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Abstract

How can we effectively leverage the domain knowl-
edge from remote sensing to better segment agriculture
land cover from satellite images? In this paper, we pro-
pose a novel, model-agnostic, data-fusion approach for
vegetation-related computer vision tasks. Motivated by the
various Vegetation Indices (VIs), which are introduced by
domain experts, we systematically reviewed the VIs that are
widely used in remote sensing and their feasibility to be
incorporated in deep neural networks. To fully leverage
the Near-Infrared channel, the traditional Red-Green-Blue
channels, and Vegetation Index or its variants, we propose
a Generalized Vegetation Index (GVI), a lightweight mod-
ule that can be easily plugged into many neural network
architectures to serve as an additional information input.
To smoothly train models with our GVI, we developed an
Additive Group Normalization (AGN) module that does not
require extra parameters of the prescribed neural networks.
Our approach has improved the IoUs of vegetation-related
classes by 0.9 − 1.3 percent and consistently improves the
overall mIoU by 2 percent on our baseline.

1. Introduction

Deep learning has been widely adopted in computer vi-
sion across various applications such as diagnosing medi-
cal images[1], classifying objects in photos[2], annotating
video frames[3], etc. However, recognizing the visual pat-
terns in the context of agriculture, especially segmenting
the multi-labeled masks, has not been explored extensively
in detail. One primary reason that hinders the progress is
the difficulty of handling complex multi-modal information
inside the images[4] because the sensing imagery in agri-
culture contains Near Infrared band and other thermal bands

that are distinguished from traditional images spanning over
red, green, and blue (RGB) visual bands. Such multi-band
information is crucial for understanding the land cover con-
text and field conditions, e.g., the vegetation of the land.

Figure 1. An example of an NRGB image and its Vegetation Index
(VI) and ground-truth labels. Top-left: Input RGB channels; Top-
right: Input near-infra red (NIR) channel; Bottom-left: Vegeta-
tion Condition Index (VCI)[5] calculated based on RGB and NIR
channel; Bottom-right: Ground-truth labels, where yellow de-
notes Double Plant and blue denotes the Weed Cluster. VCI is
able to pick up both Weed Cluster (a cluster of very high VI val-
ues) and Double Plant (lanes of different VI values compared to
the background crops).

To leverage the information of multiple distinct bands in
the images, researchers in the last several decades have fo-
cused on developing different algorithms and metrics to per-
form the land segmentation[6, 7]. As discussed in the litera-
ture review in Section 2, the design of Vegetation Index (VI)
has been essential for studying land cover segmentation[8–
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11]. The key idea of VI is to assess the vegetation of a
region based on the reflectances from multiple bands, in-
cluding the Near-Infrared band and other thermal bands,
and hence ultimately approximate the region’s land cover
segments. Nevertheless, in the context of deep learning, we
have yet to investigate how to leverage the domain knowl-
edge of VI while making use of models learned or trans-
ferred from non-agriculture data to segment the land accu-
rately.

To tackle this question, we describe a general form of
VI that serves as an additional input channel for image seg-
mentation. Such a general form of VI covers many specific
VI variants in existing studies[10–13], which motivate us to
develop a generalized learnable VI block that fuses the VIs
and images in a convolution fashion. Based on the fused
input, we also propose a new additive group normalization,
a natural generalization of the instance normalization and
layer normalization, because the VI channel and RGB chan-
nels can be considered as different groups.

Our work contributes to the research of agriculture land
cover segmentation in three ways. Firstly, we systemati-
cally compare the vegetation indices that primarily depend
on the Near-Infrared, red, green, and blue channels. We
highlight the key idea of calculating VIs and disclose the
connections among them. Secondly, we propose a model-
agnostic module named General Vegetation Index (GVI)
that captures many existing VI features. This module partic-
ularly fits convolutional neural networks, even for the pre-
trained models very well, because it doesn’t need to change
model structures too much. Thirdly, we introduce the addi-
tive group normalization (AGN) that helps to fine tune mod-
els smoothly when GVI is introduced to a pretrained model.
With these components in place, we modified a model based
on DeepLabV3[14] and ran experiments on land segmenta-
tion in agriculture. With careful evaluations, we achieved
an mIoU of 46.89% which exceeds the performance of the
baseline model by about 2 percent.

2. Related Work
Vegetation Index. Vegetation Indices (VIs) are sim-

ple and effective metrics that have been widely used to
provide quantitative evaluations of vegetation growth[9].
Since the light spectrum changes with plant type, water con-
tent within tissues and so on[15, 16], the electromagnetic
waves reflected from canopies can be captured by passive
sensors. Such characteristics of the spectrum can provide
extremely useful insights for applications in environmen-
tal and agricultural monitoring, biodiversity conservation,
yield estimation, and other related fields[17]. Because the
land vegetation highly correlates with the land cover re-
flectance, researchers have built more than 60 VIs in the
last four decades with mainly the following light spectra:
(i) the ultraviolet region (UV, 10-380 nm); the visible spec-

tra, which consists blue (B, 450-495 nm), green (G, 495-570
nm) and red (R, 620-750 nm); (iii) the near and mid-infrared
band (NIR, 850-1700 nm)[18, 19]. Such VIs are validated
through direct or indirect correlations with the vegetation
characteristics of interest measured in situ, such as vegeta-
tion cover, biomass, growth, and vigor assessment[9, 20].

To our best knowledge, the first VI, i.e., the Ratio Veg-
etation Index (RVI), was proposed by Jordan[8] in 1969.
RVI was developed with the principle that leaves absorb
relatively more red than infrared light. Widely used at
high-density vegetation coverage regions, RVI is sensitive
to atmospheric effects and noisy when vegetation cover
is sparse (less than 50%)[7]. The Perpendicular Vegeta-
tion Index (PVI)[21] and the Normalized Difference Veg-
etation Index (NDVI)[10] followed the same principle but
to normalize the output, having a sensitive response even
for a low vegetation coverage. To eliminate the effects
of atmospheric aerosols and ozone, Kaufman and Tanre
[22] proposed the Atmospherically Resistant Vegetation In-
dex (ARVI) in 1992, and Zhang et al. [11] improved the
ARVI by eliminating its dependency to a 5S atmospheric
transport model[23]. Another direction was to improve
VI’s robustness against different soil backgrounds[21]. The
Soil-Adjusted Vegetation Index (SAVI)[24] and modified
SAVI (MSAVI)[25, 26] turned out to be much less sen-
sitive than the RVI to changes in the background. Based
on ARVI and SAVI, Liu and Huete introduced a feedback
mechanism by using a parameter to simultaneously cor-
rect soil and atmospheric effects, which they called the
Enhanced Vegetation Index (EVI)[27]. With the recent
progress in remote sensing (increasing number of bands
and narrower bandwidth)[28], more VIs are being built to
capture not only the biomass distribution and classification,
but also chlorophyll content (Chlorophyll Absorption Ra-
tio Index(CARI))[29], plant water stress (Crop Water Stress
Index (CWSI))[30], and light use efficiency (Photochemi-
cal Reflectance Index (PRI))[20, 31]. With these aforemen-
tioned studies, a summary of VIs that derives from NIR-
Red-Green-Blue (NRGB) images can be found in Table 1.
Although we refer to a full literature review of VIs in [32]
and [9], many VIs share similar form that motivates us to
find a generalized formula to capture the essence of VIs.

Remote Sensing with Transfer Learning and Data
Fusion. As an emerging interdisciplinary field, remote
sensing (on both aerial photographs and satellite images)
with deep learning has experienced quite a few bench-
mark datasets that have been released in recent years,
such as FMOW[33], SAT-4/6[34], EuroSat[35], DeepGlobe
2018[36], Agriculture-Vision [4] and so on. Most of those
datasets come with more than the visible band (i.e., RGB),
including near and mid-infrared band (NIR) and sometimes
shortwave red (SW). The different input structure, together
with the context switch from a human-eye dataset (such as



ImageNet[37]) to a bird’s-eye dataset, makes Transferring
Learning less straightforward. Penatti et al. [38] systemat-
ically compared ImageNet pretrained CNN with other de-
scriptors (feature extractors, e.g. BIC) and found it achieve
comparable but not the best performance in detecting cof-
fee scenes. Xie et al. [39] has shown simply adopting the
ImageNet pretrained model while discarding the extra in-
formation does not achieve the best result in predicting the
Poverty Level. Zhou et al. [40] has also observed the simi-
lar phenomena in their Road Extraction task. In addition, a
two-stage fine-tuning process is proposed in [41], where an
ImageNet pretrained network is further fine-tuned on a large
satellite image dataset with the first several layers frozen.
An alternative direction in exploring the large-scaled but not
well-labeled data is to construct satellite-image-specified
geo-embedding through weakly supervised learning[42], or
unsupervised learning with Triplet Loss[43]. These afore-
mentioned steps motivate us to use a pretrained model based
on ImageNet, which has been demonstrated to have a good
performance empirically in transfer learning.

In [44], Sidek and Quadri defined data fusion as “deal-
ing with the synergistic combination of information made
available by different measurement sensors, information
sources, and decision-makers.” Studies in the deep learn-
ing community have also proposed data fusion approaches
that are specific to satellite images at a different level in
practice. For example, [45] concatenates LiDAR and RGB
to predict roof shape better. In DeepSat [34], Basu et al.
achieves the state of the art performance on SAT-4 and
SAT-6 land cover classification problems by incorporating
NDVI[10], EVI[12] and ARVI[11] as additional input chan-
nels. A recent study[46] proposed a novel approach to se-
lect and combine the most similar channels using images
from different timestamps. Apart from the multi-channel
data fusion, fusions at multi-source [47, 48] and multi-
temporal[49] levels have also shown their empirical value.
Such an idea of fusing the multiple input channels also in-
spired our design of the fusion module of General Vegeta-
tion Index.

Multi-spectral Image Data Fusion. Multi-spectral im-
age data fusion is also widely used in robotics, medical di-
agnoses, 3D inspection, etc[50]. Color related techniques
represent color in different spaces. The Intensity-Hue-
Saturation (IHS fusion)[51] transforms three channels of
the data into the IHS color space, which separates the color
aspects in its average brightness (intensity). The values in
IHS space correspond to the surface roughness, its domi-
nant wavelength contribution (hue), and its purity (satura-
tion) [52, 53]. Then, one of the components is replaced
by a fourth channel that needs to be integrated. Statisti-
cal/numerical methods introduce a mathematical combina-
tion of image channels. The Brovey algorithm[54] calcu-
lates the ratio of each image band by summing up the cho-

sen bands, followed by multiplying with the high-resolution
image.

In addition to concatenating multi-spectral channels,
several deep learning architectures were proposed for multi-
spectral images. [55] pretrains a Siamese Convolution Net-
work to generate a weighted map for infrared and RGB
channels in the inference time. Li et al. [56] first de-
composes the source images into base background and de-
tail content and then applies a weighted average on the
background while using a deep learning network to extract
multi-layer features for detail content.

These studies gave an initial attempt to tackle the image
classification problem using multiple spectral inputs in deep
learning models. But we have yet to investigate how the
multi-spectral image can be translated into the VI-related
input in the context of agriculture segmentation.

3. Proposed Method

3.1. Overview

In general, our approach hinges on fusing Vegetation In-
dex with raw images. We first introduce using well-known
VIs as another input channel, and then we generalize the
idea of VI to a fully learnable data fusion module. Last
but not least, we propose an Additive Group Normalization
(AGN) to handle the warm-start with a pretrained model.
We describe the technical details in the following subsec-
tions.

3.2. Vegetation Index for Neural Nets

According to [9], during the practice of remote sens-
ing, more than 60 VIs have been developed in the last
four decades. However, not all VIs are derived from NIR
and RGB channels, few of which generalize across datasets
without tuning their sensitive parameters manually. For ex-
ample, the Perpendicular Vegetation Index (PVI) [21] is de-
fined as follows:

PVI =
√

(ρsoil − ρveg)
2
R − (ρsoil − ρveg)

2
NIR , (1)

where ρsoil is the soil reflectance and ρveg is the vegetation
reflectivity. However, PVI is sensitive to soil brightness and
reflectivity, especially in the case of low vegetation cover-
age, and needs to be re-calibrated for this effect[22]. Such
sensitivity introduces semantic difficulty as we try to feed
the VI into the neural network as another input channel.
There are also VIs designed for a specific dataset in the first
place. On top of the Landsat Multispectral Scanner (MSS),
Landsat Thematic Mapper (TM) and Landsat 7 Enhanced
Thematic Mapper (ETM) data, Cruden et al. [19] applied a
Tasseled Cap Transformation and came up with the empiri-



cal coefficients for Green Vegetation Index (GVI) as:

GVI = −0.290MSS4 − 0.562MSS5 + 0.600MSS6

+ 0.49MSS7, (2)

where MSSi denotes the ith band of Landsat MSS. Landsat
TM and Landsat 7 ETM are not usually available for satel-
lite and aerial imagery outside this product family. This
Green VI is composed by a linear combination of the multi-
channel input, which shares a similar concept among many
other VIs. To better understand the popular format of dif-
ferent indices, we summarized some representative VIs,
shown in Table 1, that are derived from NIR-Red-Green-
Blue (NRGB) images, together with their definitions and
value ranges. Based on the definitions, we calculate the
pixel-wise correlation matrix for all 12 VIs (Figure 2). The
correlation coefficients are calculated at the pixel level us-
ing all data released for training. For SAVI, we choose L to
be 0.5. Except for certain pairs (such as NDVI v.s. SAVI),

Figure 2. Pair-wise correlation coefficients of all 12 available veg-
etation indices.

the correlation between different VIs are within the range of
(−0.2, 0.9). We include all 12 VIs as extra input channels
in our experiments when leveraging the information from
existing vegetation indices.

3.3. Learnable Vegetation Index

Some high correlations between VIs stem from not only
the fundamental vegetation status, but also the empirical
function that researchers have introduced. We notice that
9 out of the 13 VIs from Table 1 share the following general
form:

VI =
α0 + αRR + αGG + αBB + αNIRNIR
β0 + βRR + βGG + βBB + βNIRNIR

, (3)

where αc, βc, ∀c ∈ {R,G,B,NIR} are parameters to be de-
termined, and could be learnable in deep learning models.
As suggested in [5], we can normalize the response (out-
put) by nearby regions to supress outliers. By extending the
pixel-wise operation to each neighborhood of image chan-
nels, we introduce a learnable layer of Generalized Vegeta-
tion Index (GVI):

GV I(x, α, β) =
x~ α

x~ β
, (4)

where ~ denotes the convolution operation, x is our NRGB
inputs, and α, β are the learnable weights. In practice, we
clip both the numerator and denominator to avoid numerical
issues. Depending on the output channels, this layer has the
capacity to express a variant number of VIs when learned.
An illustrative example can be found in Figure 3.

NRGB

VI/GVI
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Figure 3. Our data fusion module is model-agnostic. The VI
or GVI input channel is compatible to any segmentation model
trained on NRGB image. Additive Group Normalization (AGN) is
applied in the Near-Infrared channel with a linear combination of
the batch normalization.

3.4. Additive Group Normalization Index

In contrast to explicitly normalizing the constructed in-
dices using a ratio (e.g., in Equation (4)), we could nor-
malize the value using nearby regions and channels, as we
saw in VCI[5]. Fortunately, the deep learning community
has already developed the counterpart approaches, such as
the Batch Normalization (BN)[61], Layer Normalization
(LN)[62], Instance Normalization (IN)[63] and Group Nor-
malization (GN)[64]. However, we found that the neural
network, even equipped with the most widely used BN, has
an internal difficulty in fitting existing VIs, as shown in Fig-
ure 4.

The relative high errors in prediction indicate that BN
is not able to captured channel-normalized features, while
VIs are usually normalizing the inputs across the spectrum.
Motivated by such observations, we introduce the Additive
Group Normalization, which combine the BN and GM to-
gether in an additive fashion. Unlike BN, which normalizes
each channel of features using the mean and variance com-
puted over the mini-batch, GN splits channels into groups



Index Definition Meaningful Range

NDVI∗ [10]
NIR− R
NIR + R

[0, 1]

IAVI∗† [11]
NIR− (R− γ(B− R))
NIR + (R− γ(B− R))

, γ ∈ (0.65, 1.12) [−1, 1]

MSAVI2∗ [21] 0.5
(
(2NIR + 1)−

√
(2NIR + 1)2 − 8(NIR−R)

)
[0, 1]

EVI∗ [12] 2.5 ∗ NIR− R
NIR + 6R− 7.5B + 1

(−∞,∞)

VDVI∗ [13] 2 ∗ 2G− R− B
2G + R + B

[−1, 1]

WDRVI∗ [6]
0.2NIR− R
0.2NIR + R

[−1, 1]

MCARI [57]
1.5 ∗ (2.5 ∗ (NIR− R)− 1.3 ∗ (NIR− G)√

(2NIR + 1)2 − (6NIR− 5R)− 0.5
(−1.6, 4.88)

GDVI [58] NIR− G [−1, 1]

SAVI∗† [24] (1 + L) ∗ NIR− R
NIR + R + L

, L ∈ {0, 0.5, 1} [0, 1]

RVI∗ [59]
R

NIR
[0,∞)

VCI [5]
NDVI− NDVImin

NDVImax + NDVImin
[0, 1]

GRVI∗ [58]
NIR

G
[0,∞)

NDGI∗ [60]
G− R
G + R

[−1, 1]

Table 1. Summary of vegetation indices that are derived from NIR-Red-Green-Blue (NRGB) images
∗: These vegetation indices share the general format as equation 3

†: Parameters need to be calibrated and this VI cannot be fed into the neural network directly

and uses the within-group mean and variance to normalize
the particular group:

x̂GN
nchw =

xnchw − µ(GN)
nc√

σ
2(GN)
nc + ε

µ(GN)
nc =

1

HWG

∑
c∈Gc

∑
H

∑
W

xnchw

σ2(GN)
nc =

1

HWG

∑
c∈Gc

∑
H

∑
W

(
xnchw − µ(GN)

nc

)
, (5)

where G is the number of groups, Gc is the group assign-
ment of channel c, and x̂(GN) = {x̂(GN)

nchw} is the GN re-
sponse. Depending on the number of groups, such a nor-
malization can be reduced to either Instance Normalization
(G = C) or Layer Normalization (G = 1).

Inspired by the adaptive Instance-Batch Normaliza-
tion [65], we designed our Additive Group Normalization

(AGN) as follows:

x̂(AGN) = σ(ρ) · x̂(GN) + x̂(BN), (6)

where ρ is a learnable parameter controlling the contribu-
tion of Group Normalization in each layer and x̂(AGN) ∈
RN×C×H×W is the response of AGN. This normalization
does not introduce extra parameters (except for the running
mean and standard deviation) but leverages the existing ca-
pacity of the underlying network.

When ρ is a large negative number, the term x̂(G) gets
a negligible weight and x̂(AGN) ≈ x̂(B). This property
makes fine-tuning of experiments much smoother on a pre-
trained model with an architecture of Batch Normalization:
To control the “ramping up” of Group Normalization, we
initialize ρwith a negative number, e.g.,−10, and the model
weights are updated gradually. We show experimental re-
sults for both training from scratch and fine-tuning in Sec-
tion 4.



Figure 4. Mean L1 error over standard deviation (%). At each
pixel, we trained a two-layer, fully-connected neural network with
the NRGB channels to fit the Vegetation Indices using a batch size
of 16. We plot the relative error for each vegetation index, i.e.,
the L1 error over the mean standard deviation in percentage. The
additive group normalization fits almost all VIs better compared to
batch normalization.

4. Experiments
4.1. Architecture Setup

We use EfficientNet-B0 / EfficientNet-B2[66] as our
base encoder in the DeepLabV3[14] framework. They are
parameter-efficient networks that achieve the same perfor-
mance of ResNet-50 / ResNet-101 respectively with a much
lower number of parameters.[67]

4.2. Training Details

We used backbone models pretrained on ImageNet in all
our experiments. During initialization, we copied the pre-
trained weights for the red channel filter to the one for the
NIR channel in the first layer. We trained each model for
80 epochs with a batch size of 64 on eight GeForce GTX
TITAN X GPUs. Unless specified, we used a combination
of Focal Loss[68] and Dice Loss[69] with weights 0.75 and
0.25 respectively. We did not weigh classes differently, al-
beit the dataset is unbalanced. We also masked all the pixels
that are either not valid or not within the region of the farm-
land. We use the Adam optimizer [70] with a base learning
rate of 0.01 and a weight decay of 5 × 10−4. During the
training, we monitored the validation loss and stopped the
experiments if the loss didn’t decrease within ten epochs.
Once a model was trained, we fine-tuned it with VI, GVI,
or AGN modules. We adopted the cosine annealing strategy
[71], with the learning rate ranges from 0.0001 to 0.01 and
a cycle length of 10 epochs. For a fair comparison, we also

fine-tuned our baseline model in this stage.

4.3. Dataset and Evaluation Metric

We evaluated our approach on Agriculture-Vision[4]
with mean Intersection-over-Union(IOU) across classes.
Since our annotations may overlap while we modeled the
segmentation as a multi-class classification problem pixel-
wisely, we also described the mean IOU calculation as fol-
lows.
Agriculture-Vision. Agriculture-Vision is an aerial im-
age dataset that contains 21,061 farmland images captured
throughout 2019 across the US. Each image is of size 512×
512 and with four color channels, namely, RGB and Near
Infrared (NIR). By the time the experiments are done, the
labels for the test set have not been released yet, so we used
the verication set to test the trained model.
IOU with overlapped annotations. We followed the pro-
tocol from the data challenge organizer to accommodate the
evaluation for overlapped annotations. For pixels with mul-
tiple labels, a prediction of either label was counted as a
correct pixel classification for that label, and a prediction
that did not contain any ground truth labels was counted as
an incorrect classification for all ground truth labels.

4.4. Results

Table 2 presents the validation results of the baseline
model, together with several proposed methods to leverage
the information from the NIR band. The average mIoU of
the baseline model yeilds 44.92% accuracy. When plug-
ging the GVI module into our model, we achieve 46.05%
accuracy on mIoU, and highest accuracy in some categories
such as background, double plant, and standing water.
Moreover, when we use the Additive Group Normalization
(AGN), the model performs the best in terms of mIoU at the
accuracy of 46.87%. Our model consistently outperforms
a) only using the NIR bands without extra information from
vegetation indices; b) adding vegetation indices directly as
inputs. And we saw gains in vegetation-related classes (e.g.,
Weed Cluster) as well as non-vegetation classes (e.g., Wa-
terway). We include some examples in Figure 5.

5. Conclusion
In this work, we introduced the General Vegetation In-

dex that enhanced the power of neural networks in agricul-
ture and highlighted the connection between this GVI and
other existing VIs. When starting from a pretrained model
with minimal modifications, our proposed GVI and additive
group normalization can achieve, and in some cases, exceed
state-of-the-art performances. Our best result of mIOU is
about 2% better than the baseline model. In addition, our
method doesn’t require sophisticated network architecture
with the increase of model parameters. Such a result is a
promising step forward when incorporating VI related in-



Figure 5. Examples of segmentation results. We include four examples (rows) of their RGB input, ground-truth labels, predictions of the
baseline model, and predictions of the baseline model with VIs inputs (columns). Segmentation labels: Green for background, Blue for
Weed Cluster, Red for Double Plant and Yellow for Waterway. Including VIs helps the model perform better in vegetation-related classes
(e.g. Weed Cluster) as well as non vegetation classes (e.g. Waterway).

Architecture Method mIoU (%) Background
Cloud

Shadow
Double
Plant

Planter
Skip

Standing
Water

Waterway
Weed

Cluster

DeepLabV3 Baseline 44.92 78.84 40.59 33.14 0.74 51.03 60.64 49.48
Baseline + VI 46.04 78.75 41.17 33.66 0.46 56.67 62.06 49.50

Baseline + GVI 46.05 79.81 34.58 35.24 0.83 58.08 63.47 50.32
AGN 46.87 79.28 41.22 34.56 1.05 57.14 63.53 51.28

Table 2. mIoUs and class IoUs of baseline models, baseline models with Vegetation Index as additional models and our proposed general-
ized vegetation index model.

formation with multi-band images for segmentation tasks
in agriculture.

While our approach sheds a promising light on segment-
ing lands in agriculture, we believe several potential direc-
tions could be valuable for future work. Firstly, how the
model architecture can affect the result is still open for ex-
ploring. It is not clear if the segmentation results are sensi-
tive to different models with VI inputs. Secondly, we would
like to incorporate some additional training techniques, e.g.,

virtual adversarial training, which is orthogonal to our data
fusion approach to improve the model performance further.
Lastly, the ability to generalize our method on a larger scale
dataset remains open to investigate.
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