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Abstract. Small object detection remains an unsolved challenge be-
cause it is hard to extract information of small objects with only a few
pixels. While scale-level corresponding detection in feature pyramid net-
work alleviates this problem, we find feature coupling of various scales
still impairs the performance of small objects. In this paper, we propose
extended feature pyramid network (EFPN) with an extra high-resolution
pyramid level specialized for small object detection. Specifically, we de-
sign a novel module, named feature texture transfer (FTT), which is used
to super-resolve features and extract credible regional details simultane-
ously. Moreover, we design a foreground-background-balanced loss func-
tion to alleviate area imbalance of foreground and background. In our
experiments, the proposed EFPN is efficient on both computation and
memory, and yields state-of-the-art results on small traffic-sign dataset
Tsinghua-Tencent 100K and small category of general object detection
dataset MS COCO.

Keywords: Small Object Detection, Feature Pyramid Network, Feature
Super-Resolution

1 Introduction

Object detection is a fundamental task of many advanced computer vision prob-
lems such as segmentation, image caption and video understanding. Over the
past few years, rapid development of deep learning has boosted the popular-
ity of CNN-based detectors, which mainly include two-stage pipelines [8,7,28,5]
and one-stage pipelines [24,27,20]. Although these general object detectors have
improved accuracy and efficiency substantially, they still perform poorly when
detecting small objects with a few pixels. Since CNN uses pooling layers repeat-
edly to extract advanced semantics, the pixels of small objects can be filtered
out during the downsampling process.

Utilization of low-level features is one way to pick up information about
small objects. Feature pyramid network (FPN) [19] is the first method to en-
hance features by fusing features from different levels and constructing feature
pyramids, where upper feature maps are responsible for larger object detection,
and lower feature maps are responsible for smaller object detection. Despite FPN
improves multi-scale detection performance, the heuristic mapping mechanism
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(a) Mapping between pyramid level and
proposal size in vanilla FPN detectors.
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(b) Detection performance of original P2

and our P ′
2 on Tsinghua-Tencent 100K.

Fig. 1. The drawback of small object detection in vanilla FPN detectors. (a)Feature
Coupling: Both small and medium objects are detected on the lowest level (P2) of FPN.
(b)Poor Performance of Small Objects on P2: The detection performance of P2 varies
with scale, and the average precision (AP) and average recall (AR) decline sharply
when instances turn small. The extended pyramid level P ′

2 in our EFPN mitigates this
performance drop

between pyramid level and proposal size in FPN detectors may confuse small
object detection. As shown in Fig. 1(a), small-sized objects must share the same
feature map with medium-sized objects and some large-sized objects, while easy
cases like large-sized objects can pick features from a suitable level. Besides, as
shown in Fig. 1(b), the detection accuracy and recall of the FPN bottom layer
fall dramatically as the object scale decreases. Fig.1 suggests that, feature cou-
pling across scales in vanilla FPN detectors still degenerates the ability of small
object detection.

Intuitively, another way of compensating for the information loss of small
objects is to increase the feature resolution. Thus some super-resolution (SR)
methods are introduced to object detection. Early practices [11,3] directly super-
resolve the input image, but the computational cost of feature extraction in the
following network would be expensive. Li et al. [14] introduce GAN [10] to lift
features of small objects to higher resolution. Noh et al. [25] use high-resolution
target features to supervise SR of the whole feature map containing context
information. These feature SR methods avoid adding to the burden of the CNN
backbone, but they imagine the absent details only on the basis of the low-
resolution feature map, and neglect credible details encoded in other features of
backbones. Hence, they are inclined to fabricate fake textures and artifacts on
CNN features, causing false positives.

In this paper, we propose extended feature pyramid network (EFPN), which
employs large-scale SR features with abundant regional details to decouple small
and medium object detection. EFPN extends the original FPN with a high-
resolution level specialized for small-sized object detection. To avoid expensive
computation that would be caused by direct high-resolution image input, the
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extended high-resolution feature maps of our method is generated by feature
SR embedded FPN-like framework. After construction of the vanilla feature
pyramid, the proposed feature texture transfer (FTT) module firstly combines
deep semantics from low-resolution features and shallow regional textures from
high-resolution feature reference. Then, the subsequent FPN-like lateral connec-
tion will further enrich the regional characteristics by tailor-made intermediate
CNN feature maps. One advantage of EFPN is that the generation of the high-
resolution feature maps depends on original real features produced by CNN and
FPN, rather than on unreliable imagination in other similar methods. As shown
in Fig. 1(b), the extended pyramid level with credible details in EFPN improves
detection performance on small objects significantly.

Moreover, we introduce features which are generated by large-scale input
images as supervision to optimize EFPN, and design a foreground-background-
balanced loss function. We argue that general reconstruction loss will lead to
insufficient learning of positive pixels, as small instances merely cover frac-
tional area on the whole feature map. In light of the importance of foreground-
background balance [20], we add loss of object areas to global loss function,
drawing attention to the feature quality of positive pixels.

We evaluate our method on challenging small traffic-sign dataset Tsinghua-
Tencent 100K and general object detection dataset MS COCO. The results
demonstrates that the proposed EFPN outperforms other state-of-the-art meth-
ods on both datasets. Besides, compared with multi-scale test, single-scale EFPN
achieves similar performance but with fewer computing resources.

For clarity, the main contributions of our work can be summarized as:

(1) We propose extended feature pyramid network (EFPN) which improves the
performance of small object detection.

(2) We design a pivotal feature reference-based SR module named feature tex-
ture transfer (FTT), to endow the extended feature pyramid with credible
details for more accurate small object detection.

(3) We introduce a foreground-background-balanced loss function to draw at-
tention on positive pixels, alleviating area imbalance of foreground and back-
ground.

(4) Our efficient approach significantly improves the performance of detectors,
and becomes state-of-the-art on Tsinghua-Tencent 100K and small category
of MS COCO.

2 Related Work

2.1 Deep Object Detectors

Deep learning based detectors have ruled general object detection due to their
high performance. The successful two-stage methods [8,7,28,5] firstly generate
Regions of Interest (RoIs), and then refine RoIs with a classifier and a regres-
sor. One-stage detectors [24,27,20], another kind of prevalent detectors, directly
conduct classification and localization on CNN feature maps with the help of
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pre-defined anchor boxes. Recently, anchor-free frameworks [13,38,31,39] also be-
come increasingly popular. Despite of the development of deep object detectors,
small object detection remains an unsolved challenge. Dilated convolution [34]
is introduced in [23,17,16] to augment receptive fields for multi-scale detection.
However, general detectors tend to focus more on improving the performance
of easier large instances, since the metric of general object detection is average
precision of all scales. Detectors specialized for small objects still need more
exploration.

2.2 Cross-Scale Features

Utilizing cross-scale features is an effective way to alleviate the problem arising
from object scale variation. Building image pyramids is a traditional approach to
generating cross-scale features. Use of features from different layers of network
is another kind of cross-scale practice. SSD [24] and MS-CNN [4] detect objects
of different scales on different layers of CNN backbone. FPN [19] constructs
feature pyramids by merging features from lower layers and higher layers via
a top-down pathway. Following FPN, FPN variants explore more information
pathways in feature pyramids. PANet [22] adds an extra down-top pathway to
pass shallow localization information up. G-FRNet [1] introduces gate unit on
the pathway, which passes crucial information and block ambiguous information.
NAS-FPN [6] delves into optimal pathway configuration using AutoML. Though
these FPN variants improve the performance of multi-scale object detection, they
continue to use the same number of layers as original FPN. But these layers are
not suitable for small object detection, which leads to still poor performance of
small objects.

2.3 Super-Resolution in Object Detection

Some studies introduce SR to object detection, since small object detection al-
ways benefits from large scales. Image-level SR is adopted in some specific situa-
tions where extremely small objects exist, such as satellite images [15] and images
with crowded tiny faces [2]. But large-scale images are burdensome for subse-
quent networks. Instead of super-resolving the whole image, SOD-MTGAN [3]
only super-resolves the area of RoIs, but large quantities of RoIs still need con-
siderable computation. The other way of SR is to directly super-resolve features.
Li et al. [14] use Perceptual GAN to enhance features of small objects with the
characteristics of large objects. STDN [37] employs sub-pixel convolution on top
layers of DenseNet [12] to detect small objects and meanwhile reduce network
parameters. Noh et al. [25] super-resolve the whole feature map and introduce
supervision signal to training process. Nevertheless, above-mentioned feature SR
methods are all based on restricted information from a single feature map. Re-
cent reference-based SR methods [35,36] have capacity of enhancing SR images
with textures or contents from reference images. Enlightened by reference-based
SR, we design a novel module to super-resolves features under the reference of
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shallow features with credible details, thus generating features more suitable for
small object detection.
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Fig. 2. The framework of extended feature pyramid network (EFPN). Here Ci denotes
the feature map from stage i of CNN backbone, and Pi denotes the corresponding
pyramid level on EFPN. Top 4 layers of EFPN are vanilla FPN layers. Feature texture
transfer (FTT) module integrates semantic contents from P3 and regional textures from
P2. And then, an FPN-like top-down pathway passes FTT module output down to form
the final extended pyramid level P ′

2. The extended feature pyramid (P ′
2, P2, P3, P4, P5)

will be fed to the following detector for further object localization and classification

3 Our Approach

In this section, we will introduce the proposed extended feature pyramid network
(EFPN) in detail. First, we construct an extended feature pyramid, which is
specialized for small objects with a high-resolution feature map at the bottom.
Specifically, we design a novel module named feature texture transfer(FTT), to
generate intermediate features for the extended feature pyramid. Moreover, we
employ a new foreground-background-balanced loss function to further enforce
learning of positive pixels. The pipeline of EFPN network and FTT module
is explained in Sec. 3.1 and Sec. 3.2, and Sec. 3.3 elaborates our loss function
design.

3.1 Extended Feature Pyramid Network

Vanilla FPN constructs a 4-layer feature pyramid by upsampling high-level CNN
feature maps and fusing them with lower features by lateral connections. Al-
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Table 1. Generation of C′
2 in ResNet/ResNeXt backbones. A new branch without max-

pooling in stage2 is added to generate C′
2, simulating the semantics and resolution of

C2 from 2× input image. The branches of C2 and C′
2 share the same weights. In EFPN,

C2 and C′
2 are generated simultaneously from 1× input

Layer Name Layer Components

Input 800× 800(1×) 800× 800(1×)

Stage1 7× 7, 64, stride 2 7× 7, 64, stride 2

Stage2
3× 3 max pool, stride 2

residual blocks ×3
residual blocks ×3

Output C2:(200× 200) C′
2:(400× 400)

though features on different pyramid levels are responsible for objects of differ-
ent sizes, small object detection and medium object detection are still coupled
on the same bottom layer P2 of FPN, as shown in Fig. 1. To relieve this issue,
we propose EFPN to extend the vanilla feature pyramid with a new level, which
accounts for small object detection with more regional details.

We implement the extended feature pyramid by an FPN-like framework
embedded with a feature SR module. This pipeline directly generates high-
resolution features from low-resolution images to support small object detection,
while stays in low computational cost. The overview of EFPN is shown in Fig. 2.

Top 4 pyramid layers are constructed by top-down pathways for medium
and large object detection. The bottom extension in EFPN, which contains an
FTT module, a top-down pathway and a purple pyramid layer in Fig. 2, aims
to capture regional details for small objects. More specifically, in the extension,
the 3rd and 4th pyramid layers of EFPN which are denoted by green and yellow
layers respectively in Fig. 2, are mixed up in the feature SR module FTT to
produce the intermediate feature P ′3 with selected regional information, which is
denoted by a blue diamond in Fig. 2. And then, the top-down pathway merges
P ′3 with a tailor-made high-resolution CNN feature map C2′, producing the final
extended pyramid layer P ′2. We remove a max-pooling layer in ResNet/ResNeXt
stage2, and get C ′2 as the output of stage2, as shown in in Table 1. C ′2 shares
the same representation level with original C2 but contains more regional details
due to its higher resolution. And the smaller receptive field in C ′2 also helps
better locate small objects. Mathematically, operations of the extension in the
proposed EFPN can be described as

P ′2 = P ′3 ↑2× +C ′2 (1)

where ↑2× denotes double upscaling by nearest-neighbor interpolation.
In EFPN detectors, the mapping between proposal size and pyramid level

still follows the fashion in [19]:

l = bl0 + log2(
√
wh/224)c (2)

Here l represents pyramid level, w and h are the width and height of a box
proposal, 224 is the canonical ImageNet pre-training size, and l0 is the target
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Fig. 3. The framework of FTT module. Main semantic contents of input feature P3

are firstly extracted by a content extractor. And then we double the resolution of
the content features by sub-pixel convolution. The texture extractor selects credible
regional textures for small object detection from the wrap of mainstream features
and reference features. Finally, residual connection helps fuse the textures with super-
resolved content features to produce P ′

3 for the extended feature pyramid

level on which an box proposal with w × h = 2242 should be mapped into.
Since the detector which follows EFPN fits various receptive fields adaptively,
the receptive field drift mentioned in [25] can be ignored.

3.2 Feature Texture Transfer

Enlightened by image reference-based SR [35], we design FTT module to super-
resolve features and extract regional textures from reference features simultane-
ously. Without FTT, noises in the 4th level P2 of EFPN would directly pass down
to the extended pyramid level, and overwhelm meaningful semantics. However,
the proposed FTT output synthesizes strong semantics in upper low-resolution
features and critical local details in lower high-resolution reference features, but
discards disturbing noises in reference.

As shown in Fig. 3, the main input of FTT module is the feature map P3

from the 3rd layer of EFPN, and the reference is the feature map P2 from the
4th layer of EFPN. The output P ′3 can be defined as

P ′3 = Et(P2 ‖ Ec(P3) ↑2×) + Ec(P3) ↑2× (3)

where Et(·) denotes texture extractor component, Ec(·) denotes content extrac-
tor component, ↑2× here denotes double upscaling by sub-pixel convolution [29],
and ‖ denotes feature concatenation. The content extractor and texture extrac-
tor are both composed of residual blocks.

In the main stream, we apply sub-pixel convolution to upscale spatial reso-
lution of the content features from the main input P3 considering its efficiency.
Sub-pixel convolution augments pixels on the dimensions of width and height
via diverting pixels on the dimension of channel. Denote the feature generated
by convolution layers as F ∈ RH×W×C·r2 . The pixel shuffle operator in sub-
pixel convolution rearranges the feature to a map of shape rH × rW × C. This
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operation can be mathematically defined as

PS(F )x,y,c = Fbx/rc,by/rc,C·r·mod(y,r)+C·mod(x,r)+c (4)

where PS(F )x,y,c denotes the output feature pixel on coordinates (x, y, c) after
pixel shuffle operation PS(·), and r denotes the upscaling factor. In our FTT
module, we adopt r = 2 in order to double the spatial scale.

In the reference stream, the wrap of reference feature P2 and super-resolved
content feature P3 is fed to texture extractor. Texture extractor aims to pick
up credible textures that are for small object detection and block useless noises
from the wrap.

The final element-wise addition of textures and contents ensures the out-
put integrates both semantic and regional information from input and reference.
Hence, the feature map P ′3 possesses selected reliable textures from shallow fea-
ture reference P2, as well as similar semantics from the deeper level P3.

3.3 Training Loss

Foreground-Background-Balanced Loss. Foreground-background-balanced
loss is designed to improve comprehensive quality of EFPN. Common global loss
will lead to insufficient learning of small object areas, because small objects only
make up fractional part of the whole image. Foreground-background-balanced
loss function improves the feature quality of both background and foreground
by two parts: 1) global reconstruction loss 2) positive patch loss.

Global construction loss mainly enforces resemblance to the real background
features, since background pixels consist most part of an image. Here we adopt
l1 loss that is commonly used in SR as global reconstruction loss Lglob:

Lglob(F, F
t) = ||F t − F ||1 (5)

where F denotes the generated feature map, and F t denotes the target feature
map.

Positive patch loss is used to draw attention to positive pixels, because severe
foreground-background imbalance will impede detector performance [20]. We
employ l1 loss on foreground areas as positive patch loss Lglob:

Lpos(F, F
t) =

1

N

∑
(x,y)∈Ppos

||F t
x,y − Fx,y||1 (6)

where Ppos denotes the patches of ground truth objects, N denotes the total
number of positive pixels, and (x, y) denotes the coordinates of pixels on feature
maps. Positive patch loss plays the role of a stronger constraint for the areas
where objects locate, enforcing learning true representation of these areas.

The foreground-background-balanced loss function Lfbb is then defined as

Lfbb(F, F
t) = Lglob(F, F

t) + λLpos(F, F
t) (7)

where λ is a weight balancing factor. The balanced loss function mines true pos-
itives by improving feature quality of foreground areas, and kills false positives
by improving feature quality of background areas.
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Total Loss. Feature maps from 2× scale FPN are introduced to supervise
the training process of EFPN. Not only the bottom extended pyramid level is
under supervision, but the FTT module is under supervision as well. The overall
training objective in EFPN is defined as :

L = Lfbb(P
′
3, P

2×
3 ) + Lfbb(P

′
2, P

2×
2 ) (8)

Here P 2×
2 is the target P2 from 2× input FPN, and P 2×

3 is the target P3 from
2× input FPN.

4 Experiments

4.1 Datasets and Evaluation Metrics

Tsinghua-Tencent 100K. Tsinghua-Tencent 100K [40] is a dataset for traffic-
sign detection and classification. It contains 100,000 high-resolution (2400×2400)
images with 30,000 traffic-sign instances. Importantly, in test set, 92% of in-
stances cover an area less than 0.2% of the entire image. The dominant majority
of small objects in Tsinghua-Tencent 100K make it an excellent benchmark for
small object detection.

Tsinghua-Tencent 100K benchmark divides all instances into three scales:
small (area < 322), medium (322 < area < 962), and large (area > 962).
Following the protocol in [40,25,14], we select 45 classes with more than 100
instances for evaluation, and report accuracy and recall at IoU=0.5 of three
scales.

MS COCO. Microsoft COCO (MS COCO) [21] is a widely-used large-scale
dataset for general object detection, segmentation and captioning. It consists
of three subsets: the train subset with 118k images, the val subset with 5k
images, and the test-dev subset with 20k images. Object detection on MS COCO
confronts three challenges: (1) small objects: the size of about 65% of instances
is less than 6% of the image size. (2) more instances in a single image than other
similar datasets (3) different illumination and shapes of objects.

We report average precision (AP) and average recall (AR) of small category
(area < 322) on test-dev subset, in order to highlight the detection performance
of small objects. In MS COCO, the AP and AR are averaged over 10 IoU thresh-
olds (IoU = 0.5 : 0.05 : 0.95), which rewards detectors with better localization.

4.2 Implementation Details

We implement our proposed EFPN with a Faster R-CNN detector, where ResNet-
50 and ResNeXt-101 [32] are used as backbones. The original Faster R-CNN
with FPN is firstly trained as baseline. Then, we train EFPN with backbones
and heads freezed. When EFPN converges, we finetune a new detector head for
the extended pyramid level with the help of OHEM [30], because there is always
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Table 2. Detection performance comparison with state-of-the-art methods on
Tsinghua-Tencent 100K test split. The symbol ”*” means bells and whistles are used

Method
Small Medium Large

Acc. Rec. F1 Acc. Rec. F1 Acc. Rec. F1

FRCNN w FPN 80.2 86.9 83.4 94.4 94.4 94.4 92.9 93.0 92.9
Zhu et al. [40] 82.0 87.0 84.4 91.0 94.0 92.5 91.0 88.0 89.5
Li et al. [14] 84.0 89.0 86.4 91.0 96.0 93.4 91.0 89.0 90.0

Liang et al. [18] 84.0 93.0 88.3 95.0 97.0 96.0 96.0 92.0 94.0
Noh et al. [25] 84.9 92.6 88.6 94.5 97.5 96.0 93.3 97.5 95.4

EFPN(single-scale) 83.6 87.1 85.3 95.0 95.2 95.1 92.8 93.2 93.0
EFPN*(multi-scale) 85.7 92.3 88.9 95.7 96.7 96.2 94.3 97.1 95.7

a gap between the extended feature map P ′2 and the target map P2 from 2×
input image. During inference, the new detector head outputs small bounding
boxes from the extended pyramid level, and the original detector head outputs
medium and large bounding boxes from top 4 pyramid levels. In the end, all
predicted boxes from different pyramid levels are combined to yield the final
detection result.

We employ 2 residual blocks for content extractor and texture extractor in
texture transfer module. The weight λ for balancing foreground and background
in training loss is set to 1.

In Tsinghua-Tencent 100K experiment, we augment each class to about 1000
instances by cropping and color jitter owing to uneven numbers of different
classes. Those labels not included in evaluating 45 classes are also used in training
for better generalization. The model is trained on train split and tested on test
split. Single-scale test uses images resized to 1400×1400, and RoIs of size smaller
than 56 are assigned to the pyramid level P ′2 accordingly.

In MS COCO experiment, we follow the training scheme in Detectron [9],
and add data augmentation of scale and color jitter. The model is trained on
train split, and tested on test-dev split. Single-scale test uses images resized to
800 on the shorter side, and RoIs with size smaller than 112 are assigned to the
pyramid level P ′2 accordingly.

4.3 Performance Comparison

Tsinghua-Tencent 100K We present our model results and comparison with
other state-of-the-arts on Tsinghua-Tencent 100K in Table. 2. EFPN demon-
strates its competence in locating and classifying small-sized objects more pre-
cisely. Compared to Faster R-CNN with ResNeXt-101-FPN, single-scale EFPN
improves small object accuracy greatly by 3.4%, and improves small object recall
by 0.2%. Accuracy and recall of medium objects also increase modestly by 0.6%
and 0.8%, respectively. We infer the reason that some medium objects shrink
after image resizing and are allocated to the extended pyramid level P ′2 for de-
tection. It’s worth noting that, the 1400× 1400 single-scale test of our proposed
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Table 3. Comparison of single-scale test with state-of-the-art general detection meth-
ods on small category of MS COCO test-dev set. All results come from images resized
to 800 on the shorter side

Method Backbone APS ARS

Noh et al. [25] ResNet-101 16.2 -
FRCNN w FPN ResNet-50 21.0 32.2
TridentNet [16] ResNet-101 23.9 -

SOD-MTGAN [3] ResNet-101 24.7 -
Libra R-CNN [26] ResNeXt-101 25.3 -

PANet [22] ResNeXt-101 25.4 -
FRCNN w FPN ResNeXt-101 25.5 39.1

FSAF [39] ResNeXt-101 26.6 -
RPDet [33] ResNet-101-Deformable 26.6 -

FRCNN w EFPN ResNet-50 22.0 35.9
FRCNN w EFPN ResNext-101 26.7 42.3

EFPN outperforms the state-of-the-art 1600 × 1600 single-scale test of Noh et
al. [25] in terms of accuracy and recall of small objects: 83.6% vs. 82.1%, and
87.1% vs. 86.6%, respectively.

Moreover, we introduce F1 score to evaluate detector’s performance com-
prehensively. Multi-scale evaluation of EFPN yields not only best accuracy on
small and medium objects, but also new state-of-the-art comprehensive F1 scores
across three scales.

MS COCO. We report single-scale model results of our proposed EFPN and
other general detectors on small category of MS COCO test-dev split. Although
the quantity of small objects is smaller in MS COCO than that in Tsinghua-
Tencent 100K, EFPN still enhances the ability of general object detectors dra-
matically. EFPN suits different backbones, and results in prominent gain on
ResNet-50/ResNeXt-101 when compared with FPN. Besides, the performance
of EFPN on small object detection exceeds not only other FPN variants like
Libra R-CNN [26] and PANet [22], but also similar SR-based methods from Noh
et al. [25] and Bai et al. [3]. Specifically, our model outperforms other state-of-
the-art multi-scale general detectors on small objects, such as TridentNet [16],
FSAF [39] and RPDet [33].

4.4 Ablation Studies

We conduct ablation experiments to validate efficiency of EFPN and the con-
tribution of each network component. The backbone of ResNeXt-101 and the
detector head of Faster R-CNN are adopted. All the models are trained on
Tsinghua-Tencent 100K train split and tested on test split. Results are presented
in Table. 4 and Table. 5.
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Table 4. Efficiency validation of EFPN on Tsinghua-Tencent 100K. Here FPN-
1400/FPN-2800/EFPN-1400 denotes FPN/EFPN test with 1400(1×)/2800(2×) input,
and FPN-1400 + P2-2800 means we use training target P2 from FPN-2800 as the ex-
tended pyramid layer to form an extended feature pyramid

Model F1S F1M F1L Runtime(s) GPU Memory(MB)

FPN-1400 83.4 94.4 92.9 0.45 2285
FPN-2800 85.0 94.2 72.1 1.42 6349

FPN-1400 + P2-2800 85.0 95.0 93.1 1.68 7217
EFPN-1400 85.3 95.1 93.0 1.05 4899

Table 5. Effect of each component in EFPN on Tsinghua-Tencent 100K test set

Extended
level

Balanced
Loss

FTT
Small Medium Large

Acc. Rec. F1 Acc. Rec. F1 Acc. Rec. F1

80.2 86.9 83.4 94.4 94.4 94.4 92.9 93.0 92.9
X 80.6 87.0 83.7 94.0 94.4 94.2 94.4 92.9 93.6
X X 82.8 86.1 84.4 95.6 94.2 94.9 95.0 91.9 93.4
X X X 83.6 87.1 85.3 95.0 95.2 95.1 92.8 93.2 93.0

EFPN is efficient on computation and memory. As shown in Table. 4,
we compare the performance of EFPN with FPN test of different scales. All the
models are tested on a single GTX 1080Ti GPU. Large input scale in FPN-2800
improves the performance of small objects by 1.6%, but sacrifices the perfor-
mance of large objects sharply by 20.8%. Combining FPN-1400 and P2 from
FPN-2800 achieves multi-scale high performance, but the computational cost of
runtime and GPU memory is more expensive than 2× test. Our proposed EFPN
realizes the same high precision as FPN-1400 + P2-2800, but with affordable
computational cost between 1× test and 2× test of FPN. Through single for-
ward propagation, EFPN efficiently achieves the precision of multi-scale FPN
test.

The extended pyramid level alone is not enough. We test effect of the
extended feature pyramid without FTT module and foreground-background-
balanced loss, since FPN-1400 + P2-2800 works in Table 4. ESPCN [29] is an
SR method based on single image SR. We replace FTT module with a three-
layer ESPCN, which realizes the same function of creating intermediate upstream
feature maps and passing them to downstream lateral connection in the extension
of EFPN. Supervision of P2 and P3 from 2× image input is realized by global l1
loss. As shown in Table 5, it turns out that the extended pyramid level without
FTT module and foreground attention has a limited effect, improving F1 score
of small category by only 0.3%. Scarcely any extra missing small objects are
called back by the extended pyramid level alone.
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Objects 𝑃"FPN Target SISR FTT Objects 𝑃"FPN Target SISR FTT

Fig. 4. Visualizing the quality of features for small object detection from different
methods. Here Target denotes FPN P2 from 2× input, SISR denotes P ′

2 produced
from ESPCN [29], and FTT denotes P ′

2 produced from FTT module

Foreground-background balanced loss is crucial. Balanced loss function
with foreground attention is added to the extended feature pyramid with ES-
PCN embedded. Table 5 indicates that balanced loss improves accuracy of small
category by 2.2%, thus bringing gain of 0.7% on F1 score, which indicates that,
foreground-background-balanced loss encourages meaningful change on the pos-
itive areas of the extended feature maps.

we further delve into different configuration of the balancing hyper-parameter
λ. When λ is set to 0.5/1.0/1.5, we get F1 score of 84.8/85.3/85.1 on small
category. Hence we adopt λ = 1.0 to achieve better balance between accuracy
and recall.

FTT module further enhances the quality of EFPN. Finally, we replace
ESPCN with our proposed FTT module. In Table 5, it increases accuracy and
recall of small category by 0.8% and 1.0%, respectively. Compared to single image
SR, FTT module digs out more hard small cases. In the meanwhile, FTT module
also ensures fewer false positives by reducing artifacts on the background.

In Fig. 4, we visualize the extended features from ESPCN and FTT module
to further demonstrate the superiority of FTT module. We find that the features
from FTT module resembles target feature more, and have clearer boundaries
between object areas and background areas. More abundant regional details
help detectors to distinguish positive and negative examples, thus giving better
location and classification.

4.5 Qualitative Results

In Fig. 5, we present detection examples of Tsinghua-Tencent 100K and MS
COCO. Compared with FPN baseline, our proposed EFPN recalls tiny and
crowded instances better. Despite original ground-truth labels in MS COCO do
not include all small objects, our method still detects objects existing but not
labeled, which can be regarded as reasonable false positive examples.
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Fig. 5. Qualitative examples comparison between base model FPN and our EFPN on
Tsinghua-Tencent 100K (row1) and MS COCO (row2&row3). The right in each pair
denotes FPN results, while the left denotes EFPN results. The red boxes represent
false negatives, the blue boxes represent false positives, and the green boxes represent
true positives. Detectors of traffic-signs and general objects both profit from EFPN on
challenging small object detection

5 Conclusion

In this paper, we propose EFPN to remedy the problem of small object detec-
tion. A novel FTT module is embedded in the FPN-like framework to efficiently
capture more regional details for the extended pyramid level. Additionally, we de-
sign a foreground-background-balanced training loss to alleviate area imbalance
of foreground and background. State-of-the-art performance on various datasets
demonstrate superiority of EFPN in small object detection.

EFPN can be combined with various detectors to strengthen small object
detection, which means, EFPN can be transferred to more specific situations of
small object detection like face detection or satellite image detection. We would
like to further explore applications of EFPN in more fields.
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