
Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference

Thomas Verelst Tinne Tuytelaars

ESAT-PSI, KU Leuven

{thomas.verelst, tinne.tuytelaars}@esat.kuleuven.be

Abstract

Modern convolutional neural networks apply the same

operations on every pixel in an image. However, not

all image regions are equally important. To address this

inefficiency, we propose a method to dynamically apply

convolutions conditioned on the input image. We introduce

a residual block where a small gating branch learns which

spatial positions should be evaluated. These discrete gating

decisions are trained end-to-end using the Gumbel-Softmax

trick, in combination with a sparsity criterion. Our ex-

periments on CIFAR, ImageNet, Food-101 and MPII show

that our method has better focus on the region of interest

and better accuracy than existing methods, at a lower com-

putational complexity. Moreover, we provide an efficient

CUDA implementation of our dynamic convolutions using

a gather-scatter approach, achieving a significant improve-

ment in inference speed on MobileNetV2 and ShuffleNetV2.

On human pose estimation, a task that is inherently spa-

tially sparse, the processing speed is increased by 60% with

no loss in accuracy.

1. Introduction

Most research on deep neural networks focuses on im-

proving accuracy without taking into account the model

complexity. As the community moves to more difficult

problems – e.g. from classification to detection or pose es-

timation – architectures tend to grow in capacity and com-

putational complexity. Nevertheless, for real-time applica-

tions running on consumer devices such as mobile phones,

notebooks or surveillance cameras, what matters most is a

good trade-off between performance (i.e., frames processed

per second) and accuracy [9, 24]. Attempts to improve

this trade-off have focused mostly on designing more effi-

cient architectures [21, 39, 44, 53] or compressing existing

ones [17, 19, 28, 33, 38, 50].

Interestingly, most neural networks, including the more

efficient or compressed ones mentioned above, execute the

same calculations for each image, independent of its con-

tent. This seems suboptimal: only the complex images

sp
ar

se
 co

nv

sp
ar

se
 co

nv

+
mask
unit

sp
ar

se
 co

nv

sp
ar

se
 co

nv

mask
unit

sp
ar

se
 co

nv

sp
ar

se
 co

nv

mask
unit

+ +

Figure 1: In each residual block, a small gating network

(mask unit) predicts pixel-wise masks determining the lo-

cations where dynamic convolutions are evaluated.

require such deep and wide networks. Therefore, the do-

main of conditional execution gained momentum [4, 5, 6].

Compared to static compression methods, the architecture

of the network is adapted based on the input image. For in-

stance, the network depth can vary per image since easy

and clear images require fewer convolutional layers than

ambiguous ones [46, 48, 51]. The neural network chooses

which operations to execute. Such practice is often called

gating [11, 22], and can be applied at the level of convo-

lutional layers [46, 48, 51], channels [3, 13, 30] or other

elements in the network.

In this work, we focus on reducing computations by ex-

ecuting conditionally in the spatial domain. Typical con-

volutional networks apply all convolutional filters on every

location in the image. In many images, the subject we want

to classify or detect is surrounded by background pixels,

where the necessary features can be extracted using only

few operations. For example, flat regions such as a blue

sky can easily be identified. We call such images spatially

sparse.

We propose a method, trained end-to-end without ex-

plicit spatial supervision, to execute convolutional filters on

important image locations only. For each residual block,

a small gating network chooses the locations to apply dy-

namic convolutions on (Fig. 1). Gating decisions are trained

end-to-end using the Gumbel-Softmax trick [23, 31]. Those

decisions progress throughout the network: the first stages

extract features from complex regions in the image, while

the last layers use higher-level information to focus on the

2320



region of interest only. Note that the input of a dynamic

convolution is a dense matrix, making it fundamentally dif-

ferent from methods operating on sparse data [14, 15].

Many works on conditional execution only report a re-

duction in the theoretical complexity [12, 46]. When im-

plemented naively, merely applying masks does not save

computations. For certain methods, it is actually not clear

whether they could be implemented efficiently at all. For

instance, Wu et al. [51] report an increase in execution time

when conditionally executing individual layers using a sep-

arate policy network. Parallel execution on GPU or FPGA

relies on the regularity of standard convolutions to pipeline

operations [26, 42] and adding element-wise conditional

statements might strongly slow down inference. Moreover,

Ma et al. [53] show that the number of floating point op-

erations (FLOPS) is not a sufficient metric to estimate in-

ference speed: networks with a similar amount of opera-

tions can have largely different execution speeds. Simple

element-wise operations such as activation functions, sum-

mations and pooling can have a significant impact, but are

not included in many FLOPS-estimations.

In contrast, we demonstrate an actual improvement

of wall-clock time with our CUDA implementation

of dynamic convolutions. Our method is designed

with practical feasibility in mind and requires mini-

mal changes to existing libraries: efficient spatially

sparse execution is made possible by rearranging ten-

sor elements in memory, which has similar overhead

as a simple copy operation. Our code is available at

https://github.com/thomasverelst/dynconv.

The main contributions of our paper are threefold:

1. We present an approach to train pixel-wise gating

masks end-to-end using the Gumbel-Softmax trick,

with a focus on efficiency.

2. Our method achieves state-of-the-art results on classi-

fication tasks with ResNet [18] and MobileNetV2 [39],

and we show strong results on human pose estima-

tion, improving the performance-accuracy trade-off

over non-conditional networks.

3. We provide a CUDA implementation of residual

blocks with dynamic convolutions on GPU, not just

reducing the theoretical amount of floating-point op-

erations but also offering practical speedup with Mo-

bileNetV2 and ShuffleNetV2.

2. Related work

Static compression methods have been extensively stud-

ied to reduce storage and computational cost of existing

neural networks, e.g. pruning [27, 28, 33], knowledge dis-

tillation [19, 37], structured matrices [41, 49] or quantiza-

tion [17, 50]. Recent methods vary computations based on

the input image. So-called conditional execution can be ap-

plied on several aspects of a network: we make a distinction

between layer-based, channel-based and spatial methods.

Layer-based methods conditionally execute certain net-

work layers or blocks depending on the input. Easy images

require a less deep network than complex examples. One

of the first methods, Adaptive Computation Time [16], in-

terprets residual blocks as a refinement of features. Exe-

cution of layers is halted when features are ‘good enough’

for the classifier. Another approach is to use early-exit

branches in the network [7, 35, 45]. Later methods improve

the flexibility by conditionally executing individual layers.

Those methods are based on the observation that resid-

ual architectures are robust against layer dropout [20, 47].

SkipNet [48] learns gating decisions using reinforcement

learning. ConvNet-AIG [46] uses the Gumbel-Softmax

trick and BlockDrop [51] trains a separate policy network

using reinforcement learning.

Channel-based methods prune channels dynamically

and on-the-fly during inference. The main motivation is

that advanced features are only needed for a subset of the

images: features of animals might differ from those of air-

planes. Gao et al. [13] rank channels and only execute the

top-k ones. Lin et al. [30] propose a method to train an

agent for channel-wise pruning using reinforcement learn-

ing, while Bejnordi et al. [3] use the Gumbel-Softmax trick

to gate channels conditionally on the input.

Spatial methods exploit the fact that not all regions

in the image are equally important. A first set of meth-

ods [1, 32, 40] uses glimpses to only process regions of in-

terest. Such a two-stage approach is limited to applications

where the object of interest is clearly separated, since all

information outside the crop is lost. The glimpse idea has

been extended for pixel-wise labeling tasks, such as seman-

tic segmentation, using cascades [29]. Later methods of-

fer a finer granularity and more control over the conditional

execution. The closest work to ours is probably Spatially

Adaptive Computation Time (SACT) [12]. It is a spatial ex-

tension of a work by Graves [16] and varies the amount of

residual blocks executed per spatial location. Features are

processed until a halting score determines that the features

are good enough. Since the method relies on refinement

of features, it is only applicable to residual networks with

many consecutive layers. Our method is more general and

flexible as it makes skipping decisions per residual block

and per spatial location. In addition, they do not show any

inference speedup.

One of the only works showing practical speedup with

spatially conditional execution is SBNet [36]. Images are

divided into smaller tiles, which can be processed with

dense convolutions. A low-resolution network first extracts

a mask, and the second main network processes tiles ac-

cording to this mask. Tile edges overlap to avoid disconti-

nuities in the output, causing significant overhead when tiles

2321



are small. Therefore the tile size typically is 16 × 16 pix-

els, which makes the method only suitable for large images.

They demonstrate their method on 3D object detection tasks

only. In contrast, our approach integrates mask generation

and sparse execution into a single network, while providing

finer pixel-wise control and efficient inference.

3. Method

For each individual residual block, a small gating net-

work generates execution masks based on the input of that

block (see Fig. 1). We first describe how pixel-wise masks

are learned using the Gumbel-Softmax trick. Afterwards,

we elaborate on the implementation of dynamic convolu-

tions, used to reduce inference time. Finally, we propose a

sparsity criterion that is added to the task loss in order to

achieve the desired reduction in computations.

3.1. Trainable masks

Pixel-wise masks define the spatial positions to be pro-

cessed by convolutions. These discrete decisions, for every

spatial location and every residual block independently, are

trained end-to-end using the Gumbel-Softmax trick [23].

3.1.1 Block architecture

Denote the input of the residual block b as Xb ∈
R

cb×wb×hb . Then the operation of the residual block is de-

scribed by

Xb+1 = r(F(Xb) +Xb) (1)

with F the residual function, typically two or three con-

volutions with batchnorm (BN), and r an activation func-

tion. Our work makes F conditional in the spatial do-

main. A small mask unit M outputs soft gating decisions

Mb ∈ R
wb+1×hb+1 , based on input Xb. We compare the

mask unit of SACT [12] (referred to as squeeze unit), incor-

porating a squeeze operation over the spatial dimensions, to

a 1×1 convolution. We use the squeeze unit in classifica-

tion, and the 1×1 convolution for pose estimation.

The Gumbel-Softmax module G turns soft decisions Mb

into hard decisions Gb ∈ {0, 1}wb+1×hb+1 by applying a

binary Gumbel-Softmax trick (see Section 3.1.2) on each

element of Mb:

Gb = G(M(Xb)). (2)

Gating decisions Gb serve as execution masks, indicating

active spatial positions where the residual block should be

evaluated. The residual block with spatially sparse infer-

ence is then described by

Xb+1 = r(F(Xb) ◦Gb +Xb) (3)

with ◦ an element-wise multiplication over the spatial di-

mensions (wb+1 × hb+1), broadcasted over all channels.

Straight-through Gumbel-softmax trick

1x1
BN ReLU6

3x3 DW
BN ReLU6

1x1
BN

+



mask unit

+

Gumbel
samples

sigmoid

≥ 0 forward

backward

+
identity shortcut

Figure 2: Training spatial execution masks using the

Gumbel-Softmax trick. The mask unit generates a floating-

point mask, after which the Gumbel-Softmax trick converts

soft-decisions into hard-decisions and enables backpropa-

gation for end-to-end learning.

During training, this is an actual multiplication with the

mask elements in order to learn gating decisions end-to-end

(see Fig. 2). During inference, the residual function is only

evaluated on locations indicated by the execution mask Gb.

3.1.2 Binary Gumbel-Softmax

The Gumbel-Softmax trick turns soft decisions into hard de-

cisions while enabling backpropagation, needed to optimize

the weights of the mask unit. Take a categorical distribution

with class probabilities π = π1, π2, ...πn, then discrete

samples z can be drawn using

z = one hot

(

argmax
i

[log(πi) + gi]
)

(4)

with gi being noise samples drawn from a Gumbel distri-

bution. The Gumbel-Softmax trick defines a continuous,

differentiable approximation by replacing the argmax oper-

ation with a softmax:

yi =
exp((log(πi) + gi)/τ)

∑k

j=1
exp((log(πj) + gj)/τ)

. (5)

Gating decisions are binary, which makes it possible to

strongly simplify the Gumbel-Softmax formulation. A soft-

decision m ∈ (−∞,∞), outputted by a neural network, is

converted to a probability π1 indicating the probability that

a pixel should be executed, using a sigmoid σ.

π1 = σ(m). (6)

Then, the probability that a pixel is not executed is

π2 = 1− σ(m). (7)

Substituting π1 and π2 in Equation 5, for the binary case

of k = 2 and i = 1, makes it possible (see supplementary)

to reduce this to

y1 = σ
(m+ g1 − g2

τ

)

. (8)

2322



Our experiments use a fixed temperature τ = 1, unless

mentioned otherwise. We use a straight-through estimator,

where hard samples are used during the forward pass and

gradients are obtained from soft samples during the back-

ward pass:

z =

{

y1 > 0.5 ≡ m+g1−g2
τ

> 0 (forward),

y1 (backward).
(9)

Note that this formulation has no logarithms or exponen-

tials in the forward pass, typically expensive computations

on hardware platforms. During inference, we do not add

Gumbel noise and therefore models are finetuned during the

last 20 percent of epochs with g1 and g2 fixed to 0, making it

similar to the straight-through estimator of Bengio et al. [6].

3.2. Efficient inference implementation

The residual function should be evaluated on active spa-

tial positions only. Efficiently executing conditional opera-

tions can be challenging: hardware strongly relies on regu-

larity to pipeline operations. Especially spatial operations,

e.g. 3×3 convolutions, require careful optimization and data

caching [26].

Our method copies elements at selected spatial positions

to an intermediate, dense tensor using a gather operation.

Non-spatial operations, such as pointwise 1×1 convolu-

tions and activation functions, can be executed efficiently

by applying existing implementations on the intermediate

tensor. The result is copied back to its original position af-

terwards using a scatter operation. More specifically, let the

input I of a residual block be a 4D tensor with dimensions

N×C×H×W , being the batch size, number of channels,

height and width respectively. The gather operation copies

the active spatial positions to a new intermediate tensor T
with dimensions P×C×1×1, where P is the number of ac-

tive spatial positions spread over the N inputs of the batch.

The intermediate tensor can be seen as P images of size

1×1 with C channels, and non-spatial operations can be ap-

plied as usual. The inverted residual block of MobileNetV2

relies heavily on non-spatial operations and was designed

for low computational complexity, making it a good fit for

conditional execution. It consists of a pointwise convolu-

tion expanding the feature space, followed by a lightweight

depthwise (DW) convolution and linear pointwise bottle-

neck. The gather operation is applied before the first point-

wise convolution, which then operates on the intermediate

tensor T . The depthwise convolution is the only spatial op-

eration in the block and should be adapted to operate on

the atypical dimensions of T . The second pointwise convo-

lution is followed by the scatter operation, after which the

residual summation is made. The architecture of the resid-

ual block with dynamic convolutions is shown in Figure 3

and next we describe the role of each component:

+1x1 mod.
3x3 DW 1x1 masked

scatter


≥ 0 Dilate

identity shortcut

masked
gather

Figure 3: Architecture of a residual block for efficient

sparse inference. The mask unit M generates a mask based

on the block’s input. The gather operation uses the mask to

copy selected spatial positions (yellow) to a new intermedi-

ate tensor. Non-spatial operations use standard implemen-

tations, while the 3×3 convolution is modified to operate on

the intermediate tensor.

• Mask dilation: Gating decisions Gb indicate positions

where the spatial 3×3 convolution should be applied. The

first 1×1 convolution should also be applied on neighbor-

ing spatial positions to avoid gaps in the input of the 3×3
convolution. Therefore, the mask Gb is morphologically

dilated, resulting in a new mask Gb,dilated.

• Masked gather operation: The gather operation copies

active spatial positions from input I with dimension

N×C×H×W to an intermediate tensor T with dimen-

sion P×C×1×1. The index mapping from I to T de-

pends on the execution mask G: an element In,c,h,w be-

ing the pth active position in a flattened version of G, is

copied to Tp,c,1,1.

• Modified 3x3 Depthwise Convolution: The depthwise

convolution applies a 3×3 convolutional kernel to each

channel separately. We implement a custom CUDA ker-

nel that applies the channelwise filtering efficiently on T .

The spatial relation between elements of T is lost due

to its dimensions being P×C×1×1. When processing

elements t in T , our implementation retrieves the mem-

ory locations of spatial neighbors using an index mapping

from T to I .

Traditional libraries for sparse matrix operations have

considerable overhead due to indexing and bookkeeping.

Our solution minimizes this overhead by gathering elements

in smaller, dense matrix. The extra mapping step in the

modified 3×3 DW convolution has minimal impact since

its computational cost is small compared to 1×1 convolu-

tions. Note that the gather-scatter strategy combined with

a modified depthwise convolution can be applied on other

networks, such as ShuffleNetV2 [53] and MnasNet [44].

2323



3.3. Sparsity loss

Without additional constraints, the most optimal gating

state is to execute every spatial location. We define a com-

putational budget hyperparameter θ ∈ [0, 1], indicating the

relative amount of desired operations. For instance, 0.7

means that on average 70% of the FLOPS in the conditional

layers should be executed. The total number of floating

point operations for convolutions in a MobileNetV2 resid-

ual block b with stride 1 is

Fb = H ·W ·
(

9Cb,e + 2CbCb,e

)

, (10)

with Cb the number of base channels and Cb,e the amount of

channels for the depthwise convolution (typically 6Cb) and

H×W the spatial dimensions. For sparse inference with

dynamic convolutions, this becomes

Fb,sp = Nb,dilatedCbCb,e +Nb

(

9Cb,e + Cb,eCb

)

, (11)

with Nb,dilated and Nb the number of active spatial posi-

tions in the dilated mask and mask respectively. The value

Nb is made differentiable by calculating it as the sum of all

elements in the execution mask of that block (Eq. 2):

Nb =
∑

Gb. (12)

The following loss then minimizes the difference be-

tween the given computational budget θ and the budget used

by a network consisting of B residual blocks:

Lsp,net =

(∑B

b Fb,sp
∑B

b Fb

− θ

)2

. (13)

In practice, we average the FLOPS over the batch size, and

the network is free to choose the distribution of computa-

tions over the residual blocks and batch elements. However,

without proper initialization this could lead to a suboptimal

state where the network executes all positions in a certain

block or none. Minimizing the sparsity loss is trivial com-

pared to the task loss and the mask units never recover from

this state. This problem occurs often in conditional execu-

tion and existing solutions consist of dense pretraining with

careful initialization [12, 48], curriculum learning [51] or

setting a computational budget for each residual block indi-

vidually [46]. The latter can be formulated as

Lsp,per layer =

B
∑

b

(

Fb,sp

Fb

− θ

)2

. (14)

Such a constraint per layer is effective but limits the flex-

ibility of computation allocations. We propose a solution

to ensure proper initialization of each block, by adding an

extra constraint that keeps the percentage of executed op-

erations Fb,sp/Fb in each residual bock between an upper

and lower bound. Those bounds are annealed from the tar-

get budget θ to 0 and 1 respectively.

The upper and lower bound are imposed by the follow-

ing loss functions, where we use cosine annealing to vary p
from 1 to 0 between the first and last epoch of training:

Lsp,low =
1

B

B
∑

b

max(0, p · θ −
Fb,sp

Fb

)2, (15)

Lsp,up =
1

B

B
∑

b

max(0,
Fb,sp

Fb

− (1− p(1− θ)))2. (16)

The final loss to be optimized is then given by

L = Ltask + α(Lsp,net + Lsp,lower + Lsp,upper) (17)

where α is a hyperparameter, chosen so that the task and

sparsity loss have the same order of magnitude. We choose

α = 10 for classification and α = 0.01 for pose estimation.

4. Experiments and results

We first compare our masking method with other con-

ditional execution approaches on CIFAR and ResNet, and

show that our method improves the accuracy-complexity

trade-off. Then we demonstrate inference speedup on

Food-101 with MobileNetV2 and ShuffleNetV2. Finally we

apply our method on pose estimation, a task that is typically

spatially sparse. We study the impact of the proposed spar-

sity criterion on this task.

4.1. Classification

4.1.1 Comparison with state-of-the-art

The ResNet [17] CNN for classification is typically used

to compare the performance of conditional execution meth-

ods. We compare the theoretical number of floating point

operations and accuracy. The main work related to ours

is SACT [12], also exploiting spatial sparsity. ConvNet-

AIG [46], conditionally executing complete residual blocks,

can be seen as a non-spatial variant of our method.

CIFAR-10 We perform experiments with ResNet-32 on

the standard train/validation split of CIFAR-10 [25]. We

use the same hyperparameters and data augmentation as

ConvNet-AIG, being an SGD optimizer with momentum

0.9, weight decay 5e-4, learning rate 0.1 decayed by 0.1

at epoch 150 and 250 with a total of 350 epochs. Re-

sults for SACT and ConvNet-AIG are obtained with their

provided code. We evaluate our method for different bud-

get targets θ ∈ {0.1, 0.2, . . . , 0.9}. The mask unit is a

squeeze unit with the same architecture as in SACT. Non-

adaptive baseline ResNet models have 8, 14, 20, 26 and 32
layers. Figure 4a shows that our method (DynConv) out-

performs the other conditional execution methods for all

2324



1 2 3 4 5 6 7
MACs 1e7

88

89

90

91

92

93

94

To
p 

1 
ac

cu
ra

cy

DynConv (ours)
ResNet
SACT
ConvNet-AIG

(a) CIFAR-10

3 4 5 6 7
MACs 1e9

70

71

72

73

74

75

76

77

78

To
p 

1 
ac

cu
ra

cy

DynConv (ours)
ResNet
SACT
ConvNet-AIG
SkipNet

(b) ImageNet

Figure 4: Comparison with state-of-the-art models

computational costs (MACs) while improving the accuracy-

complexity trade-off. Moreover, there is a smaller drop in

accuracy when reducing the computational budget.

ImageNet We use ResNet-101 [18] and ImageNet [10] to

compare DynConv against results reported in SACT [12],

ConvNet-AIG [46], SkipNet [48] and standard ResNet [18].

Just like SACT, we initialize convolutional layers with

weights from a pretrained ResNet-101 since the large

amount of conditional layers makes the network prone to

dead residuals, where some layers are not used at all. We

use the standard training procedure of ResNet [18] with In-

ceptionV3 [43] data augmentation. Models are trained on

a single GPU with batch size 64 and learning rate 0.025
for 100 epochs. Learning rate is decayed by 0.1 at epoch

30 and 60. The Gumbel temperature is gradually annealed

from 5 to 1, for more stable training of this deep model.

The mask unit is a squeeze unit with the same architecture

as in SACT. Results in Figure 4b show that DynConv out-

performs SACT by a large margin and matches the perfor-

mances of the best layer-based methods. Those methods

strongly benefit from the large amount of residual blocks

in ResNet-101 and therefore perform relatively better than

they did in the CIFAR-10 experiment.

Further analysis Figure 5 presents a qualitative compari-

son between our method and SACT. The amount of compu-

tations per spatial location is visualized using ponder cost

maps, obtained by upscaling the binary execution masks

of all residual blocks and subsequently summing them.

Our method shows better focus on the region of interest.

Analyzing the distribution of computations over ImageNet

classes (Fig 6a) shows that the network spends fewer com-

putations on typically sparse images such as birds. When

looking at the execution rates per residual block (Fig. 6b), it

is clear that downsampling blocks are more important than

others: all spatial locations are evaluated in these blocks.

The last residual blocks, processing high-level features, are

Table 1: Inference time of dynamic convolutions

Method Acc. MACs Im/Sec

MobileNetV2 x0.75 [39] (our impl.) 82.0 225M 508

MobileNetV2 x0.60 (our impl.) 79.7 150M 638

θ = 0.75 81.2 200M 541

θ = 0.50 80.6 174M 629

θ = 0.25 (G-Binary) 79.8 148M 724

θ = 0.25 (G-Softmax) 79.8 148M 522

ShuffleNetV2 [53] (our impl.) 78.7 149M 710

θ = 0.25 76.5 100M 781

θ = 0.25 with 1×1 conv mask unit 76.3 97M 889

also crucial. This highlights the architectural advantage

over SACT, where computation at a spatial location can

only be halted.

4.1.2 DynConv inference speedup

We integrate dynamic convolutions in MobileNetV2 [39]

and ShuffleNetV2 [53]. Results for different computational

budgets θ are shown in Table 1. We use the Food-101

dataset [8], containing 75k/25k train/test images of 101

food classes, with InceptionV3 [43] data augmentation and

image size 224×224. For MobileNetV2, reducing the com-

putational budget θ results in a proportional increase of

throughput (images per second). We compared a version

with standard Gumbel-Softmax (Eq. 5) to our reformulation

(Eq. 9): our reformulation (G-Binary) is significantly faster

than the one with softmax and logarithms (G-Softmax). We

use ShuffleNetV2 with a residual connection [53]. Our

dynamic convolutions are integrated in the convolutional

branch of non-strided blocks. This architecture uses nar-

rower residual blocks, and the relative cost of the mask unit

with squeeze operation becomes significant. We suggest us-

ing a cheaper 1×1 convolution as mask unit for narrow net-

works.

4.2. Human pose estimation

Human pose estimation is a task that is inherently spa-

tially sparse: many pixels around the person are not relevant

for keypoint detection and the output heatmaps are sparse.

Most existing dynamic execution methods are not suited for

this task: layer-based and channels based methods, such as

ConvNet-AIG [46], do not exploit the spatial dimensions.

SACT [12] is not directly applicable on branched architec-

tures such as stacked hourglass networks [34], as it can only

halt execution.

Experiment setup We base our work on Fast Pose Dis-

tillation (FPD) [52], which uses the well-known stacked

hourglass network for single-person human pose estima-

2325



input DynConv (ours) SACT input DynConv (ours) SACT input DynConv (ours) SACT

14
17
20
23
26
29

14
17
20
23
26
29

14
17
20
23
26
29

Figure 5: Qualitative evaluation and comparison with SACT. Ponder cost maps indicate the amount of residual blocks exe-

cuted at each spatial location. Both methods have the same average complexity (5.7 GMACs), but ours shows better focus

on the region of interest, both in simple examples (top row) as more cluttered ones (bottom row). Ponder cost maps of SACT

and input images obtained from [12].

2 3 4 5 6 7 8
MACs 1e9

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc
y

consumer goods
birds
all classes

(a) MACs per image

5 10 15 20 25 30
Residual block #

0

1

2

3

4

M
A
C
s 
(×
10

8 )

(b) MACs per layer

Figure 6: (a) Distribution of MACs over images in the Im-

ageNet validation set. Images of birds, typically sparse,

are processed with fewer operations than those of con-

sumer goods. (b) Distribution of computations over residual

blocks. Error bars indicate variance. Downsampling blocks

(purple) are important and evaluated at all spatial positions.

tion [34]. Unlike their work, we do apply knowledge dis-

tillation since such method is complementary. The stan-

dard residual blocks are replaced by those of MobileNetV2

with depthwise convolution, in order to achieve efficient in-

ference. Our baseline models has 96 features in the hour-

glass, expanded to 576 channels for the depthwise convo-

lution. Models of different width are obtained by mul-

tiplying the number of channels with a width multiplier

∈ {0.5, 0.75, 1.0}, while the network depth is varied by us-

ing 1, 2 and 4 hourglass stacks (1S, 2S and 4S). For dynamic

convolutions, the computational budget of the base model is

varied with θ ∈ {0.125, 0.25, 0.5, 0.75}.

We use the MPII dataset [2] with standard test/validation

split (22k/3k images). Images are resized to 256×256 and

augmented with ±30 degrees rotation, ±25 percent scaling

and random horizontal flip. No flip augmentation is used

during evaluation. The optimizer is Adam with learning rate

0 1 2 3 4 5 6 7 8
Multiply-Accumulates (MAC) 1e9

79
80
81
82
83
84
85
86
87
88

ac
cu
ra
cy
 (m

ea
n 
P
C
K
h@

0.
5)

DynConv-4S
DynConv-2S
DynConv-1S
HG-MN (baseline) 4S
HG-MN (baseline) 2S
HG-MN (baseline) 1S
FPD (no KD) [53]

Figure 7: Results on pose estimation (MPII validation set)

for hourglass models with varying depths and widths. Our

conditional execution method (DynConv, in red) always

outperforms baseline models (in blue) with the same depth

and amount of computations. Our models achieve similar

performance as FPD [52] (without knowledge distillation)

with fewer computations.

2e-4 for a batch size of 6 samples. The mean square error

loss for heatmaps is averaged over samples. Training lasts

for 100 epochs and the learning rate is reduced by factor

0.1 at epoch 60 and 90. The evaluation metric is the mean

Percentage of Correct Keypoints, normalized by a fraction

of the head size (PCKh@0.5), as implemented in [52].

Results Figure 7 shows that our method always outper-

forms non-conditional models with a similar amount of op-

erations. The amount of operations is reduced by more

than 45% with almost no loss in accuracy. The perfor-

mance difference between baselines of similar FLOPS and

our method becomes larger for larger reductions of FLOPS.

Ponder cost maps in Figure 8 show that the networks

learns to focus on the person. Table 2 demonstrates that our

dynamic convolution method can significantly speed up in-

2326



10

20

30

40

50

10

20

30

40

50

Figure 8: Ponder cost on single-person human pose estimation (4-stack hourglass, θ = 0.125). The network learns to apply

the majority of convolutional operations on keypoint locations, even in the presence of clutter.

Table 2: Timings on pose estimation for 2-stack models. Our models achieve significant wall-clock time speedup (measured

in images processed per second) on an Nvidia GTX1050 Ti 4GB GPU. Timings of subcomponents (mask, bookkeeping,

gather, residual function, scatter) are given as average time per execution, in milliseconds.

Model PCKh@0.5 # Params MACs Images/Sec Mask Bookkeeping Gather Res. F Scatter

4-stack baseline 88.1 6.88M 6.90G 30 N.A N.A. N.A 31.1 N.A

DynConv (θ = 0.75) 88.1 6.89M 5.39G 33 0.48 0.73 0.59 27.3 0.76

DynConv (θ = 0.50) 88.2 6.89M 3.78G 48 0.48 0.78 0.47 18.4 0.54

DynConv (θ = 0.25) 87.5 6.89M 2.30G 67 0.45 0.70 0.33 10.8 0.36

DynConv (θ = 0.125) 86.7 6.89M 1.71G 85 0.50 0.67 0.30 8.25 0.27

baseline (×0.5 channels) 85.2 1.83M 1.83G 66 N.A. N.A. N.A. 14.1 N.A.

Table 3: Ablation on pose estimation (4-stack, θ = 0.125).

Mask unit Sparsity criterion PCKh Im/Sec

1×1 conv Lsp,net + Lsp,up+Lsp,low 86.7 85

squeeze unit Lsp,net + Lsp,up + Lsp,low 87.0 76

1×1 conv Lsp,net (Eq. 13) 86.1 85

1×1 conv Lsp,per layer (Eq. 14) 86.3 85

ference, giving a 60% speedup without loss in accuracy and

a 125% speedup with 0.6% accuracy loss. The table also

shows that the time spent on generating the mask, book-

keeping and gather/scatter operations is small compared to

the cost of the residual function. Our model also outper-

forms smaller baseline model with equal FLOPS. Table 3

compares the squeeze masking unit used in SACT [12] to

a simple convolution. Using a squeeze function as mask

unit performs slightly better at the cost of a lower inference

speed. In addition, we compare the sparsity losses proposed

in Section 3.3. Our sparsity criterion with upper and lower

bound outperforms more simple losses. The effect of our

loss during training is shown in Figure 9.

5. Conclusion and future work

In this work we proposed a method to speed up inference

using dynamic convolutions. The network learns pixel-wise

execution masks in an end-to-end fashion. Dynamic convo-

lutions speed up inference and reduce the number of oper-

0 50 100
Epoch

0.00

0.25

0.50

0.75

1.00

C
om

pu
ta
tio

na
l b

ud
ge

t u
se

d

(a) simple network criterion

0 50 100
Epoch

0.00

0.25

0.50

0.75

1.00

C
om

pu
ta
tio

na
l b

ud
ge

t u
se

d

1
7
13
19
25
31
37
43
49
55

(b) our annealing criterion

Figure 9: Evolution of the percentage of conditional com-

putations executed, per residual block, during training of

pose estimation. Early layers are colored blue, while deeper

layers are red. The simple network-wise sparsity criterion

(Eq. 13) causes early convergence to a suboptimal state,

where many layers are not used. Our criterion where a lower

and upper bound per block are annealed (Eq. 17) provides

better initialization and more stable training.

ations by only operating on these predicted locations. Our

method achieves state-of-the-art results on image classifi-

cation, and our qualitative analysis demonstrates the archi-

tectural advantages over existing methods. Our method is

especially suitable for processing high-resolution images,

e.g. in pose estimation or object detection tasks.

6. Acknowledgement

This work was funded by IMEC through the ICON Lec-

ture+ project and by CELSA through the SfS++ project.

2327



References

[1] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin

Zheng, Hugo Larochelle, and Aaron Courville. Dynamic ca-

pacity networks. In Proceedings of the International Confer-

ence on Machine Learning (ICML), pages 2549–2558, 2016.

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New bench-

mark and state of the art analysis. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2014.

[3] Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max

Welling. Batch-shaped channel gated networks. arXiv

preprint arXiv:1907.06627, 2019.

[4] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and

Doina Precup. Conditional computation in neural networks

for faster models. arXiv preprint arXiv:1511.06297, 2015.

[5] Yoshua Bengio. Deep learning of representations: Look-

ing forward. In International Conference on Statistical Lan-

guage and Speech Processing, pages 1–37. Springer, 2013.

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[7] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh

Saligrama. Adaptive neural networks for efficient infer-

ence. In Proceedings of the 34th International Conference

on Machine Learning (ICML) - Volume 70, pages 527–536.

JMLR.org, 2017.

[8] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random

forests. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 446–461. Springer, 2014.

[9] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello.

An analysis of deep neural network models for practical ap-

plications. arXiv preprint arXiv:1605.07678, 2016.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 248–

255. IEEE, 2009.

[11] Alain Droniou, Serena Ivaldi, and Olivier Sigaud. Deep un-

supervised network for multimodal perception, representa-

tion and classification. Robotics and Autonomous Systems,

71:83–98, 2015.

[12] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li

Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan

Salakhutdinov. Spatially adaptive computation time for

residual networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1039–1048, 2017.

[13] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins,

and Cheng-zhong Xu. Dynamic channel pruning: Feature

boosting and suppression. arXiv preprint arXiv:1810.05331,

2018.

[14] Benjamin Graham. Spatially-sparse convolutional neural

networks. arXiv preprint arXiv:1409.6070, 2014.

[15] Benjamin Graham and Laurens van der Maaten. Sub-

manifold sparse convolutional networks. arXiv preprint

arXiv:1706.01307, 2017.

[16] Alex Graves. Adaptive computation time for recurrent neural

networks. arXiv preprint arXiv:1603.08983, 2016.

[17] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[20] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q

Weinberger. Deep networks with stochastic depth. In Euro-

pean Conference on Computer Vision (ECCV), pages 646–

661. Springer, 2016.

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[22] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, Ge-

offrey E Hinton, et al. Adaptive mixtures of local experts.

Neural computation, 3(1):79–87, 1991.

[23] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-

rameterization with gumbel-softmax. In Proceedings of the

5th International Conference on Learning Representations

(ICLR), 2017.

[24] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim

Choi, Lu Yang, and Dongjun Shin. Compression of deep

convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530, 2015.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009.

[26] Andrew Lavin and Scott Gray. Fast algorithms for convolu-

tional neural networks. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 4013–4021, 2016.

[27] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in Neural Information Process-

ing Systems (NIPS), pages 598–605, 1990.

[28] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016.

[29] Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and

Xiaoou Tang. Not all pixels are equal: Difficulty-aware se-

mantic segmentation via deep layer cascade. In Proceed-

ings of the IEEE conference on Computer Vision and Pattern

Recognition (CVPR), pages 3193–3202, 2017.

[30] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime

neural pruning. In Advances in Neural Information Process-

ing Systems (NIPS), pages 2181–2191, 2017.

2328



[31] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The

concrete distribution: A continuous relaxation of discrete

random variables. In Proceedings of the 5th International

Conference on Learning Representations (ICLR), 2017.

[32] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Re-

current models of visual attention. In Advances in Neural

Information Processing Systems (NIPS), pages 2204–2212,

2014.

[33] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for re-

source efficient inference. arXiv preprint arXiv:1611.06440,

2016.

[34] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In Proceedings of

the European conference on Computer Vision (ECCV), pages

483–499. Springer, 2016.

[35] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy.

Conditional deep learning for energy-efficient and enhanced

pattern recognition. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 475–480. IEEE,

2016.

[36] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urta-

sun. Sbnet: Sparse blocks network for fast inference. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 8711–8720, 2018.

[37] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550,

2014.

[38] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru

Arisoy, and Bhuvana Ramabhadran. Low-rank matrix

factorization for deep neural network training with high-

dimensional output targets. In IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP),

pages 6655–6659. IEEE, 2013.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4510–4520, 2018.

[40] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov.

Action recognition using visual attention. arXiv preprint

arXiv:1511.04119, 2015.

[41] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Struc-

tured transforms for small-footprint deep learning. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 3088–3096, 2015.

[42] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer.

Efficient processing of deep neural networks: A tutorial and

survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2818–2826, 2016.

[44] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2820–2828, 2019.

[45] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung

Kung. Branchynet: Fast inference via early exiting from

deep neural networks. In 23rd International Conference on

Pattern Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[46] Andreas Veit and Serge Belongie. Convolutional networks

with adaptive inference graphs. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 3–18,

2018.

[47] Andreas Veit, Michael J Wilber, and Serge Belongie. Resid-

ual networks behave like ensembles of relatively shallow net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 550–558, 2016.

[48] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and

Joseph E Gonzalez. Skipnet: Learning dynamic routing in

convolutional networks. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 409–424,

2018.

[49] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 2074–2082, 2016.

[50] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4820–4828, 2016.

[51] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 8817–8826, 2018.

[52] Feng Zhang, Xiatian Zhu, and Mao Ye. Fast human pose esti-

mation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3517–3526, 2019.

[53] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 6848–6856, 2018.

2329


