generation

Generating the virtual right image is a time-consuming
process because of the forward warping [19, 49]. To over-
come this, we propose a differentiable feature-level method
for generating the virtual right features from the left features
and the disparity features as shown in Figure 2(b). We con-
vert the estimated depth map into a disparity map and use
two ResNet-34 [18] to extract the left features F ′

L from the
left input image and the disparity features FD from the dis-
parity map. The two ResNet-34 are not with shared weights.

Instead of computing the offsets to compensate the left
view as the virtual right view, we propose a disparity-wise
dynamic convolution (DDC) to filter the left feature map
F ′
L ∈ RW×H×C adaptively by the dynamic kernels from

the disparity feature map FD ∈ RW×H×C for generating
the virtual right feature map F̂ ′

R ∈ RW×H×C , where W ,
H and C are the width, height and channel of the feature
map, respectively. As shown in Figure 4, the adaptive fil-
tering process use a 3 × 3 sliding window to cover all the
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Figure 4. An illustration of disparity-wise dynamic convolution.

feature points in FD and F ′
L:

F̂R(i, j) =
1

3×3

∑
u′

∑
v′

FD(u′, v′) · F ′
L(u

′, v′) (6)

where u′ ∈ {i − 1, i, i + 1} and v′ ∈ {j − 1, j, j + 1} are
the coordinates of the feature points in the sliding window.
We need to apply W ∗ H times sliding window to cover
the whole feature map, which is not efficient. Instead, we
use a grid shifting operation that can cover the whole fea-
ture map with 9 times shifting. After padding, we shift a
W × H window following the direction and the step size
represented in a 3 × 3 grid {(gi, gj)}, g ∈ {−1, 0, 1} on
FD and F ′

L for getting the kernel F (gi,gj)
D ∈ RW×H×C and

the feature map F
′(gi,gj)
L ∈ RW×H×C , respectively. When

gi = 0 and gj = 0, the W ×H window covers the original
feature map that is without padding as shown in black dot
box of Figure 4. Thus, we can get the virtual right features
F̂ ′
R by filtering F

′(gi,gj)
L adaptively by the kernels F (gi,gj)

D :

F̂ ′
R = 1

3×3

∑
gi,gj

F
′(gi,gj)
L ⊙ F

(gi,gj)
D (7)

where the grid shifting operation is applied nine times to
cover the whole feature map. For more details, please refer
to supplementary materials. We feed F ′

L and F̂ ′
R to SPP

module with shared weights using strides of 4 for getting
the final left features FL and virtual right features F̂R.

Compared with the image-level generation, the feature-
level generation is faster without forward warping and more
adaptive using the proposed disparity-wise dynamic convo-
lution. Also, by embedding the estimated depth informa-
tion into high dimensional feature space and using the em-
bedded depth information to filter the left features, it mit-
igates the degradation of depth-aware representations and
the depth-aware representations can strengthen the embed-
ded depth information with extra depth guidance, achieving
significant improvements in monocular 3D detection.

4.4. Image Feature Clone
We clone the left features as the virtual right features

as shown in Figure 2(c). This can be seen as the special
case of Pseudo-Stereo views that the virtual right view is the
same as the left view. Also, feature cloning is used as the

baseline of feature-level generation. With different Pseudo-
Stereo views, the proposed framework can improve the rep-
resentations of 3D feature volume with the paired pixel-
correspondence constraints or the feature-correspondence
constraints converted from the estimated depth map. How-
ever, cloning feature does not need a pre-trained depth es-
timation network in our Pseudo-Stereo 3D detection frame-
work, leading to better generalization capability.

4.5. Loss Function

Since we use LIGA-Stereo [17] as our base stereo 3D
detection architecture and replace the original stereo image
feature extraction block with the proposed three variants of
Pseudo-Stereo image feature generation block as shown in
Figure 2, we employ the same loss function as LIGA-Stereo
[17], including the detection loss Ld for the regression of all
detection parameters, the depth loss Ldepth as the additional
depth guidance for the re-sampled stereo volume V ′

st and
the knowledge distillation loss Lkd to transfer the structural
knowledge from a LiDAR-based detector as described in
LIGA-Stereo [17]. The overall loss can be formulated as:

L = λdLd + λdepLdepth + λkdLkd (8)

where λd, λdep, and λkd are the regularization weights for
the detection loss, the depth loss, and the knowledge distil-
lation loss, respectively. The knowledge distillation adopted
in LIGA-Stereo is well studied in [17]. Please refer to
LIGA-Stereo [17] for more details. We focus on how to
generate the virtual right view from the input left view and
improve the capability of perceiving depth in features.

4.6. Learning Depth-aware Features

The depth-aware feature learning in our framework lies
in two aspects: the estimated depth map and the depth loss.
we convert the estimated depth map as the disparity map
and use it in either image space or feature space. By com-
paring the performance of the two methods, we can study
the effect of the estimated depth map used for depth-aware
feature learning in both image-level and feature-level. The
depth loss Ldepth is used as the additional depth guidance
for the re-sampled stereo volume V ′

st to improve the depth
awareness in features, improving monocular 3D detection
performance. Although both the estimated depth map and
the depth loss can improve the depth awareness in feature
learning, the interaction between the two factors is not well
studied for monocular 3D detection before this work.

For the image-level generation in Section 4.2, we use a
Pseudo-Stereo image pair to extract the Stereo image fea-
tures, where the virtual right image is generated from the
left image with the help of the estimated depth map. The
monocular depth estimation is an ill-posed problem, which
makes it difficult to get high-quality depth maps for vir-
tual right image generation. Thus, the pixel-correspondence
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constraints of the generated Pseudo-Stereo pairs may have
large offsets against the ground truth because of the depth
estimation errors. Learning with the virtual right image
warped from the inaccurate pixel-correspondences causes
feature degradation. Since there is a huge gap between the
ground-truth depth and the degraded feature, forcing the
network to fit the ground-truth depth map using the depth
loss with the degraded feature impairs the overall perfor-
mance. For feature-level generation in Section 4.3, the vir-
tual right features are generated from the left features and
the disparity features. Unlike image-level generation, where
the forward-warping is a non-learning process from image
to image, the feature-level generation is an adaptive learn-
ing process with disparity-wise dynamic convolutions from
feature to feature. Also, the estimated depth information is
embedded into high dimensional feature space and the em-
bedded depth information is used to filter the left features in
the feature-level generation. This eases the degradation of
depth-aware representations, mitigating the gap between the
ground-truth depth and the feature. Thus, the feature repre-
sentations can evolve and refine the depth information with
extra depth guidance, for example, a depth loss. For feature-
clone in Section 4.4, we duplicate the left features as the
Pseudo-Stereo image features without the estimated depth
map. The depth loss alone can improve the depth aware-
ness of features, improving the detection performance.

5. Experiments

5.1. Dataset and Evaluation Metric

Dataset. KITTI 3D object detection benchmark [15] is the
most widely used benchmark for 3D object detection. It
comprises 7481 training images and 7518 test images, along
with the corresponding point clouds captured around a mid-
size city from rural areas and highways. KITTI-3D pro-
vides 3D bounding box annotations for 3 classes, Car, Cy-
clist and Pedestrian. Commonly, the training set is divided
into training split with 3712 samples and validation split
with 3769 samples following that in [12], which we denote
as KITTI train and KITTI val, respectively. All models in
ablation studies are trained on the KITTI train and evalu-
ated on KITTI val. For the submission of our methods, the
models is trained on the 7481 training samples. Each object
sample is assigned to a difficulty level, Easy, Moderate or
Hard according to the object’s bounding box height, occlu-
sion level and truncation.
Evaluation Metric. We use two evaluation metrics in
KITTI-3D, i.e., the IoU of 3D bounding boxes or BEV 2D
bounding boxes with average precision (AP) metric, which
are denoted as AP3D and APBEV , respectively. Following
the monocular 3D detection methods [2,12,54], we conduct
the ablation study on Car. KITTI-3D uses the AP |R40 with
40 recall points instead of AP |R11 with 11 recall points

from October 8, 2019. We report all the results in AP |R40.

5.2. Experiment Settings

Input Setting. We use the pre-trained model of DORN [14]
to estimate the depth map. Then, we transform the depth
maps into disparity maps with the camera calibration pa-
rameters. The virtual right images in image-level generation
are generated before training to reduce the training time.
For feature-level generation, the disparity map is normal-
ized by µ= 33.20, σ=15.91. The µ and σ indicate the mean
and variance of disparity map calculated from the training
set.
Training Details. The network is trained with an AdamW
[25] optimizer, with β1=0.9, β2=0.999. We train the net-
work with 4 NVIDIA RTX 3090 GPUs. The batch size
is set to 4. For the regularization weights of the training
loss, λd=1.0, λkd=1.0. The regularization weight λdep for
depth loss Ldepth is set to 0 or 1, representing whether the
depth loss is used or not. We use a single model to detect
objects in different classes (Car, Cyclist and Pedestrian)
together. Other hyper-parameters are set as the same as
LIGA-Stereo [17].

Exp. Methods Ldepth
AP3D/APBEV

Easy Moderate Hard

1 Image-level ✓ 31.43 / 41.82 21.53 / 29.00 18.47 / 25.21
2 Image-level 31.81 / 42.87 22.36 / 30.16 19.33 / 26.38

3 Feature-level ✓ 35.18 / 45.50 24.15 / 32.03 20.35 / 27.57
4 Feature-level 22.04 / 31.10 16.18 / 22.55 14.31 / 20.56

5 Feature-clone ✓ 28.46 / 37.66 19.15 / 25.78 16.56 / 22.47
6 Feature-clone 24.33 / 32.99 17.09 / 23.77 14.61 / 20.81

Table 1. Ablation studies of three proposed Pseudo-Stereo variants
and Ldepth at IOU threshold 0.7. Exp. is the experiment tag.

5.3. Ablation Study

As shown in Table. 1, we conduct ablation studies on the
KITTI val for the three proposed Pseudo-Stereo variants:
image-level, feature-level and feature-clone generation.
Image-level. As shown in Exp.1 and Exp.2 in Table. 1, with
the depth loss, the overall performance of the image-level
generation method decreases by (-0.38%, -0.83%, -0.86%)
for AP3D and (-1.05%, -1.16%, -1.17%) for APBEV . The
pixel-correspondence constraints of the generated Pseudo-
Stereo pairs may have large offsets against the ground truth
because of the depth estimation errors. Learning with
the virtual right image warped from the inaccurate pixel-
correspondences causes the feature degradation. Forcing
the degraded feature to fit the ground-truth depth map with
the depth loss impairs the overall performance.
Feature-level. As can be seen from Exp.3 and Exp.4 in
Table. 1, the feature-level generation with the depth loss
achieves significant improvements on AP3D (+13.04%,
+7.97%, +6.04%) and APBEV (+14.4%, +9.48%,
+7.01%). The forward-warping used in image-level gener-
ation is a non-learning process from image to image, while
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Methods Reference
AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

MonoDIS [44] ICCV 2019 10.37 7.94 6.40 17.23 13.19 11.12
AM3D [30] ICCV 2019 16.50 10.74 9.52 25.03 17.32 14.91
M3D-RPN [4] ICCV 2019 14.76 9.71 7.42 21.02 13.67 10.23
D4LCN [12] CVPR 2020 16.65 11.72 9.51 22.51 16.02 12.55
MonoPair [10] CVPR 2020 13.04 9.99 8.65 19.28 14.83 12.89
MonoFlex [55] CVPR 2021 19.94 13.89 12.07 28.23 19.75 16.89
MonoEF [56] CVPR 2021 21.29 13.87 11.71 29.03 19.70 17.26
GrooMeD-NMS [21] CVPR 2021 18.10 12.32 9.65 26.19 18.27 14.05
CaDDN [38] CVPR 2021 19.17 13.41 11.46 27.94 18.91 17.19
DDMP-3D [47] CVPR 2021 19.71 12.78 9.80 28.08 17.89 13.44
MonoRUn [8] CVPR 2021 19.65 12.30 10.58 27.94 17.34 15.24
DFR-Net [58] ICCV 2021 19.40 13.63 10.35 28.17 19.17 14.84
MonoRCNN [42] ICCV 2021 18.36 12.65 10.03 25.48 18.11 14.10
DD3D [33] ICCV 2021 23.22 16.34 14.20 30.98 22.56 20.03

Ours-im – 19.79 13.81 12.31 28.37 20.01 17.39
Ours-fld – 23.74 17.74 15.14 32.84 23.67 20.64
Ours-fcd – 23.61 17.03 15.16 31.83 23.39 20.57

Table 2. Performance for Car of three methods on KITTI test at IOU threshold 0.7. The best results are bold, the second best underlined.

the feature-level generation is an adaptive and differentiable
learning process with disparity-wise dynamic convolutions
from feature to feature. The virtual right features are gener-
ated from the left features and the disparity features. Thus,
the feature degradation caused by the depth estimation er-
rors is mitigated by embedding the estimated depth infor-
mation into high dimensional feature space and using the
embedded depth representations to filter the left features dy-
namically in the feature-level generation. The gap between
the ground-truth depth and the feature is mitigated. With the
extra depth guidance from the depth loss, the depth repre-
sentations can strengthen the embedded 3D measurements
in feature-level, achieving much better performance.
Feature-clone. From Exp.5 and Exp.6 in Table. 1, it shows
that the feature-clone achieves significant improvements
with the depth loss on AP3D (+4.13%, +2.06%, +1.95%)
and APBEV (+4.67%, +2.01%, +1.66%). This lies in the
fact that feature-clone does not require depth estimation net-
work and the depth loss alone can improve the awareness of
depth information in features.
Estimated Depth Map. From the comparison among
Exp.2, Exp.4 and Exp.6 in Table. 1, with the estimated
depth map used in both image-level (Exp.2) and feature-
level (Exp.4), the models achieve better performance than
the model without using the estimated depth map (Exp.6),
which implies that the estimated depth map is effective
in both image-level and feature-level in our framework.
In image-level, the degraded feature caused by inaccurate
pixel-correspondences is not forced to fit the ground-truth
depth without the depth loss, and the estimated depth map
improves the capability of perceiving depth information in
the image input level, improving performance for monoc-
ular 3D detection. In feature-level, the feature degradation

is eased by the proposed DDC in high dimensional feature
space and the estimated depth map improves the capability
of perceiving depth information in features, thereby achiev-
ing better performance than the image-level methods.
DDC. By comparing the performance feature-level and
feature-clone methods with and without depth loss, we find
that the depth loss is essential in feature-level generation to
monocular 3D detection. We use the feature-clone method
with depth loss as the baseline and add DDC to the base-
line (Exp.3 in Table. 1) to shown the effect. Feature-level
generation with the proposed DDC achieves significant im-
provements against the baseline, indicating that the pro-
posed DDC is effective in generating the virtual right view
in feature level for monocular 3D detection. This lies in the
fact that the proposed DDC uses the embedded depth rep-
resentations to dynamically filter the left features, deriving
depth-aware feature learning and achieving significant im-
provements in monocular 3D detection.

5.4. Quantitative and Qualitative Results

We evaluate the three proposed Pseudo-Stereo variants:
image-level generation, feature-level generation and feature
clone, on KITTI test and val set. From the above abla-
tion studies, we choose the strategy with better performance
for each method: image-level generation without depth loss
(Ours-im), feature-level generation with depth loss (Ours-
fld) and feature-clone with depth loss (Ours-fcd).
Results on test set. Table. 2 shows the performance com-
parison for Car on KITTI test server and Table. 3 shows
the performance comparison for Pedestrian and Cyclist on
KITTI test server. DD3D [33], GUPNet [27] and MonoPSR
[20] rank 1st on Car, Pedestrian and Cyclist, respectively,
for monocular 3D detection in KITTI-3D benchmark be-
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Methods Pedestrian AP3D/APBEV Cyclist AP3D/APBEV

Easy Moderate Hard Easy Moderate Hard

D4LCN [12] 4.55 / 5.06 3.42 / 3.86 2.83 / 3.59 2.45 / 2.72 1.67 / 1.82 1.36 / 1.79
MonoPSR [20] 6.12 / 7.24 4.00 / 4.56 3.30 / 4.11 8.37 / 9.87 4.74 / 5.78 3.68 / 4.57
CaDDN [38] 12.87 / 14.72 8.14 / 9.41 6.76 / 8.17 7.00 / 9.67 3.41 / 5.38 3.30 / 4.75
MonoFlex [54] 9.43 / 10.36 6.31 / 7.36 5.26 / 6.29 4.17 / 4.41 2.35 / 2.67 2.04 / 2.50
GUPNet [27] 14.95 / 15.62 9.76 / 10.37 8.41 / 8.79 5.58 / 6.94 3.21 / 3.85 2.66 / 3.64

Ours-im 8.26 / 9.94 5.24 / 6.53 4.51 / 5.72 4.72 / 5.76 2.58 / 3.32 2.37 / 2.85
Ours-fld 16.95 / 19.03 10.82 / 12.23 9.26 / 10.53 11.22 / 12.80 6.18 / 7.29 5.21 / 6.05
Ours-fcd 14.33 / 17.08 9.18 / 11.04 7.86 / 9.59 9.80 / 11.92 5.43 / 6.65 4.91 / 5.86

Table 3. Performance for Pedestrian and Cyclist on KITTI test at IOU threshold 0.5. The best results are bold, the second best underlined.

Figure 5. Qualitative results of the best model (Ours-fld) on KITTI val set with red 3D bounding boxes.

Methods
AP3D

Easy Moderate Hard

D4LCN [12] 22.32 16.20 12.30
DDMP-3D [47] 28.12 20.39 16.34
CaDDN [38] 23.57 16.31 13.84
MonoFlex [55] 23.64 17.51 14.83
GUPNet [27] 22.76 16.46 13.72

Ours-im 31.81 22.36 19.33
Ours-fld 35.18 24.15 20.35
Ours-fcd 28.46 19.15 16.56

Table 4. Performance for Car on KITTI val set at IOU threshold
0.7. The best results are bold, the second best underlined.

fore this work. As shown in Table. 2 and Table. 3, Ours-fld
achieves better performance than DD3D [33], GUPNet [27]
and MonoPSR [20] across all three object classes on both
AP3D and APBEV for monocular 3D detection using sin-
gle model only. Moreover, our three methods achieve 18/18
best results and 15/18 second-best results across all three
object classes on both AP3D and APBEV . Note that Ours-
fld achieves 17 out of 18 best results except the hard level
of car, where the best is Our-fcd. This implies that the pro-
posed Pseudo-Stereo 3D detection framework is very effec-
tive in monocular 3D detection.
Results on val set. As shown in Table. 4, Ours-fld outper-
forms state-of-the-art methods on KITTI val set. Figure 5
shows the qualitative results of Our-fld, the best model, on
KITTI val set.
Generalization Capability. Usually, there is a large gap
between the monocular 3D detection performance on val set
and test set because of over-fitting. As shown in Table. 2 and
Table. 4, the performance gap for Ours-fcd is much smaller
than Ours-im and Ours-fld. This lies in the fact that feature-

clone method does not require the estimated depth map for
training, leading to better generalization capability. Note
that we provide both options in our framework.

6. Conclusion
We propose a Pseudo-Stereo 3D detection framework

with three novel virtual view generation methods, includ-
ing image-level generation, feature-level generation and
feature-clone, for detecting 3D objects from a single image,
achieving significant improvements in monocular 3D detec-
tion. The proposed framework with our feature-level virtual
view generation method ranks 1st among the monocular 3D
detectors with publications across three object classes on
KITTI-3D benchmark. In feature-level virtual view gen-
eration, we propose a disparity-wise dynamic convolution
with dynamic kernels from disparity feature map to filter the
features adaptively from a single image for generating vir-
tual image features, which eases the feature degradation and
achieves significant improvements. We analyze two major
effects of depth-aware feature learning in our framework.
Broader Impacts. Our Pseudo-Stereo 3D detection frame-
work has the potential to provide a new perspective of
monocular 3D detection with Pseudo-Stereo views to our
community. Also, our analysis of depth-aware feature
learning in Pseudo-Stereo frameworks may give an inspi-
ration to mitigate the performance gap between monocular
and stereo 3D detectors.
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