
1

PAN: Towards Fast Action Recognition via
Learning Persistence of Appearance
Can Zhang, Yuexian Zou*, Senior Member, IEEE, Guang Chen, and Lei Gan

Abstract—Efficiently modeling dynamic motion information in
videos is crucial for action recognition task. Most state-of-the-art
methods heavily rely on dense optical flow as motion represen-
tation. Although combining optical flow with RGB frames as
input can achieve excellent recognition performance, the optical
flow extraction is very time-consuming. This undoubtably will
count against real-time action recognition. In this paper, we
shed light on fast action recognition by lifting the reliance
on optical flow. Our motivation lies in the observation that
small displacements of motion boundaries are the most critical
ingredients for distinguishing actions, so we design a novel motion
cue called Persistence of Appearance (PA). In contrast to optical
flow, our PA focuses more on distilling the motion information
at boundaries. Also, it is more efficient by only accumulating
pixel-wise differences in feature space, instead of using exhaustive
patch-wise search of all the possible motion vectors. Our PA is
over 1000× faster (8196fps vs. 8fps) than conventional optical
flow in terms of motion modeling speed. To further aggregate
the short-term dynamics in PA to long-term dynamics, we also
devise a global temporal fusion strategy called Various-timescale
Aggregation Pooling (VAP) that can adaptively model long-range
temporal relationships across various timescales. We finally in-
corporate the proposed PA and VAP to form a unified framework
called Persistent Appearance Network (PAN) with strong tempo-
ral modeling ability. Extensive experiments on six challenging
action recognition benchmarks verify that our PAN outperforms
recent state-of-the-art methods at low FLOPs. Codes and models
are available at: https://github.com/zhang-can/PAN-PyTorch.

Index Terms—Fast Action Recognition, Motion Representa-
tion, Persistent Appearance Network, Persistence of Appearance

I. INTRODUCTION

V IDEO action recognition has achieved impressive perfor-
mance improvements in recent years, mainly due to the

aid of deep models [1], [2], [3] and large datasets [4], [5], [6].
Although many prominent 2D CNNs [7], [8], [9] have been
designed for image recognition task, these 2D CNNs cannot
model effective dynamic motion by naively extending them to
video domain. The inherent complexity of temporal evolution
in videos makes motion modeling in action recognition still a
very challenging task.

Optical flow can encode apparent motion of moving objects
in visual scenes. When combining optical flow with RGB
frames as input, two-stream CNNs variants [1], [10], [11],
[12], [13] and 3D CNNs variants [14], [2], [15], [16] largely
outperform their counterparts using only RGB frames as input.
Thus, optical flow has been commonly used as motion repre-
sentation for video action recognition task. However, extract-

C. Zhang, Y. Zou, G. Chen and L. Gan are with the School of Electrical and
Computer Engineering, Peking University, China (e-mail: {zhangcan, zouyx,
guangchen, ganlei}@pku.edu.cn).

Optical Flow
using EPE loss

New Flow
fine-tuned by CE loss

Euclidean Distance
between (B) and (C)

(A) (B) (C) (D)

Image Overlay
Persistence of Vision

OF
Module

AR
Module

OF
Module

AR
Module

Fig. 1. Comparison of the estimated optical flow using conventional EPE
loss (B) and the new flow fine-tuned by Cross-entropy loss (C). The part (D)
is obtained by calculating the Euclidean distance at each pixel between (B)
and (C). In (D), the optical flow vectors change more around human motion
boundaries. Best viewed in color and zoomed in.

ing optical flow is time-costly. Aiming at mitigating this inef-
ficiency, several recent works [17], [18], [19], [20] introduce
some fast and accurate optical flow estimation methods based
on CNNs. But when applied to action recognition task, such
solutions are still sub-optimal for two reasons: (1) Computing
optical flow in advance makes action recognition a two-stage
task. This two-stage paradigm is time-consuming, storage-
demanding and not end-to-end trainable. (2) Improving the
estimation accuracy of optical flow is not well correlated with
boosting the action recognition performance, which has been
demonstrated by many works [21], [22], [13].

To address those issues, we design an alternative motion
representation to replace optical flow for action recognition
task. Ideally, it should be: efficient to compute, effective in
performance, flexible to implement and moreover, free of pre-
computation and storage. To this end, we need to investigate
which parts of a moving object are most critical for distin-
guishing actions.

Generally, most existing action recognition methods follow
a two-stage procedure: they first estimate optical flow using
the EPE loss1, and then the estimated optical flow is fed into
the subsequent action recognition module. The assumption of
these methods is that more accurate optical flow (measured
by EPE) will bring superior action recognition performance.
However, this correlation is weak as demostrated by Sevilla-
Lara et al. [21] and Zhu et al. [13]. They combined the optical
flow estimation and action recognition modules to form a
unified network. The optical flow estimation module is fine-

1The evaluation metric of optical flow quality is end-point-error (EPE), the
average Euclidean distance between the estimated and the ground-truth flow.

ar
X

iv
:2

00
8.

03
46

2v
1 

 [
cs

.C
V

] 
 8

 A
ug

 2
02

0

https://github.com/zhang-can/PAN-PyTorch
Russo
Highlight

Russo
Highlight



2

tuned by optimizing the final recognition (CE) loss instead of
the EPE loss. Compared with the common two-stage methods,
this unified manner achieves better recognition performance.
To figure out what matters most that leads to the performance
improvements, we analyze the visualization result comparisons
of the estimated optical flow using the EPE loss, the new flow
fine-tuned by the CE loss and their difference computed by
the Euclidean distance, as shown in Fig. 1. The visualization
results are from [21]. From Fig. 1-D, we can clearly observe
that the most salient parts are movement variations occurring
at motion boundaries. According to the aforementioned anal-
ysis, we can conclude that small displacements of motion
boundaries play a vital role in action recognition.

Inspired by this observation, we design a new motion cue
which derives from optical flow yet focuses more on the small
displacements of motion boundaries. From the perspective of
human perception, a series of video frames give people a
sense of motion when viewed in order at a certain speed.
This phenomenon is termed as Persistence of Vision, as shown
in Fig. 1-A blurred areas. Since we aim to extract motion
information directly from RGB frames (a.k.a, the appearance
information), we name the proposed motion cue as Persistence
of Appearance (PA). Our PA enjoys high efficiency because
we do not use exhaustive search of all the possible motion
vectors like optical flow does. Instead, PA only contains pixel-
wise operations in feature space. Specifically, given two adja-
cent RGB frames, our PA first computes pixel-wise intensity
variations in feature space and these variations are further
accumulated to manifest the motion magnitude. With such
a design, PA can model the small displacements at motion
boundaries because: (1) small displacements are perceived
since pixel-wise differences reflect the displacements of a
small receptive field in input space; (2) motion boundaries
are captured since general patterns, e.g., boundaries, texture,
etc, can be encoded by the first few convolutional layers [23].
So the differences among low-level feature maps can reflect
the variations at boundaries.

In this way, our PA represents instantaneous motion in-
formation. However, most human actions last for a while,
ranging from seconds to minutes or even longer, so long-term
temporal modeling is of great importance for video action
recognition. In order to aggregate the short-term dynamics
contained in PA to long-term dynamics, we design a global
temporal fusion strategy called Various-timescale Aggregation
Pooling (VAP). It enables the network to model long-range
temporal relationships across various timescales. We further
incorporate the proposed motion representation PA and the
global temporal fusion strategy VAP into a unified ConvNet
called Persistent Appearance Network (PAN), which achieves
fast action recognition with no upfront cost.

The preliminary work is published in ACM MM 2019 [24]
and we have extended it in several significant aspects:

• First, we add more exploration studies on various network
depths and investigate two encoding schemes. These
new analyses further demonstrate the efficient motion
modeling ability of our PA.

• Second, we improve the previous Various-timescale Infer-
ence Pooling (VIP) [24] to VAP. In the previous VIP, the

weights of inference function for score fusion are fixed
hyper-parameters. As for the enhanced version VAP, we
design a more intelligent weight perception scheme that
learns to adaptively aggregate the recalibrated features
across different timescales. Substantial new analyses are
also provided to the improved method VAP.

• Third, our experiments are extended from scene-dominant
datasets (Kinetics400, UCF101 and HMDB51) to more
challenging temporal-dominant datasets (Something-
Something-V1 & V2 and Jester). Since temporal mod-
eling is more critical than RGB scene information for
recognizing actions in temporal-dominant datasets, the
motion modeling ability of our proposed approach can be
better demonstrated, i.e., extracting motion information
directly from RGB frames.

II. RELATED WORK

Network Architecture. Spatial appearance and temporal
motion are two essential ingredients for action recognition.
Modeling effective spatiotemporal information still remains a
challenging task. Generally, from the architectural perspective,
conventional CNN-based methods can be summarized into
two categories: (1) Two-stream CNNs [1], [10], [11], [12],
[13] that separately process RGB frames (spatial stream)
and pre-computed optical flow (temporal stream) using two
2D CNNs and finally apply late fusion strategy to obtain
spatiotemporal semantics; (2) 3D CNNs [14], [2], [15], [16]
that jointly learn spatiotemporal features from RGB frames
using 3D convolutions. However, these two paradigms are
both unsatisfactory in terms of efficiency. The two-stream
CNNs heavily rely on optical flow as motion representation,
while the extraction of optical flow is time-consuming and
storage-demanding. And the methods based on 3D CNNs is
too expensive to deploy because the 3D convolution kernels
require heavy computational cost.

Our PAN follows the 2D two-stream paradigm, but the input
modality is only raw RGB video frames. Aiming at fast action
recognition, our PAN discards the pre-computed optical flow.
Instead, the motion information is distilled by introducing an
efficient motion cue PA.

Motion Representation. Motion representation serves as
an important cue for video-based action recognition. Optical
flow is considered as a useful representation of short-term
motion, many works [1], [12], [14], [2], [16] have shown that
adding optical flow as another input modality can significantly
boost the recognition performance. However, conventional op-
tical flow computation approaches [25], [26], [27] computing
optical flow in advance and storing that into the disk are
absolutely inefficient. In order to alleviate the inefficiency,
several recent works speed up the optical flow estimation
process by delicately designing some CNN models, such
as FlowNet family [17], [18], SpyNet [19] and PWC-Net
[20], etc. However, these models aim at accurately estimating
optical flow in advance, which is separated from the ultimate
action recognition task. Other works [22], [13] employ an
encoder-decoder network to reconstruct optical flow and this
network can be jointly trained with the subsequent action



3

recognition network. But the encoder-decoder manner still
requires expensive computational cost. Thus, it remains a
challenging task to find an efficient and effective motion
representation for action recognition. To this end, we decide
to replace optical flow with an alternative motion cue for fast
action recognition, rather than make optical flow estimation
more accurate.

Another line of works make efforts to find auxiliary rep-
resentations of motion in an end-to-end manner [28], [29].
In this way, various input modalities are carefully designed,
such as RGBdiff [12], EMV [11], dynamic image [30] and
Displacement Map [31], which can be computed on-the-fly.
These works still cannot perform on par with optical flow in
terms of action recognition accuracy. Lee et al. [32] proposed
MFNet, which exploits five fixed directions searching strategy
to encode temporal features in a unified manner. Recently,
Sun et al. [33] introduced Optical Flow Guided Feature
(OFF), which obtains spatial and temporal features utilizing
Sobel operator and element-wise subtraction respectively with
ground-truth optical flow as supervision. It should be noted
that our work does not require optical flow during both the
training and testing phases.

In this paper, we distill the motion cue PA at the bottom
of the network with concise pixel-wise computation. Our PA
can be viewed as feature-level pixel-wise variation accumu-
lation, where we encode the output motion as a single chan-
nel saliency map reflecting small displacement at movement
boundaries, which is of the same spatial resolution as the input
RGB frames.

Temporal Modeling. 3D CNNs are naturally expert in
temporal modeling, as 3D convolutional operators are designed
to fuse both spatial and temporal information within local
receptive fields. Non-local Networks [3] use self-attention
mechanism to capture long-range temporal correlations. Slow-
fast Networks [34] contain two pathways that capture cat-
egorical semantics and motion semantics at slow and fast
frame rate respectively, and lateral connections are employed
to fuse the two pathways. As for 2D CNNs, 2D convolutional
operators only focus on local spatial regions within single
frame, without exchanging information among neighboring
frames. Such frame-level features are prone to cause partial
observations, thus temporal modeling is necessary. Several
works [10], [12], [35], [36] use 2D CNNs to process video
frames independently and then obtain video-level features by
late fusion strategies. Temporal Segment Networks (TSN) [12]
aggregate the frame-level features through average pooling
consensus function to obtain video-level representations. But
average operation can not infer the temporal order or more
complicated temporal relationships. Temporal Relation Net-
works (TRN) [36] further improve the TSN to utilize temporal
relations in videos. Another noteworthy work is Temporal Shift
Module (TSM) [37], it enables local temporal fusion among
neighboring frames with temporal shift operation.

In this paper, we devise a global temporal fusion strategy
VAP with negligible parameters for long-term temporal mod-
eling at multiple timescales.

III. PERSISTENCE OF APPEARANCE (PA)

To lift the reliance on optical flow, we devise a novel motion
cue called Persistence of Appearance (PA). In this section,
we first present the theoretical derivation of PA (Sec. III-A).
Then we design an efficient PA module to speed up the
motion modeling procedure (Sec. III-B) in action recognition
task. Afterwards, we investigate the function of PA in motion
modeling by exploring two meaningful encoding schemes
(Sec. III-C).

A. Theoretical Derivation of PA

As discussed in Sec. I, the small displacements at motion
boundaries matter most for action recognition. Thus, given an
adjacent two-frame pair, we make efforts to obtain a saliency
map that highlights such small motion variations at boundaries.

For traditional optical flow, the brightness constancy con-
straint is defined as follows:

I(x, y, t) ≈ I(x+ ∆x, y + ∆y, t+ ∆t) (1)

where I(x, y, t) denotes the pixel value at the location (x, y)
of a video frame at time t. As time varies from t to (t+ ∆t),
the spatial displacements in horizontal and vertical axis are
∆x and ∆y respectively. This constraint formulation assumes
that the brightness of a point remains unchanged if it moves
from (x, y) at time t to (x + ∆x, y + ∆y) at time (t + ∆t).
The optical flow can be estimated by finding the optimal
solution (∆x∗,∆y∗) through optimization methods, and addi-
tional constraints, e.g., local smoothness assumption, are also
considered for estimating the actual flow.

We extend Eq. 1 to the feature space by replacing the image
I(x, y, t) with its i-th feature map Fi(x, y, t) after a specific
layer:

Fi(x, y, t) ≈ Fi(x+ ∆x, y + ∆y, t+ ∆t) (2)

The difference map D between i-th feature maps is given
as:

Di(x, y,∆t) = Fi(x+ ∆x, y+ ∆y, t+ ∆t)−Fi(x, y, t) (3)

If we apply the optical flow constraint in feature space, D
tends to have lower absolute value. However, searching the
neighboring areas to find the optimal solution (∆x∗,∆y∗)
in each location is time-consuming, so we do not use such
a complex searching strategy. In contrast to optical flow, we
only capture the motion variation at a certain point in feature
space without considering the direction of the movement,
which perfectly aligns with our idea of modeling the small
displacements at motion boundaries because: (1) small dis-
placements are perceived since one pixel in low-level feature
map contains information of a small receptive field in input
space; (2) motion boundaries are captured since the first few
convolutional layers tend to capture general patterns, e.g.,
boundaries, texture, etc [23]. So the differences among low-
level feature maps will pay more attention to the variations at
boundaries. In summary, differences in low-level feature maps

Russo
Highlight



4

Two adjacent
frames:
{"#, "%}

Convs

'# ∈ ℝ*×,×-

.

/

0

.

/

0
123

'% ∈ ℝ*×,×-

Convs

12

.

/Weight Sharing
Eq. (4) Eq. (5)

'# ∈ ℝ*×,×-

.

/

0

4

5

.

/

.

/

6

(A) (C)

7%

(D)(B)

7#

12

12

.

/

85

86

87

88

89

90

0 1 2 4 8

A
cc

ur
ac

y
(%

)

Depth (d)

Our Choice

Attention Map

Fig. 2. (A) Illustrations of Persistence of Appearance (PA) design. (B) Depth of conv-layers in “PA Module” vs. accuracy. (C) Encoding scheme e1: PA as
motion modality. (D) Encoding scheme e2: PA as attention. Here we only provide exemplars that processing two adjacent frames (i.e., m = 2) for clarity.

can reflect small displacements of motion boundaries due to
convolutional operations.

Therefore, we define the i-th PA component as follows:

PAi(p,∆t) = Fi(p, t+ ∆t)− Fi(p, t) (4)

where p = (x, y) and i = 1, . . . , C, and C is the channel num-
ber. Thus, we can conclude that our PA is highly correlated
with optical flow. This definitely provides theoretical support
for its effectiveness in modeling motion information.

All the computed PAi can be further accumulated to 1
channel to manifest the motion magnitude, which can reflect
the motion variations at boundaries.

PA =

√√√√ C∑
i=1

(PAi(p,∆t))2 (5)

B. PA Module Design

Since our PA operates in feature space, we need to search
for the best depth choice of convolutional layers (conv-layers)
to generate feature maps. We define the basic conv-layer as
eight 7×7 convolutions with stride=1 and padding=3, so that
the spatial resolutions of the obtained feature maps are not
reduced. Assume that d basic conv-layers are sequentially
stacked to form the d-depth network, we experiment with 5
networks having depth of d equal to 0, 1, 2, 4 and 8. The
experimental results on UCF101 split 1 dataset are depicted in
Fig. 2-B. The area of the circles indicates the computational
cost (FLOPs). We find that directly applying the pixel-wise
differences accumulation in input space (d = 0) does not
perform best. The best performance is achieved when d = 1,
i.e., only one basic conv-layer is adopted. As the network goes
deeper, FLOPs significantly increases and the performance
degrades. This is mainly because high-level features with large
receptive fields have been highly abstracted and thus may not
be able to reflect small motion variations in input images. The
experimental results are consistent with our claim that differ-
ences in low-level feature maps can reflect small displacements
of motion boundaries, which are the most critical ingredients
for recognizing actions.

As d = 1 performs best, we design a light-weighted “PA
module” which only contains single basic conv-layer (eight
7×7 convolutions) to obtain low-level features and several

computing operations based on Eq. 4 and Eq. 5. This module
performs low-level representations comparison pixel by pixel
between two adjacent frames, and outputs one saliency map
(PA) reflecting small displacements of motion boundaries for
further processing. This module is located at the bottom of
our network, as shown in Fig. 3-B&3-C (detailed architectural
information will be given in Sec. IV-A).

Formally, as shown in Fig. 2-A, given two adjacent frames
∈ RH×W×3 with H , W and 3 being their height, width
and channel number. First, low-level feature maps F1, F2 ∈
RH×W×C are obtained without spatial resolution reduction.
Then, the pixel-wise value difference is computed between
the two feature maps with the same index i (See in Eq. 4).
Finally, all the computed PAi are accumulated to 1 channel
based on Eq. 5, so the result PA ∈ RH×W is two-dimensional.
Therefore, in “PA module”, a mapping RH×W×3 → RH×W

is established from the appearance to the dynamic motion.

C. Encoding Schemes

As elaborated above, PA is a concise motion cue focusing
on the small displacements of motion boundaries between
two adjacent frames. We would also like to understand the
practical function of PA in motion modeling. Intuitively, PA
can serve as either auxiliary input modality or spatial attention
map. So here we explore two meaningful encoding schemes:
PA as motion modality vs. attention map. Given m adjacent
frames set {I(i)}mi=1, the corresponding low-level feature maps
in PA module are defined as {F (i)}mi=1, and each two adjacent
frames are processed to obtain total (m−1) PA: {PA(i)}m−1

i=1 .
Assuming that the input modality to the subsequent backbone
network is O, so in this subsection, we will discuss two
encoding schemes e1, e2 that carry out the mapping procedure
ei : PA→ O, i.e., aggregating PA to O.

1) PA as motion modality. This is the most straightforward
scheme to directly exploit motion information contained in
PA. Generally, for action recognition methods, taking the
stacked optical flow as input to capture motion information
can significantly boost the performance. Since PA also has
the capability of describing the pixel-level apparent motion
information between two continuous RGB frames, we use
stacked PA as input modality as shown in Fig. 2-C. This
scheme can be represented as:



5

O1 = e1(PA) =
m−1

Υ
i=1

(PA(i)) (6)

Here, we define
m−1

Υ
i=1

(·) as the cumulative channel con-

catenation function that chronologically concatenate the in-
put tensor along the channel dimension. Thus, if the input
tensor PA(i) ∈ RH×W×1, then the output tensor O1 ∈
RH×W×(m−1).

2) PA as attention. Human perception researches [38], [39]
suggest that instantaneous motion can attract attention. Recent
video analysis works benefit a lot under the attention guidance
of motion captured by optical flow, such as video salient object
detection [40], video captioning [41], etc. Motivated by this,
we attempt to exploit motion information in PA to emphasize
some important regions in appearance feature maps, as shown
in Fig. 2-D. This PA-guided spatial attention scheme is defined
as follows, we employ PA with a sigmoid activation to attend
the corresponding mean feature map:

O2 = e2(PA) =
m−1

Υ
i=1

(σ(PA(i))� µ(F (i))) (7)

where σ(·) is a sigmoid function and µ(·) returns the mean
value of the input feature maps along the channel dimension.
� denotes element-wise multiplication, so if the input tensor
PA(i) ∈ RH×W×1 and F (i) ∈ RH×W×C , then µ(F (i)) ∈
RH×W×1 and O2 ∈ RH×W×(m−1).

Which encoding scheme is better? We compare the
performance of the PA module using these two encoding
schemes in the aspect of their runtime efficiency and action
recognition accuracy on UCF101 split 1 dataset. The results
are shown in Table I. To measure the efficiency, we con-
sider computational cost (FLOPs), the number of parameters
(#Param) and inference speed (Speed) of the PA module. To
evaluate the performance of these two encoding schemes on
action recognition task, we follow the TSN manner: firstly
frames are sampled from evenly divided video segments, then
these frames are fed into the PA module and backbone CNN
(ResNet-50) sequentially, finally the output activations are
averaged as the final prediction scores. More implementation
details are in the supplementary material.

The results in Table I clearly indicate that encoding scheme
e1, directly exploiting the motion information contained in
PA, performs better. It has not only fewer FLOPs but also
higher runtime speed and superior recognition performance.
The number of parameters of the two encoding schemes are
the same, because the 1.184K parameters are completely from
PA module, and the subsequent encoding procedure does not
introduce any extra learnable parameters. The more FLOPs
and lower speed of e2 is mainly caused by the sigmoid
function and element-wise multiplication. Notably, e2 also
degrades the accuracy by 1.5%. We hypothesize that when
using appearance-dominant features (i.e., appearance feature
maps) as input, the features must secure integral regions of
appearance to represent the semantic information for the video
category. However, for e2, attending appearance feature maps
with PA will highlight the motion boundaries, leading to
the imbalanced appearance responses both inside and at the

TABLE I
PA AS MOTION CUE vs. PA AS ATTENTION. ACCURACIES ARE EVALUATED

ON UCF101 SPLIT 1 WITH THE SAME NETWORK SETTINGS.

Encoding Schemes
Efficiency Metrics

Accuracy
FLOPs #Param Speed

e1: PA as motion cue 2.868G 1.184K 8196fps 89.5%
e2: PA as attention 2.884G 1.184K 6752fps 88.0%

boundaries of the moving objects, thus e2 is limited in terms
of such integrity. Encoding scheme e1, on the contrary, only
utilizes motion-dominant features (i.e., PA), so there is no need
to consider the appearance integrity.

Therefore, based on the above observations, we employ e1
(i.e., directly exploit PA as input motion modality) as the
default encoding scheme in our paper.

IV. PERSISTENT APPEARANCE NETWORK (PAN)

Our primary objective in this paper is to realize fast action
recognition in real-time scenarios, so we propose the Persistent
Appearance Network (PAN). In this section, we first give an
architectural overview of our PAN framework (Sec. IV-A).
Then we introduce our VAP method, a temporal feature
aggregation strategy, applied within PAN framework. It assists
learning long-term video-level representations by integrating
information across various timescales (Sec. IV-B).

A. PANFull and PANLite
The two network variants of our proposed Persistent Ap-

pearance Network (PAN) is shown in Fig. 3-B&3-C, namely
PANFull and PANLite respectively. They have identical sam-
pling strategy but model the spatiotemporal features in dif-
ferent ways. Their sampling strategy is shown in Fig. 3-
A: the input video sequence V is firstly divided into N
segments with equal length {St}Nt=1. And m adjacent frames
are randomly chosen from each segment as a “m-frame stack”:
{It[m]}Nt=1, the first frames of each “m-frame stack” are
denoted as {It}Nt=1. The main difference between both variants
are analyzed below.

1) PANFull: separate and accurate. As illustrated in Fig. 3-
B, this network is composed of dual branches: RGB branch
and PA branch, capturing the spatial and temporal features
separately. The RGB branch encodes the spatial appearance
information. It takes the selected N frames {It}Nt=1 as input
and processes them to obtain frame-level features through the
backbone network HB (blue blocks). Then these obtained fea-
tures are further aggregated as video-level features using VAP
module HV AP . Mathematically, the output spatial features ys

of RGB branch can be written as:

ys = HV AP (HB({It}Nt=1)) (8)

The other PA branch distills apparent motion information
purely from adjacent RGB frames (i.e., appearance informa-
tion). Firstly, N stacks of m adjacent frames {It[m]}Nt=1 are
transformed to motion cue PA after the PA moduleHPA. Then

Russo
Highlight

Russo
Highlight



6

PA Layer

Score 

Fusion

Invariant Appearance Branch 

Transient Appearance Branch 

m-frame stack

N×(first frame)

N×(m-frame stack)
Selecting

m-frame stack

m-frame stack

VIP

... Scores

VIP

... Scores

PA

RGB Branch

PA Branch

m-frame stack

N×(first frame)

N×(m-frame stack)

Selecting
m-frame stack

m-frame stack

Backbone

Backbone VAP

VAP

PA Module

Score 

m-frame stack

N×(first frame)

N×(m-frame stack)
Selecting

m-frame stack

m-frame stack

PA

Backbone VAP
channel

concatenation

PA Module
e(·)

PA Module

e(·)

(·,·)
channel
concate Backbone VAP

(A) Sampling Strategy (B) PANFull Architecture (C) PANLite Architecture

c c c

Fig. 3. The overall architecture of Persistent Appearance Network (PAN). It has two network variants: (B) PANFull - “divide and conquer”, i.e., capturing
the spatial and temporal semantics separately; (C) PANLite - “unified and efficient”, i.e., extracting the spatial and temporal semantics simultaneously.

the temporal features yt are obtained through the backbone
network HB and VAP module HV AP :

yt = HV AP (HB(e(HPA({It[m]}Nt=1)))) (9)

where e(·) is the encoding scheme described in Sec. III-C.
Following the common practice [12], [36], [37], we merge
the branch-level scores to obtain final prediction of the
whole video through score fusion strategy, i.e., calculating the
weighted average scores from the two branches.

2) PANLite: unified and light-weighted. As illustrated in
Fig. 3-C, our unified network PANLite stacks RGB and PA to-
gether and feeds them through the backbone network, allowing
the network to decide itself how to extract the spatiotemporal
information. Given N sampled m-frame stacks {It[m]}Nt=1

and their first frames {It}Nt=1, the output yst can be written
as:

yst = HV AP (HB(It, e(HPA({It[m]}Nt=1)))) (10)

where (·, ·) is the channel concatenation operation and HPA,
HB and HV AP indicate PA module, backbone network and
VAP module, respectively.

B. Various-timescale Aggregation Pooling (VAP)

Long-term temporal modeling is of great importance for the
video understanding task as discussed in Sec. II. In this paper,
we devise a temporal fusion strategy called Various-timescale
Aggregation Pooling (VAP), which adaptively emphasizes
expressive features and suppresses less informative ones by
observing global information across various timescales. As
shown in Fig. 3-B&3-C, VAP module is adopted at the top
of each network. Overall, VAP contains two main steps as
illustrated below.

(A) Specific-timescale Pooling. As shown in the top part
of Fig. 4, assume that the original video is divided into
N segments, and the sampled video frames are fed into
the backbone 2D CNN to generate d-dim feature vectors
f : {f1, f2, . . . , fN}, where fi ∈ Rd. In order to temporally
integrate these N features without overlapped scope, we
adopt dilated max pooling over the time dimension, where
the dilation rate controls the spacing between the kernel
points. For brevity, this pooling function can be expressed

��, ��, ��, . . . , ��

{1,3,5,7}

� = 1

{1,2,3,4,5,6,7,8}

� = 2

{2,4,6,8} {1,5}

� = 4

{2,6} {3,7} {4,8}

�

�

�

��

���(∙)

���(∙ , �)������(∙ , ∙)

����(∙)

�

(A) 

(B)

(N=8). . .

Fig. 4. Various-timescale Aggregation Pooling (VAP). Top part: (A) Specific-
timescale Pooling. Bottom part: (B) Various-timescale Aggregation. The
numbers in curly brackets indicate which f are involved in generating the
timescale-wise features v (Eq. 11). Best viewed in color and zoomed in.

as maxpool(ks,st,dr){activations}, where ks, st, dr refer to
kernel size, stride and dilation rate respectively. Accordingly,
the k-timescale pooling is defined as follows:

vk = maxpool(N
k ,1,k)

{f1, f2, . . . , fN} (11)

where k is a positive integer s.t. Nk ∈ Z. By convention, we use
pyramidal timescale settings (i.e., k = 20, 21, . . . , 2log2(N)−1).
After Eq.11, the time span changes from N to k. So 20+21+
. . .+2log2(N)−1 = N−1 timescale-level features are obtained
in total (i.e., v ∈ R(N−1)×d).

(B) Various-timescale Aggregation. Our basic idea is to
fuse temporal information at each timescale by weighted
timescale-wise aggregation. As shown in the bottom part of
Fig. 4, given that v ∈ RT×d represents the total T pooled
features at different timescales, we first shrink global spatial
semantics in each feature into a temporal descriptor reflecting
the corresponding timescale-wise statistics. Thus, the output
z ∈ RT×1 can be expressed by:



7

z = Fsh(v) =
1

d

d∑
i=1

v(i) (12)

To capture the cross-timescale interdependencies, we adopt
a concise nonlinearity learning mechanism with a softmax
activation for weight perception:

w = Fwp(z,W ) = softmax(W2(δ(W1z))) (13)

where δ denotes the ReLU function, W1 ∈ RαT×T and W2 ∈
RT×αT (α is the expansion ratio) are the learnable parameters
of two fully-connected (FC) layers. The output of Fwp function
is the weight vector w ∈ RT×1.

The final global video-level representation fg ∈ Rd of
the proposed VAP is obtained by firstly rescaling v with the
weight vector w and then aggregate the recalibrated features
along T dimension.

fg = Fagg(Fscale(w,v)) = sum(wv) (14)

In particular, for action recognition task, the prediction
scores s are obtained by:

s = Fpred(fg,W ) = W3fg (15)

where W3 ∈ Rc×d, c is the number of classes.

V. EXPERIMENTS

In this section, we first introduce the evaluation datasets
and implementation details. Then in ablation studies, we
investigate the importance of our proposed motion cue PA
and various-timescale aggregation strategy VAP for real-time
action recognition. During this investigation, we also explore
some basic settings. Extensive results show the superior per-
formance achieved by PAN compared with baselines and other
state-of-the-art methods, on both temporal-dominant datasets
and scene-dominant datasets. Finally, we visualize the pro-
posed motion cue PA to qualitatively justify its superiority in
motion modeling and discuss the future work.

A. Experimental Settings

Datasets. We evaluate our approach on six challenging
benchmarks for action recognition. They can be grouped
into two categories: (a) Temporal-Dominant Datasets, in-
cluding Something-Something-V1 & V2 [4] and Jester [6].
Recognizing actions in these datasets requires strong tem-
poral modeling ability, as many action classes are sym-
metrical, e.g., “Moving something up” and “Moving some-
thing down”. Something-Something datasets (2 released ver-
sions) include 174 categories with 86,017(V1)/168,913(V2)
training videos, 11,522(V1)/24,777(V2) validation videos,
and 10,960(V1)/27,157(V2) test videos. Jester contains 27
human hand gestures with 148,092 videos. (b) Scene-
Dominant Datasets, including Kinetics400 [5], UCF101 [42]
and HMDB51 [43]. RGB scene information in these datasets
is more critical than temporal relations for action recognition.
Kinetics400 is a large-scale action recognition benchmark

including ∼300k videos with 400 human action classes. The
performances are evaluated with the top-1 and top-5 accura-
cies. The UCF101 dataset includes 13,320 video clips with
101 action classes and the HMDB51 dataset contains 6,766
videos with 51 action categories. For these two datasets, the
mean class accuracy over the three official splits is calculated
as the final result.

Input & Backbone. The input modality of our PAN is only
raw RGB frames. We set N = 8 and m = 4 as default, thus
8 “4-frame stack” are sampled from a video. For PANFull, the
first frame in each “4-frame stack” will be selected and fed into
RGB branch, meanwhile, all the frames will be fed into the
PA branch. For PANLite, we take all the 8 sampled “4-frame
stack” as input. For comparative purposes, we use ResNet-
50 as the default backbone like other state-of-the-art methods
[44], [37], [34]. Since TSM [37] can exchange information
between neighboring frames at zero cost, we opt to inject
TSM into our backbone to enable local temporal fusion. Note
that TSM module is orthogonal to our PA (efficient motion
representation) and VAP (global temporal fusion strategy).

Training & Testing. For relatively large-scale datasets
(Something-Something-V1 & V2, Jester and Kinetics400), the
training parameters of PANLite and the PA branch of PANFull

are: initial learning rate 0.01 (total 80 epochs, divided by
10 after every 30 epochs). As for RGB branch of PANFull,
we also set initial learning rate as 0.01 (but total 50 epochs,
decreases at epoch 20 & 40). We train our PAN using
SGD algorithm, with weight decay 1e-4, mini-batch size 64.
ImageNet pre-trained weights are employed for initialization.
While for small-scale datasets (UCF101 and HMDB51) that
are easy to over-fit, we use Kinetics400 for pre-training and
scale the training epochs by half. During testing procedure,
we report “view” (spatial crops × temporal clips) used in
[34]. For temporal-dominant datasets, we only use 1 view
(1 center spatial ‘224×224’ crop × 1 temporal clip) unless
otherwise specified. While for scene-dominant datasets, we
use 2 views (full resolution image with shorter side 256 pixels
× 2 temporal clips), which is much more efficient than the
common practice (30 views) in [3], [34], [45]. Especially, for
PANFull, we average the class prediction scores of the RGB
and PA branches.

B. Ablation Studies for PA

Following the common practice [12], [10], [46], all ex-
periments in this ablation study are conducted on UCF101
split 1. In this subsection, we prove that our designed PA
is a significant motion representation by performing in-depth
studies to answer the following two questions:

Q1: Is PA efficient, effective and flexible enough? As
mentioned in Sec. I, our main target in this paper is to design
a motion representation alternative to optical flow with the
merits of efficient, effective and flexible. We compare the
PA with other mainstream optical flow extraction methods
from the perspective of efficiency and effectiveness for action
recognition task, including conventional optical flow [26] and
CNN-based estimated optical flow [17], [18] methods. The
comparison results are listed in Table II. Note that all the



8

TABLE II
COMPARISON RESULTS OF PA WITH MAINSTREAM OPTICAL FLOW

COMPUTATION METHODS. ACCURACIES ARE EVALUATED ON UCF101
SPLIT 1 WITH THE SAME NETWORK SETTINGS EXCEPT THE INPUT

MODALITY.

Motion Rep. Method
Efficiency Metrics

Accuracy
FLOPs #Param Speed

TV-L1 [26] - - 8fps 88.2%
FlowNetS [17] 356G 38.7M 204fps 86.8%
FlowNetC [17] 444G 39.2M 151fps 87.3%

FlowNet2.0 [18] 2019G 162.5M 25fps 87.7%

PA (Ours) 2.868G 1.184K 8196fps 89.5%

TABLE III
FLEXIBILITY VALIDATION OF PA. OUR MOTION CUE PA CONSIDERABLY

IMPROVES ALL THE BASELINES ON UCF101 SPLIT 1. ALL THE
EXPERIMENTS ARE CONDUCTED USING THE SAME NETWORK SETTINGS.

Baseline Pre-train Modality Acc. ∆Acc.

BN-Inception [47] ImageNet RGB 85.6% +5.7%RGB+PA 91.3%

ECO [48] Kinetics RGB 90.4% +4.7%RGB+PA 95.1%

3D ResNet-18 [46] Kinetics RGB 83.9% +2.9%RGB+PA 86.8%

network settings are the same and more details can be found
in the supplementary material. Surprisingly, compared with
conventional optical flow method TV-L1 [26], our proposed
PA achieves over 1000× faster speed (8196fps vs. 8fps) as well
as 1.3% higher action recognition accuracy. Furthermore, PA
consistently outperforms all the seminal CNN-based optical
flow estimation methods [17], [18], suggesting that PA has
fast (8196fps) and effective (89.5%) motion modeling ability.

To demonstrate the flexibility of our proposed PA, we
deploy different backbone networks and compare their results.
Here, we choose three widely adopted backbone networks
for deep action recognition, including BN-Inception [47] (2D
CNN), ECO [48] (mixed 2D-3D CNN) and 3D-ResNet [46]
(3D CNN). Experimental results on UCF101 split 1 are tabu-
lated in Table III. The results show that the selected backbone
networks all significantly benefit from our PA with consider-
able accuracy improvements, demonstrating the flexibility of
our proposed PA.

Therefore, compared with optical flow, our proposed PA is
much faster to compute, superior in performance. And it is
also flexible to implement.

Q2: Can PA represents apparent motion? A key intuition
for designing PA is that it can capture apparent motion by
focusing more on moving boundaries without the heavy pre-
computation of optical flow. In order to investigate whether
our PA performs similarly to the optical flow, we compare
the performance using three different input modalities: RGB,
PA and optical flow. With each modality as input, we train
the network first on UCF101 split 1, then we test the trained
models to get the prediction scores for all the 101 classes.

Fig. 5. Top part: The top 5 action classes that show the greatest difference
in terms of accuracy between the input modality RGB and PA, and the
performance of optical flow in these classes is also plotted for comparison.
Bottom part: Input modality visualization of the two classes that are most
easily misclassified by RGB. Best viewed in color and zoomed in.

Finally, we plot the top 5 classes that show the largest
differences in recognition accuracy between RGB and PA. For
reference, the performance of optical flow in these classes is
also depicted, as shown in the top part of Fig. 5. In this figure,
we can clearly see that when PA outperforms RGB, the optical
flow is also superior to RGB and vice versa. This indicates that
PA can help the network learn patterns different from RGB but
similar to optical flow.

After analyzing the recognition results, we find that most
“Throw Discus” videos are misclassified as “Hammer Throw”
when using just RGB modality. To demonstrate that our
PA can represent apparent motion, we visualize the three
modalities of these two classes in the bottom part of Fig. 5. In
RGB images, it is unclear whether the athletes are holding the
discus or the hammer due to the interference of background,
illumination, etc, so distinguishing the two classes using only
RGB modality may cause confusion. Encouragingly, our PA is
able to highlight the moving objects (in this case human and
the object in hands) as the optical flow does, which is crucial
for differentiating between videos that look much alike.

Therefore, this result is in accordance with our idea that
the PA, focusing on capturing small displacements at moving
boundaries, can be used as apparent motion representation.
See Sec. V-E for more visualization results.

C. Ablation Studies for VAP

As introduced in Sec. IV-B, our proposed VAP is a temporal
aggregation strategy that can learn to exploit global informa-
tion across different timescales. In this subsection, we conduct
ablation experiments to gain more insights about the effect of
aggregating semantics across various timescales.



9

0.208 0.310 0.316 0.035 0.044 0.045 0.042

{1,2,...,7,8} {1,3,5,7} {2,4,6,8} {1,5} {2,6} {3,7} {4,8}

1 2 3 4 5 6 7 8
�

�

�

“Moving something down” from Something-V1

0.143 0.143 0.143 0.143 0.143 0.143 0.143

{1,2,...,7,8} {1,3,5,7} {2,4,6,8} {1,5} {2,6} {3,7} {4,8}

1 2 3 4 5 6 7 8
�

�

�

“Typing” from UCF101

Fig. 6. Visualization of two selected video sequences and their timescale-wise weights w calculated by Eq. 13. The sampled frames are processed by the
backbone individually to obtain frame-level features f . The numbers in curly brackets indicate which f are involved in generating the timescale-wise features
v (Eq. 11). Different colors (red, orange & yellow) are employed to distinguish different timescales. Best viewed in color and zoomed in.

TABLE IV
EXPLORATION OF DIFFERENT EXPANSION RATIO α AND COMPARISON

AMONG DIFFERENT TEMPORAL AGGREGATION STRATEGIES.

Aggregation Strategy Accuracy

Avg Pooling (baseline) 86.5%

VIP [24] (Our prev.) 87.9%

VAP(α = 1) 88.4%
VAP(α = 2) 88.3%
VAP(α = 4) 88.5%
VAP(α = 8) 88.4%

Q1: Is various-timescale aggregation effective? Following
the common practice [12], [10], [46], we perform ablation
studies on UCF101 split 1 dataset using different temporal
aggregation strategies. N = 8 frames are sampled as input and
ResNet-50 is used as backbone network. The results are shown
in Table IV. Avg Pooling here is referred to the conventional
consensus function introduced in [12] that averages the output
logits to get the final prediction. First, we explore the impact
of the expansion ratio α ∈ {1, 2, 4, 8}. The accuracies between
various expansion ratios exhibit stable performances, consis-
tently outperforming the Avg Pooling baseline. This indicates
that VAP is not sensitive to the hyperparameter setting α. As
α = 4 achieves the best performance, we choose 4 as the
default expansion ratio in VAP. Second, VAP is considered as
an enhanced version of our previous work VIP [24]. Different
from VIP that exploits preset weights for inference, VAP learns
the weights by adaptively using global information at different
timescales. We also do comparison between these two variants.
VAP achieves higher recognition accuracy than VIP (88.5% vs.
87.9%), showing the effectiveness of the enhancement in this
paper. Furthermore, VAP and VIP utilizing various-timescale
semantics consistently outperform baseline by 2.0% and 1.4%
respectively, indicating the significance of long-term temporal
modeling through various-timescale aggregation.

Q2: What does the VAP learn? We expect VAP module
to let the network capture various-timescale interdependencies.
To verify that this is indeed achieved, we output the weight
results w learned from the weight perception Eq. 13. Here we
consider both scene-dominant dataset (UCF101) and temporal-
dominant dataset (Something-Something-V1). N = 8 frames
are sampled as input, thus k ∈ {1, 2, 3} and total 7 timescale-

level features v are calculated according to Eq. 11. ResNet-
50 is used as backbone and VAP module is adopted at the
top of the network. We first train this network on the two
datasets respectively, then we test the two trained models
separately to obtain the corresponding weight values w of dif-
ferent timescales. Fig. 6 shows two selected video sequences
and the timescale-wise weights w with respect to the two
action classes: “Typing” from UCF101 and “Moving something
down” from Something-Something-V1 dataset. More visual-
ization results can be found in the supplementary material.
We can observe that the weight changes for different videos
at various timescales, suggesting that VAP can adaptively
guide the network to emphasize some expressive features
while suppressing other less informative ones. Moreover, we
can clearly see that VAP trained on UCF101 dataset tends
to learn similar weights for all timescales, while the weights
varies widely on Something-Something-V1. We speculate that
this has to do with the fact that temporal relationships in
Something-Something-V1 is more crucial than that in UCF101
for recognition [36], [37], [49], so VAP module trained on
Something-Something-V1 prefers treating all timescales dif-
ferently. This observation further proves that various-timescale
aggregation is an important ingredient for video temporal
semantics modeling.

D. Comparison with the State-of-the-Arts

To validate the efficacy of our approach, we compare PAN
with newly published state-of-the-art methods on six datasets.
Since our proposed PAN focuses on temporal semantics mod-
eling, we mainly analyze the results on temporal-dominant
datasets (Something-Something-V1 & V2 and Jester). We
also evaluate PAN on various scene-dominant datasets (Kinet-
ics400, UCF101 and HMDB51) to show its consistent strong
performance.

1) Temporal-Dominant Datasets.
Something-Something-V1 & V2 and Jester. Table V

shows the comparison results with the state-of-the-arts on
Something-Something-V1 & V2 and Jester datasets. We group
the listed methods into two sections (separated by solid line)
according to their backbone types: 3D CNN based methods
[44], [48] and 2D CNN based methods [12], [36], [37]. It
is clear that with complex 3D convolutional operations, the
FLOPs of I3D [44] and ECO [48] are much higher than the
2D CNN based methods. Our PAN surpasses all the 3D CNN



10

TABLE V
COMPARISON RESULTS OF PAN WITH OTHER STATE-OF-THE-ART METHODS ON SOMETHING-SOMETHING V1 & V2 AND JESTER DATASETS.

Methods Backbone Flow? #Frame FLOPs×views
Something-V1 Something-V2 Jester

Val Val Val Val Val Val
Top1 Top5 Top1 Top5 Top1 Top5

I3D [44] 3DResNet-50 32×2
153G×2 41.6 72.2 - - - -

NL I3D [44] 168G×2 44.4 76.0 - - - -
NL I3D + GCN [44] 3DResNet-50+GCN 303G×2 46.1 76.8 - - - -

ECOEnLite [48] BNInception 92 267G×1 46.4 - - - - -
ECOEnLiteRGB+Flow [48] +3DResNet-18 ! 92+92×6 † N/A 49.5 - - - - -

TSN8F [12] BNInception 8 16G×1 19.5 - - - - -
ResNet-50 8 33G×1 19.7 46.6 27.8 - 81.0 99.0

TRN-Multiscale [36] BNInception 8 16G×1 34.4 - 48.8 77.6 95.3 -
ResNet-50 8 33G×1 38.9 68.1 - - - -

TRNRGB+Flow [36] BNInception ! 8+8×6 † N/A 42.0 - 55.5 83.1 - -
TSM8F [37]

ResNet-50
8 33G×1 45.6 74.2 59.1 - 94.4 99.7

TSM16F [37] 16 65G×1 47.2 77.1 63.4 88.5 95.3 99.8
TSMRGB+Flow [37] ! 16+16×6 † N/A 52.6 81.9 66.0 90.5 - -

TEA8F [45] ResNet-50 8 35G×30 51.7 80.5 - - - -
TEA16F [45] 16 70G×30 52.3 81.9 - - - -

PANLite (Ours)
ResNet-50+TSM

8+8×4 † 35.7G×1 48.0 76.1 60.8 86.7 96.2 99.8
PANFull (Ours) 8+8×4 † 67.7G×1 50.5 79.2 63.8 88.6 96.6 99.8
PANEn (Ours) (8+8×4)×2 (46.6G+88.4G)×2 53.4 81.1 66.2 90.1 97.2 99.9
PANEn (Ours) ResNet-101+TSM (8+8×4)×2 (85.6G+166.1G)×2 55.3 82.8 66.5 90.6 97.4 99.9

† The flow streams of [48], [36], [37] take 10-channel (from “6-frame stack”) optical flow as input, while our PAN only uses “4-frame stack”.

based methods in both efficiency and accuracy aspects. For
example, compared with NL I3D+GCN [44], our PANLite

achieves 1.9% higher top-1 accuracy (48.0% vs. 46.1% on
Something-V1) while with only ∼6% computational cost
(35.7G vs. 303G×2). As for 2D CNN based methods, the
performance of the baseline TSN [12] is relatively inferior
than other methods, indicating the significance of temporal
modeling for these datasets. Compared with the efficient (33G
FLOPs) baselines TSN8F [12] and TSM8F [37], our PANLite

achieves much higher top-1 accuracy (48.0% vs. 19.7%/45.6%
on Something-V1, 60.8% vs. 27.8%/59.1% on Something-
V2, 96.2% vs. 81.0%/94.4% on Jester) with only slight extra
cost (0.08× FLOPs). With dual-path structure that separately
processes RGB and PA modalities, PANFull further bolsters
the action recognition performance (50.5% on Something-
V1, 63.8% on Something-V2 and 96.6% on Jester). The
consistent improvements of our PAN over the other state-of-
the-art methods strongly justify the superiority of our proposed
PA and VAP for temporal modeling.

Following [48], [37], we also average the class prediction
results of PANLite and PANFull to form our ensemble version
PANEn. Here, two views (1 full-resolution with 256 shorter
size × 2 temporal clips) are used for inference. Compared
with the optical flow based methods TRNRGB+Flow (42.0%),
ECOEnLiteRGB+Flow (49.5%) and TSMRGB+Flow (52.6%),
our PANEn (53.4%) provides +11.4%, +3.9% and +0.8%
top-1 accuracy improvements on Something-V1, respectively.
As listed in Table II, the mainstream optical flow extraction
methods are computationally intensive, even the most light-
weighted FlowNetS model needs 356G FLOPs and extra
storage. Taking this cost into account, the optical flow based
methods are expensive in both time and space. Surprisingly,

the total cost of our PANEn model is only ∼270G. This
observation confirms that our proposed PAN, with an efficient
motion cue PA, can effectively accelerate the video represen-
tation learning process by lifting the reliance on optical flow.

Furthermore, when exploiting a deeper backbone ResNet-
101, our PAN brings the current state-of-the-art results to
a whole new level (55.3% on Something-V1, 66.5% on
Something-V2, 97.4% on Jester). Notably, our method only
takes RGB frames as input and thus is free of optical-flow
pre-computation.

2) Scene-Dominant Datasets.
Kinetics400, UCF101 and HMDB51. We also compare

the performance of our PAN with other recent state-of-the-
art methods on three scene-dominant datasets: Kinetics400,
UCF101 and HMDB51. The results are summarized in Ta-
ble VI. Our method achieves very competitive performance
on these datasets, where most actions can be classified by a
single frame (e.g., “Typing” action shown in Fig. 6). Our PAN
outperforms most of the heavy 3D CNN based architectures
(first part in Table VI) [50], [48], [16] using 2D CNN as
backbone, indicating that it can enhance the traditional 2D
CNN with low cost. For 2D CNN based methods (second
part), when pursuing high accuracy, they usually sample many
views (spatial crops × temporal clips) per video for inference,
thus leading to expensive computational cost. For example,
TSM [37] and TEA [45] sample 30 views, their FLOPs are
even higher than that of 3D CNN based architectures. In
contrast, we only use 2 views for efficiency concerns (detailed
in Sec. V-A) and achieve superior performance. For exam-
ple, compared with baseline TSM [37], our PANEn achieves
+1.2%, +1.3% and +3.8% top-1 accuracy improvements on
Kinetics400, UCF101 and HMDB51 respectively with only



11

Frames PA Optical Flow Frames PA Optical Flow Frames PA Optical Flow

x direction

y direction

t

t+1

x direction

y direction

t

t+1

x direction

y direction

t

t+1

Fig. 7. Visualization of two adjacent frames and their corresponding PA and optical flow. Left: BodyWeightSquats. Middle: ApplyEyeMakeup. Right: PushUps.
Best viewed in color and zoomed in.

TABLE VI
COMPARISON RESULTS OF PAN WITH OTHER STATE-OF-THE-ART
METHODS ON KINETICS400, UCF101 AND HMDB51 DATASETS.

Method FLOPs Kinetics400 UCF101 HMDB51×views top1 (top5)

STC [50] - 68.7 (88.5) 93.7 66.8
ECOEn [48] 368G×1 70.0 (89.4) 94.8 72.4
I3DRGB [16] 108G×- 71.1 (89.3) 95.1 74.3

SlowFast-4×16 [34] 36.1G×30 75.6 (92.1) - -

ARTNet [51] 23.5×250 69.2 (88.3) 94.3 70.9
Zhao et. al. [31] - 71.5 (89.9) 95.9 -
TSNRGB [12] 53G×10 69.1 (88.7) 91.1 -
OFFRGB [33] - - 93.3 -

TSM [37] 43G×30 74.1 (91.2) 95.9 73.5
TEA [45] 35G×30 75.0 (91.8) 96.9 73.3

I3DRGB+Flow [16] - 74.2 (91.3) 98.0 80.7
TSNRGB+Flow [12] - 73.9 (91.1) 97.0 -
OFFRGB+Flow [33] - - 96.0 74.2

PANLite (Ours) 47G×2 73.1 (91.1) 96.0 74.5
PANFull (Ours) 88G×2 74.4 (91.6) 96.5 77.0
PANEn (Ours) 135G×2 75.3 (92.4) 97.2 77.3

* For fair comparison, all the results on UCF101 and HMDB51 are obtained
with Kinetics400 pre-train.

∼20% computational cost (270G vs. 1290G). Notably, our
PAN is even superior to the optical flow based methods (third
part) except for I3D [16]. Since I3D is based on heavy 3D
convolutions and takes pre-computed optical flow as input, its
computational cost is much more expensive than our PAN.

E. Visualization and Discussion

In this section, we present the visualization results of two
adjacent frames and their corresponding PA and optical flow
in Fig. 7. PA can model motion information as optical flow
does, but is more advanced for action recognition task with
its special characteristic. Similar to optical flow, the computed
PA highlights the moving objects and suppresses the stationary
background, which visually demonstrates that our PA well
characterizes the instantaneous motion. Differently, our PA
focuses more on the motion boundaries instead of the whole
moving areas. This aligns with our motivation that modeling

small displacements of motion boundaries matters most for
action recognition task. For more visualization results, please
refer to our supplementary material.

Visually, our PA contains more noise than optical flow. We
speculate that it is because the regularization term, penalizing
high variations to obtain smooth displacement fields, is not
applied for efficiency concerns, while it is used in conven-
tional optical flow method [26]. Although our PA has been
proved superior to several optical flow methods in terms of
motion modeling efficiency and action recognition accuracy,
we have not fully exploited its potential because of the noise
interference. So in the future, we plan to design the noise
mitigation method to obtain more smooth PA.

VI. CONCLUSION

In this paper, we shed light on fast action recognition
by lifting the reliance on optical flow. We design a concise
motion cue called Persistence of Appearance (PA) to capture
motion information directly from RGB frames. In contrast
to optical flow, our PA is more effective by focusing more
on modeling the small displacements of motion boundaries,
and it is more efficient by simply calculating the pixel-wise
differences between two adjacent frames in feature space. Its
efficiency, effectiveness and flexibility have been well elabo-
rated by extensive theoretical support (Sec. III-A), experimen-
tal support (Sec. V-B) and visualization support (Sec. V-E).
The motion modeling speed of our PA reaches 1000× faster
than that of conventional optical flow method (8196fps vs
8fps). To further aggregate the short-term dynamics in PA
to long-term dynamics, we also propose a temporal fusion
strategy named Various-timescale Aggregation Pooling (VAP),
which enables the network to capture long-range various-
timescale interdependencies. The proposed PA and VAP are
finally incorporated to form a unified framework call Persistent
Appearance Network (PAN). Extensive experiments on six
challenging benchmarks demonstrate that our proposed PAN
achieves the state-of-the-art recognition performance. Most
importantly, it significantly accelerates the inference process
of action recognition with the powerful motion cue PA.



12

REFERENCES

[1] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[2] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
4489–4497.

[3] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[4] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal,
H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, and
Others, “The” Something Something” Video Database for Learning and
Evaluating Visual Common Sense.” in ICCV, vol. 2, 2017, p. 8.

[5] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, and Others, “The
kinetics human action video dataset,” arXiv preprint arXiv:1705.06950,
2017.

[6] J. Materzynska, G. Berger, I. Bax, and R. Memisevic, “The jester
dataset: A large-scale video dataset of human gestures,” in The IEEE
International Conference on Computer Vision (ICCV) Workshops, Oct
2019.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] K. He, X. Zhang, S. Ren, and S. Jian, “Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision & Pattern
Recognition, 2016.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[10] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 1933–
1941.

[11] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-time
action recognition with deeply transferred motion vector cnns,” IEEE
Transactions on Image Processing, vol. 27, pp. 2326–2339, 2018.

[12] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in European conference on computer vision. Springer,
2016, pp. 20–36.

[13] Y. Zhu, Z. Lan, S. Newsam, and A. G. Hauptmann, “Hidden two-
stream convolutional networks for action recognition,” arXiv preprint
arXiv:1704.00389, 2017.

[14] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[15] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation
with pseudo-3d residual networks,” in proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 5533–5541.

[16] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[17] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2758–2766.

[18] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 2462–2470.

[19] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4161–4170.

[20] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8934–8943.

[21] L. Sevilla-Lara, Y. Liao, F. Guney, V. Jampani, A. Geiger, and M. J.
Black, “On the integration of optical flow and action recognition,” arXiv
preprint arXiv:1712.08416, 2017.

[22] J. Y.-H. Ng, J. Choi, J. Neumann, and L. S. Davis, “Actionflownet:
Learning motion representation for action recognition,” in 2018 IEEE

Winter Conference on Applications of Computer Vision (WACV). IEEE,
2018, pp. 1616–1624.

[23] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[24] C. Zhang, Y.-X. Zou, G. Chen, and L. Gan, “Pan: Persistent appearance
network with an efficient motion cue for fast action recognition,”
Proceedings of the 27th ACM International Conference on Multimedia,
2019.

[25] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[26] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
tv-l 1 optical flow,” in Joint pattern recognition symposium. Springer,
2007, pp. 214–223.

[27] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and
their principles,” in 2010 IEEE computer society conference on computer
vision and pattern recognition. IEEE, 2010, pp. 2432–2439.

[28] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang, “End-
to-end learning of motion representation for video understanding,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6016–6025.

[29] W. Huang, L. Fan, M. Harandi, L. Ma, H. Liu, W. Liu, and C. Gan,
“Toward efficient action recognition: Principal backpropagation for
training two-stream networks,” IEEE Transactions on Image Processing,
vol. 28, no. 4, pp. 1773–1782, 2018.

[30] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi, “Action recognition
with dynamic image networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, pp. 2799–2813, 2018.

[31] Y. Zhao, Y. Xiong, and D. Lin, “Recognize Actions by Disentangling
Components of Dynamics,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 6566–6575.

[32] M. Lee, S. Lee, S. Son, G. Park, and N. Kwak, “Motion feature
network: Fixed motion filter for action recognition,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 387–
403.

[33] S. Sun, Z. Kuang, L. Sheng, W. Ouyang, and W. Zhang, “Optical flow
guided feature: a fast and robust motion representation for video action
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 1390–1399.

[34] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks
for video recognition,” 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6201–6210, 2019.

[35] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Action-
vlad: Learning spatio-temporal aggregation for action classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 971–980.

[36] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 803–818.

[37] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient
video understanding,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019, pp. 7083–7093.

[38] C. J. Howard and A. O. Holcombe, “Unexpected changes in direction
of motion attract attention,” Attention, Perception, & Psychophysics,
vol. 72, no. 8, pp. 2087–2095, 2010.

[39] L. Itti and P. F. Baldi, “Bayesian surprise attracts human attention,” in
Advances in neural information processing systems, 2006, pp. 547–554.

[40] H. Li, G. Chen, G. Li, and Y. Yu, “Motion guided attention for video
salient object detection,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 7274–7283.

[41] S. Chen and Y.-G. Jiang, “Motion guided spatial attention for video
captioning,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 33, 2019, pp. 8191–8198.

[42] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of
101 human actions classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012.

[43] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in 2011 Interna-
tional Conference on Computer Vision. IEEE, 2011, pp. 2556–2563.

[44] X. Wang and A. Gupta, “Videos as space-time region graphs,” in
Proceedings of the European conference on computer vision (ECCV),
2018, pp. 399–417.

[45] Y. Li, B. Ji, X. Shi, J. Zhang, B. Kang, and L. Wang, “Tea: Temporal
excitation and aggregation for action recognition,” in IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2020.

http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1704.00389
http://arxiv.org/abs/1712.08416
http://arxiv.org/abs/1212.0402


13

[46] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri, “Convnet
architecture search for spatiotemporal feature learning,” arXiv preprint
arXiv:1708.05038, 2017.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[48] M. Zolfaghari, K. Singh, and T. Brox, “Eco: Efficient convolutional
network for online video understanding,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 695–712.

[49] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification,”
in ECCV, 2018.

[50] A. Diba, M. Fayyaz, V. Sharma, M. M. Arzani, R. Yousefzadeh, J. Gall,
and L. V. Gool, “Spatio-temporal channel correlation networks for action
classification,” in ECCV, 2018.

[51] L. Wang, W. Li, W. Li, and L. Van Gool, “Appearance-and-relation
networks for video classification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 1430–1439.

http://arxiv.org/abs/1708.05038
http://arxiv.org/abs/1502.03167


1

−Supplementary Material−
PAN: Towards Fast Action Recognition via

Learning Persistence of Appearance
Can Zhang, Yuexian Zou*, Senior Member, IEEE, Guang Chen, and Lei Gan

I. IMPLEMENTATION DETAILS OF TABLE I AND TABLE II

In this section, we describe the implementation details for the comparative experiments of two encoding schemes (see Table
I) and the comparative experiments of PA with other mainstream optical flow computation methods (see Table II). To have an
apple-to-apple comparison, the implementation details of all the experiments are identical. We set N = 8 and m = 6, i.e., 8
sampled “6-frame stack” RGB frames are sampled as input.

To measure the efficiency of the motion modeling methods, we use three evaluation metrics including the computational
cost (FLOPs), the number of parameters (#Param) and inference speed (Speed). All the efficiency metrics in these two tables
are measured on a single NVIDIA TITAN X GPU with 1 mini batch size and 1 CPU thread. As the I/O is most relevant to
hardware and operating system, the runtime speeds are reported without considering I/O.

To evaluate the performance of the motion representation (encoded PA or optical flow) on action recognition task, we obtain
accuracy results on UCF101 split1 using the motion representation as the input modality. Following the TSN manner, we
first sample frames from evenly divided video segments, then these frames are fed into the motion modeling module and
backbone CNN (ResNet-50) sequentially. Finally, the output activations are averaged as the final prediction scores. Note that
all the accuracy results in both tables are measured with the same network settings: initial learning rate: 0.001; total epochs:
80 (decreases lr by 10 after every 30 epochs); mini batchsize: 16; dropout ratio: 0.7; pretrain: ImageNet.

II. VISUALIZATION RESULTS OF PA

“ShavingBeard”
from UCF101 dataset.

“Pushing something so it spins”
from Something-V1 dataset.

“Typing”
from UCF101 dataset.

“Showing something to the camera”
from Something-V1 dataset.



2

“CliffDiving”
from UCF101 dataset.

“Moving something closer to something”
from Something-V1 dataset.

“BaseballPitch”
from UCF101 dataset.

“Plugging something into something”
from Something-V1 dataset.

“BenchPress”
from UCF101 dataset.

“Bending something so that it deforms”
from Something-V1 dataset.

“BlowDryHair”
from UCF101 dataset.

“Spinning something that quickly stops spinning”
from Something-V1 dataset.



3

“Drumming”
from UCF101 dataset.

“Lifting something with something on it”
from Something-V1 dataset.

“ParallelBars”
from UCF101 dataset.

“Spinning something that quickly stops spinning”
from Something-V1 dataset.

“PushUps”
from UCF101 dataset.

“Turning the camera upwards while filming something”
from Something-V1 dataset.

“CuttingInKitchen”
from UCF101 dataset.

“Tipping something over”
from Something-V1 dataset.



4

III. LEARNED TIMESCALE-WISE WEIGHTS w OF VAP

“Typing”
from UCF101 dataset.

“Dropping something onto something”
from Something-V1 dataset.

“ShavingBeard”
from UCF101 dataset.

“Tearing something into two pieces”
from Something-V1 dataset.

“HulaHoop”
from UCF101 dataset.

“Holding something behind something”
from Something-V1 dataset.

“PlayingPiano”
from UCF101 dataset.

“Throwing something in the air and letting it fall”
from Something-V1 dataset.

“ApplyLipstick”
from UCF101 dataset.

“Unfolding something”
from Something-V1 dataset.


	I Introduction
	II Related Work
	III Persistence of Appearance (PA)
	III-A Theoretical Derivation of PA
	III-B PA Module Design
	III-C Encoding Schemes

	IV Persistent Appearance Network (PAN)
	IV-A PANFull and PANLite
	IV-B Various-timescale Aggregation Pooling (VAP)

	V Experiments
	V-A Experimental Settings
	V-B Ablation Studies for PA
	V-C Ablation Studies for VAP
	V-D Comparison with the State-of-the-Arts
	V-E Visualization and Discussion

	VI Conclusion
	References



