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Abstract

It is a common paradigm in object detection frameworks to
treat all samples equally and target at maximizing the per-
formance on average. In this work, we revisit this paradigm
through a careful study on how different samples contribute
to the overall performance measured in terms of mAP. Our
study suggests that the samples in each mini-batch are nei-
ther independent nor equally important, and therefore a better
classifier on average does not necessarily mean higher mAP.
Motivated by this study, we propose the notion of Prime Sam-
ples, those that play a key role in driving the detection perfor-
mance. We further develop a simple yet effective sampling
and learning strategy called PrIme Sample Attention (PISA)
that directs the focus of the training process towards such
samples. Our experiments demonstrate that it is often more
effective to focus on prime samples than hard samples when
training a detector. Particularly, On the MSCOCO dataset,
PISA outperforms the random sampling baseline and hard
mining schemes, e.g. OHEM and Focal Loss, consistently by
around 2% on both single-stage and two-stage detectors, even
with a strong backbone ResNeXt-101.

1 Introduction
Modern object detection frameworks, including both single-
stage (Liu et al. 2016; Lin et al. 2017b) and two-stage (Gir-
shick et al. 2014; Girshick 2015; Ren et al. 2015), usually
adopt a region-based approach, where a detector is trained to
classify and localize sampled regions. Therefore, the choice
of region samples is critical to the success of an object detec-
tor. In practice, most of the samples are located in the back-
ground areas. Hence, simply feeding all the region samples,
or a random subset thereof, through a network and optimiz-
ing the average loss is obviously not a very effective strategy.

Recent studies (Liu et al. 2016; Shrivastava, Gupta, and
Girshick 2016; Lin et al. 2017b) showed that focusing on
difficult samples is an effective way to boost the perfor-
mance of an object detector. A number of methods have been
developed to implement this idea in various ways. Represen-
tative methods along this line include OHEM (Shrivastava,
Gupta, and Girshick 2016) and Focal Loss (Lin et al. 2017b).
The former explicitly selects hard samples, i.e. those with
high loss values; while the latter uses a reshaped loss func-
tion to reweight the samples, emphasizing difficult ones.
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Figure 1: Left shows both a prime sample (in red color) and a hard
sample (in blue color) for an object against the ground-truth. The
prime sample has a high IoU with the ground-truth and is located
more precisely around the object. Right shows the RoC curves ob-
tained with different sampling strategies, which suggests that at-
tending to prime samples instead of hard samples is a more effec-
tive strategy to boost the performance of a detector.

Though simple and widely adopted, random sampling or
hard mining are not necessarily the optimal sampling strat-
egy in terms of training an effective detector. Particularly, a
question remains open – what are the most important sam-
ples for training an object detector. In this work, we carry
out a study on this issue with an aim to find a more effective
way to sample/weight regions.

Our study reveals two significant aspects that need to be
taken into consideration when designing a sampling strat-
egy: (1) Samples should not be treated as independent and
equally important. Region-based object detection is to se-
lect a small subset of bounding boxes out of a large num-
ber of candidates to cover all objects in an image. Hence,
the decisions on different samples are competing with each
other, instead of being independent (like in a classification
task). In general, it is more advisable for a detector to yield
high scores on one bounding box around each object while
ensuring all objects of interest are sufficiently covered, in-
stead of trying to produce high scores for all positive sam-
ples, i.e. those that substantially overlap with objects. Partic-
ularly, our study shows that focusing on those positive sam-
ples with highest IoUs with the ground-truth objects is an
effective way towards this goal. (2) The objective of classifi-
cation and localization are correlated. The observation that
those samples that are precisely located around ground-truth
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objects are particularly important has a strong implication,
that is, the objective of classification is closely related to that
of localization. In particular, well located samples need to be
well classified with high confidences.

Inspired by the study, we propose PrIme Sample Atten-
tion (PISA), a simple yet effective method to sample regions
and learn object detectors, where we refer to those samples
that play a more important role in achieving high detection
performance as the prime samples. We define Hierarchi-
cal Local Rank (HLR) as a metric of importance. Specifi-
cally, we use IoU-HLR to rank positive samples and Score-
HLR to rank negative samples in each mini-batch. This rank-
ing strategy places the positive samples with highest IoUs
around each object and the negative samples with highest
scores in each cluster to the top of the ranked list and di-
rects the focus of the training process to them via a sim-
ple re-weighting scheme. We also devise a classification-
aware regression loss to jointly optimize the classification
and regression branches. Particularly, this loss would sup-
press those samples with large regression loss, thus reinforc-
ing the attention to prime samples.

We tested PISA with both two-stage and single-stage de-
tection frameworks. On the MSCOCO (Lin et al. 2014) test-
dev, with a strong backbone of ResNet-101-32x4d, PISA im-
proves Faster R-CNN (Ren et al. 2015), Mask R-CNN (He
et al. 2017) and RetinaNet (Lin et al. 2017b) by 2.0%, 1.5%,
1.8% respectively. For SSD, PISA achieves a gain of 2.1%.

Our main contributions mainly lie in three aspects: (1)
Our study leads to a new insight into what samples are im-
portant for training an object detector, thus establishing the
notion of prime samples. (2) We devise Hierarchical Local
Rank (HLR) to rank the importance of samples, and on top of
that an importance-based reweighting scheme. (3) We intro-
duce a new loss called classification-aware regression loss
that jointly optimizes both the classification and regression
branches, which further reinforces the attention to prime
samples.

2 Related Work
Region-based object detectors. Region-based object detec-
tors transform the detection task into a bounding box classi-
fication and regression problem. Contemporary approaches
mostly fall into two categories, i.e., the two-stage and single-
stage detection paradigm. Two-stage detectors such as R-
CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015)
and Faster R-CNN (Ren et al. 2015) first generate a set of
candidate proposals, and then randomly sample a relatively
small batch of proposals from all the candidates. These pro-
posals are classified into foreground classes or background,
and their locations are refined by regression. There are also
some recent improvements (Dai et al. 2016; Lin et al. 2017a;
He et al. 2017; Hu et al. 2018; Cai and Vasconcelos 2018;
Chen et al. 2019a) along this paradigm. In contrast, single-
stage detectors like SSD (Liu et al. 2016) and RetinaNet (Lin
et al. 2017b) directly predict class scores and box offsets
from anchors, without the region proposal step. Other vari-
ants include (Zhang et al. 2018; Li, Liu, and Wang 2019;
Zhao et al. 2019; Zhu et al. 2019). The proposed PISA is not

designed for any specific detectors but can be easily applied
to both paradigms.
Sampling strategies in object detection. The most widely
adopted sampling scheme in object detection is the random
sampling, that is, to randomly select some samples from all
candidates. Since negative samples are usually much more
than positive ones, a fixed ratio may be set for positive
and negative samples during the sampling, like in (Girshick
2015; Ren et al. 2015). Another popular idea is to sample
hard samples which have larger losses, this strategy can lead
to better optimization for classifiers. The principle of hard
mining is proposed in early detection work (Sung and Pog-
gio 1998; Felzenszwalb et al. 2010), and also adopted by
more recent methods (Liu et al. 2016; Girshick et al. 2014;
Shrivastava, Gupta, and Girshick 2016) in the deep learning
era. Libra R-CNN (Pang et al. 2019) proposes IoU-balanced
Sampling as an approximation of hard negative mining. As
a special case of hard mining, DCR (Cheng et al. 2018)
samples hard false positive from the base classifier. Reti-
naNet (Lin et al. 2017b), does not perform actual sampling
although, can be seen as a soft version of sampling. It ap-
plies different loss weights to samples by Focal Loss, to fo-
cus more on hard samples. However, the goal of hard mining
is to boost the average performance of classifier and does
not investigate the difference between detection and classi-
fication. Different from that, PISA can achieve a biased per-
formance on different samples. According to our study in
Sec. 3, we find that prime samples are not necessarily hard
ones, which is opposite to hard mining.
Improvement of NMS with localization confidence IoU-
Net (Jiang et al. 2018) proposes to use the localization con-
fidence instead of classification scores for NMS. It adds an
extra branch to predict the IoU of samples, and use the local-
ization confidence, i.e., predicted IoU, for NMS. There are
some major differences between IoU-Net and our method.
Firstly, IoU-Net aims to yield higher scores for proposals
with higher predicted IoU. In this work, we found that high
IoU does not necessarily mean being important for training.
Particularly, the relative ranking among proposals around
the objects also plays a crucial role. Secondly, our goal is
not to improve the NMS and we do not exploit an additional
branch to predict the localization confidence, but investigate
the sample importance and propose to pay more attention
to prime samples with the importance-based reweighting, as
well as a new loss to correlate the training of two branches.

3 Prime Samples

In this section, we introduce the concept of Prime Samples,
namely those that have greater influence on the performance
of object detection. Specifically, we carry out a study on the
importance of different samples by revisiting how they af-
fect mAP, the major performance metric for object detec-
tion. Our study shows that the importance of each sample
depends on how its IoU or score compares to that of the oth-
ers overlapping with the same object. Therefore, we propose
HLR (IoU-HLR and Score-HLR), a new ranking strategy, as
a quantitative way to assess the importance.

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight

xuanthuy
Highlight



0.0 0.2 0.4 0.6 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

0.5
0.6
0.7
0.8
0.9
base
top5
top25

Figure 2: Precision-recall curve under different IoU thresholds.
The solid lines correspond to the baseline, dashed lines and dotted
lines are results of reducing the classification loss by increasing
scores of positive samples. Top5 and top25 IoU-HLR samples are
concentrated on respectively.

A Revisit to mAP. mAP is a widely adopted metric for as-
sessing the performance in object detection, which is com-
puted as follows. Given an image with annotated ground-
truths, each bounding box will be marked as true positive
(TP) when: (i) the IoU between this bounding box and its
nearest ground truth is greater than a threshold θ, and (ii)
there are no other boxes with higher scores which is also a
TP of the same ground truth. All other bounding boxes are
considered as false positives (FP). Then, the recall is defined
as the fraction of ground-truths that are cover by TPs, and
the precision is defined as the fraction of resulted bound-
ing boxes that are TPs. On a testing dataset, one can obtain
a precision-recall curve by varying the threshold θ, usually
ranging from 0.5 to 0.95, and compute the average precision
(AP) for each class as the area under the curve. Then mAP is
defined as the mean of the AP values over all classes.

The way that mAP works reveals two criteria on which
positive samples are more important for an object detector.
(1) Among all bounding boxes that overlap with a ground-
truth object, the one with the highest IoU is the most im-
portant as its IoU value directly influences the recall. (2)
Across all highest-IoU bounding boxes for different objects,
the ones with higher IoUs are more important, as they are the
last ones that fall below the IoU threshold θ as θ increases
and thus have great impact on the overall precision.

A Revisit to False Positives. One of the main sources of
false positives are negative samples that are wrongly clas-
sified as positive, and they are harmful to the precision and
will decrease the mAP. However, not all misclassified sam-
ples have direct influence on the final results. During the in-
ference, if there are multiple negative samples that heavily
overlap with each other, only the one with the highest score
remains while others are discarded after Non-Maximum
Suppression (NMS). In this way, if a negative sample is close
to another one with higher score, it becomes less important
even if the score of itself may also be high because it will not
be kept in the final results. We can learn which negative sam-

ples are important. (1) among all negative samples within
a local region, the one with the highest score is the most
important. (2) Across all highest-score samples in different
regions, the ones with higher scores are more important, be-
cause they are the first ones that decrease the precision.

Hierarchical Local Rank (HLR). Based on the analysis
above, we propose IoU Hierarchical Local Rank (IoU-HLR)
and Score Hierarchical Local Rank (Score-HLR) to rank the
importance of positive and negative samples in a mini-batch.
This rank is computed in a hierarchical manner, which re-
flects the relation both locally (around each ground truth
object or some local region) and globally (over the whole
image or mini-batch). Notably, We compute IoU-HLR and
Score-HLR based on the final located position of samples,
other than the bounding box coordinates before regression,
since mAP is evaluated based on the regressed samples.

As shown in Figure 3, to compute IoU-HLR, we first di-
vide all samples into different groups, based on their near-
est ground truth objects. Next, we sort the samples within
each group in descending order by their IoU with the ground
truth, and get the IoU Local Rank (IoU-LR). Subsequently,
we take samples with the same IoU-LR and sort them in
descending order. Specifically, all top-1 IoU-LR samples
are collected and sorted, followed by top2, top3, and so
on. These two steps result in the ranking among all sam-
ples, that is the IoU-HLR. IoU-HLR follows the two cri-
teria mentioned above. First, it places the positive samples
with higher local ranks ahead, which are the samples that are
most important to each individual ground-truth object. Sec-
ond, within each local group, it re-ranks the samples accord-
ing to IoU, which aligns with the second criterion. Note that
it is often good enough to ensure high accuracies on those
samples that top this ranked list as they directly influence
both the recall and the precision, especially when the IoU
threshold is high. As shown in Figure 2, the solid lines are
the precision-recall curves under different IoU thresholds.
We simulate some experiments by increasing the scores of
samples. With the same budget, e.g., reducing the total loss
by 10%, we increase the scores of top5 and top25 IoU-HLR
samples and plot the results in dashed and dotted lines re-
spectively. The results suggest that focusing on only top
samples is better than attending more samples equally.

We compute Score-HLR for negative samples in a similar
way to IoU-HLR. Unlike positive samples that are naturally
grouped by each ground truth object, negative samples may
also appear on background regions, thus we first group them
into different clusters with NMS. We adopt the maximum
score over all foreground classes as the score of negative
samples and then follow the same steps as computing IoU-
HLR, as shown in Figure 3.

We plot the distributions of random, hard, and prime sam-
ples in Figure 4, with the IoU vs. classification loss. The
top row shows positive samples and the bottom row presents
negative ones. It is observed that hard positive samples tend
to have high classification losses and scatter over a wider
range along the IoU axis, while prime positive samples tend
to have high IoUs and low classification losses. Hard nega-
tive samples tend to have high classification losses and high
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Figure 3: Two steps to compute HLR. Samples are first sorted by IoU(Score) locally, and then sorted in the same-rank group.
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Figure 4: The distribution of random, hard, and prime samples.
Here the hard samples are the ones with top-3 loss values from each
image; while the prime samples are those ranked as top-3 HLRs.

IoUs, while prime negative samples also cover some low
loss samples and have a more diverged IoU distribution. This
suggests that these two categories of samples are of essen-
tially different characteristics.

4 Learn Detectors via Prime Sample
Attention

The aim of object detection is not to obtain a better classi-
fication accuracy on average, but to achieve as good perfor-
mance as possible on prime samples in the set, as discussed
in Section 3. In this work, we propose Prime Sample Atten-
tion, a simple and effective sampling and learning strategy
which pay more attention to prime samples. PISA consists
of two components: Importance-based Sample Reweighting
(ISR) and Classification Aware Regression Loss (CARL).
With the proposed method, the training process is biased on
prime samples other than evenly treat all ones. Firstly, the
loss weight of prime samples are larger than the others, so
that the classifier tends to be more accurate on these sam-
ples. Secondly, the classifier and regressor are learned with
a joint objective, thus scores of positive prime samples get
boosted relative to unimportant ones.

4.1 Importance-based Sample Reweighting
Given the same classifier, the distribution of performance
usually matches the distribution of training samples. If part
of the samples occurs more frequently in the training data, a
better classification accuracy on those samples is supposed

to be achieved. Hard sampling and soft sampling are two
different ways to change the training data distribution. Hard
sampling selects a subset of samples from all candidates to
train a model, while soft sampling assigns different weights
for all samples. Hard sampling can be seen as a special
case of soft sampling, where each sample is assigned a loss
weight of either 0 or 1.

To make fewer modifications and fit existing frameworks,
we propose a soft sampling strategy named Importance-
based Sample Reweighting (ISR), which assigns different
loss weights to samples according to their importance. ISR
consists of positive sample reweighting and negative sample
reweighting, denoted as ISR-P and ISR-N, respectively. We
adopt IoU-HLR as the importance measurement for posi-
tive samples, and Score-HLR for negative samples. Given
the importance measurement, the remaining question is how
to map the importance to an appropriate loss weight.

We first transform the rank to a real value with a linear
mapping. According to its definition, HLR is computed sep-
arately within each class (N foreground classes and 1 back-
ground class). For class j, supposing there are nj samples
in total with the HLR {r1, r2, . . . , rnj

}, where 0 ≤ ri ≤
nj − 1, we use a linear function to transform each ri to ui
as shown in Equ. 1. Here ui denotes the importance value of
the i-th sample of class j. nmax denotes the max value of nj
over all classes, which ensures the samples at the same rank
of different classes will be assigned the same ui.

ui =
nmax − ri
nmax

(1)

A monotone increasing function is needed to further cast the
sample importance ui to a loss weight wi. Here we adopt
an exponential form as Equ. 2, where γ is the degree factor
indicating how much preference will be given to important
samples and β is a bias that decides the minimum sample
weight.

wi = ((1− β)ui + β)γ (2)

With the proposed reweighting scheme, the cross entropy
classification loss can be rewritten as Equ. 3, where n and
m are the numbers of positive and negative samples respec-
tively, s and ŝ denote the predicted score and classification
target. Note that simply adding loss weights will change the
total value of losses and the ratio between the loss of posi-
tive and negative samples, so we normalize w to w′ in order



Figure 5: Examples of PISA (bottom) and random sampling (top) results. The score threshold for visualization is 0.2.

to keep the total loss unchanged.

Lcls =

n∑
i=1

w′iCE(si, ŝi) +

m∑
j=1

w′jCE(sj , ŝj)

w′i = wi

∑n
i=1 CE(si, ŝi)∑n
i=1 wiCE(si, ŝi)

w′j = wj

∑m
j=1 CE(sj , ŝj)∑m
i=j wjCE(sj , ŝj)

(3)

4.2 Classification-Aware Regression Loss
Re-weighting the classification loss is a straightforward way
to focus on prime samples. Besides that, we develop another
method to highlight the prime samples, motivated by the ear-
lier discussion that classification and localization is corre-
lated. We propose to jointly optimize the two branches with
a Classification-Aware Regression Loss (CARL). CARL can
boost the scores of prime samples while suppressing the
scores of other ones. The regression quality determines the
importance of a sample and we expect the classifier to out-
put higher scores for important samples. The optimization of
two branches should be correlated other than independent.

Our solution is to add a classification-aware regression
loss, so that gradients are propagated from the regression
branch to the classification branch. To this end, we propose
CARL as shown in Equ. 5. pi denotes the predicted proba-
bility of the corresponding ground truth class and di denotes
the output regression offset. We use an exponential function
to transform the pi to vi, and then rescale it according to
the average value of all samples. L is the commonly used
smooth L1 loss.

Lcarl =

n∑
i=1

ciL(di, d̂i)

ci =
vi

1
n

∑n
i=1 vi

vi = ((1− b)pi + b)k

(4)

It is obvious that the gradient of ci is proportional to the
original regression loss L(di, d̂i). In the supplementary, we

prove that there is a positive correlation between L(di, d̂i)
and the gradient of pi. Namely, samples with greater regres-
sion loss will receive large gradients for the classification
scores, which means stronger suppression on the classifica-
tion scores. In another view, L(di, d̂i) reflects the localiza-
tion quality of sample i, thus can be seen as an estimation
of IoU and further seen as an estimation of IoU-HLR. Ap-
proximately, top ranked samples have low regression loss,
thus the gradients of classification scores are smaller. With
CARL, the classification branch gets supervised by the re-
gression loss. The scores of unimportant samples are greatly
suppressed, while the attention to prime samples are rein-
forced.

5 Experiments
5.1 Experimental Setting
Dataset and evaluation metric. We conduct experiments
on the challenging MS COCO 2017 dataset (Lin et al. 2014).
It consists of two subsets: the train split with 118k images
and val split with 5k images. We use the train split for train-
ing and report the performance on val and test-dev. The
standard COCO-style AP metric is adopted, which averages
mAP of IoUs from 0.5 to 0.95 with an interval of 0.05.
Implementation details. We implement our methods based
on mmdetection (Chen et al. 2019b). ResNet-50 (He et al.
2016), ResNeXt-101-32x4d (Xie et al. 2017), VGG16 (Si-
monyan and Zisserman 2014) are adopted as backbones in
our experiments. Detailed settings are described in the sup-
plementary material.

5.2 Results
Overall results. We evaluate the proposed PISA on both
two-stage and single-stage detectors, on two popular bench-
marks. We use the same hyper-parameters of PISA for all
backbones and datasets. The results on MS COCO dataset
are shown in Table 1. PISA achieves consistent mAP im-
provements on all detectors with different backbones, indi-
cating its effectiveness and generality. Specifically, it im-
proves Faster R-CNN, Mask R-CNN and RetinaNet by
2.1%, 1.8% and 1.4% with a ResNet-50 backbone. Even
with a strong backbone like ResNeXt-101-32x4d, similar



Table 1: Results of different detectors on COCO test-dev.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage detectors
Faster R-CNN ResNet-50 36.7 58.8 39.6 21.6 39.8 44.9
Faster R-CNN ResNeXt-101 40.3 62.7 44.0 24.4 43.7 49.8
Mask R-CNN ResNet-50 37.5 59.4 40.7 22.1 40.6 46.2
Mask R-CNN ResNeXt-101 41.4 63.4 45.2 24.5 44.9 51.8
Faster R-CNN w/ PISA ResNet-50 38.8(+2.1) 59.3 42.7 22.1 41.7 48.8
Faster R-CNN w/ PISA ResNeXt-101 42.3(+2.0) 62.9 46.8 24.8 45.5 53.1
Mask R-CNN w/ PISA ResNet-50 39.3(+1.8) 59.6 43.5 22.1 42.3 49.4
Mask R-CNN w/ PISA ResNeXt-101 42.9(+1.5) 63.2 47.4 24.9 46.2 54.0
Single-stage detectors
RetinaNet ResNet-50 35.9 56.0 38.3 19.8 38.9 45.0
RetinaNet ResNeXt-101 39.0 59.7 41.9 22.3 42.5 48.9
SSD300 VGG16 25.7 44.2 26.4 7.0 27.1 41.5
SSD512 VGG16 29.6 49.5 31.2 11.7 33.0 44.1
RetinaNet w/ PISA ResNet-50 37.3(+1.4) 56.5 40.3 20.3 40.4 47.2
RetinaNet w/ PISA ResNeXt-101 40.8(+1.8) 60.5 44.2 23.0 44.2 51.4
SSD300 w/ PISA VGG16 27.7(+2.0) 45.3 29.2 8.3 29.1 44.1
SSD512 w/ PISA VGG16 31.7(+2.1) 50.5 33.9 13.0 35.1 46.1

Table 2: Results of different detectors on VOC2007 test.

Method Backbone AP(VOC) AP(COCO)
Faster R-CNN ResNet-50 79.1 48.4
Faster R-CNN w/ PISA ResNet-50 81.2 52.3
RetinaNet ResNet-50 79.0 51.8
RetinaNet w/ PISA ResNet-50 79.3 54.0

improvements are observed. On SSD300 and SSD512, the
gain is more than 2.0%. Notably, PISA introduces no addi-
tional parameters and the inference time remains the same
as the baseline.

On the PASCAL VOC dataset, PISA also outperforms the
baselines, as shown in Table 2. PISA not only brings per-
formance gains under the VOC evaluation metric that use
0.5 as the IoU threshold, but achieves significant better un-
der the COCO metric that use the average of multiple IoU
thresholds. This implies that PISA is especially beneficial
to high IoU metrics and makes more accurate prediction on
precisely located samples.
Comparison of different sampling methods. To investi-
gate the effects of different sampling methods, we apply
random sampling (R), hard mining (H) and PISA (P) on
positive and negative samples respectively. Faster R-CNN is
adopted as the baseline methods. As shown in Table 3, PISA
outperforms random sampling and hard mining in all cases.
For positive samples, PISA achieves 1.6% higher mAP than
random sampling and 2.0% higher than hard mining. For
negative samples, PISA surpasses them by 0.9% and 0.4%,
respectively. When applying to both positive and negative
samples, PISA leads to 2.1% and 1.7% improvements com-
pared to random sampling and hard mining. It is noted that
the gain mainly originates from the AP of high IoU thresh-
olds, such as AP75. This indicates that attending prime sam-
ples helps the classifier to be more accurate on samples with
high IoUs. We demonstrate some qualitative results of PISA
and the baseline in Figure 5. PISA results in less false posi-

Table 3: Comparison of different sampling strategies. Re-
sults are evaluated on COCO val.

pos neg AP AP50 AP75 APS APM APL

R R 36.4 58.4 39.1 21.6 40.1 46.6
H R 36.0 58.3 38.7 21.1 39.5 45.8
P R 38.0 58.5 41.7 22.4 41.6 48.3
R H 36.9 58.2 40.1 21.2 40.7 48.5
R P 37.3 58.8 40.6 21.7 40.6 48.7
H H 36.8 58.2 39.8 21.2 40.4 48.5
P P 38.5 58.8 42.3 22.2 41.5 50.8

Table 4: Effectiveness of components of PISA.

ISR-P ISR-N CARL AP AP50 AP75 APS APM APL

36.4 58.4 39.1 21.6 40.1 46.6
X 37.1 58.7 40.3 21.7 40.9 47.1

X 37.3 58.8 40.6 21.7 40.6 48.7
X 37.4 57.9 41.2 22.1 41.1 47.7

X X 37.9 59.4 41.6 21.7 41.2 49.7
X X 38.0 58.5 41.7 22.4 41.6 48.3
X X X 38.5 58.8 42.3 22.2 41.5 50.8

tives and higher scores for prime positive samples.

5.3 Analysis
We perform a thorough study on each component of PISA,
and explain how it works compared with random sampling
and hard mining.
Component Analysis. Table 4 shows the effects of each
component of PISA. We can learn that ISR-P, ISR-N and
CARL improve the mAP by 0.7%, 0.9%, 1.0% respectively.
ISR (ISR-P + ISR-N) boots mAP 1.5%. Applying PISA
only to positive samples (ISR-P + CARL) increases mAP
by 1.6%. With all 3 components, PISA achieves a total gain
of 2.1%.



Table 5: Varying γ, β in ISR and k, b in CARL.

γP βP AP γN βN AP k b AP
0.5 0.0 36.9 0.5 0.0 37.3 0.5 0.0 37.3
1.0 0.0 36.9 1.0 0.0 37.2 1.0 0.0 37.4
2.0 0.0 37.1 2.0 0.0 37.1 2.0 0.0 N/A
2.0 0.1 37.0 0.5 0.1 37.2 1.0 0.1 37.4
2.0 0.2 36.8 0.5 0.2 37.1 1.0 0.2 37.4
2.0 0.3 36.9 0.5 0.3 37.2 1.0 0.3 37.2
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Figure 6: IoU and Loss distribution of random, hard, and
prime samples.

Ablation experiments of hyper-parameters. For both ISR
and CARL, we use an exponential transformation function
of Equ. 2 and 2 hyper-parameters (γP , βP for ISR-P, γN , βN
for ISR-N, and k, b for CARL) are introduced. The exponen-
tial factor γ or k controls the steepness of the curve, while
the constant factor β or b affects the minimum value.

When performing ablation study on hyper-parameters of
ISR-P, ISR-N or CARL, we do not involve other compo-
nents. A larger γ and small β means larger gap between
prime samples and unimportant samples, so that we are more
focus on prime samples. The opposite case means we pay
more equal attention to all samples. Through a coarse search,
we adopt γP = 2.0, γN = 0.5, βP = βN = 0 for ISR, and
k = 1.0, b = 0.2 for CARL. We also observe that the per-
formance is not very sensitive to those hyper-parameters.
What samples do different sampling strategies prefer?
To understand how ISR works, we study the sample distri-
bution of different sampling strategies from the aspects of
IoU and loss. Sample weights are taken into account when
obtaining the distribution. Results are shown in Figure 6. For
positive samples, we can learn that samples selected by hard
mining and PISA diverge from each other. Hard samples
have high losses and low IoUs, while prime samples come
with high IoUs and low losses, indicating that prime sam-
ples tend to be easier for classifiers. For negative samples,
PISA presents an intermediate preference between random
sampling and hard mining. Unlike random sampling that fo-
cus more on low IoU and easy samples or hard mining that
attend relatively high IoU and hard samples, PISA maintains
the diversity of samples.
How does ISR affect classification scores? ISR assigns
larger weights to prime samples, but does it achieve the bi-
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Figure 7: Affects of ISR on samples scores. Left: average
scores of positive samples vary with IoU-HLR. Right: aver-
age scores of negative samples vary with Score-HLR.
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Figure 8: Affects of CARL on the scores of positive samples
vary with IoU interval.

ased classification performance as expected? In Figure 7,
we plot the score distribution of positive and negative sam-
ples w.r.t. different HLRs. For positive samples, the scores
of top-ranked samples are higher than the baseline, while
that of lower-ranked samples are lower. The result demon-
strates ISR-P biases the classifier, thus boosting the prime
samples while suppressing others. For negative samples, the
scores of all samples are lower than the baseline, especially
for top-ranked samples. This implies that ISR-N has a strong
suppression for false positives.
How does CARL affect classification scores? CARL cor-
relates the classification and localization branches by intro-
ducing the classification scores to the regression loss. The
gradient will suppress the scores of samples with lower re-
gression quality, but highlight the prime samples that are lo-
calized more accurately. Figure 8 shows the scores of sam-
ples of different IoUs. Compared with the FPN baseline,
CARL boosts scores of high IoU samples but decreases
scores of low IoU ones as expected.

6 Conclusion
We study the question what are the most important sam-
ples for training an object detector, and establishing the no-
tion of prime samples. We present PrIme Sample Attention
(PISA), a simple and effective sampling and learning strat-
egy to highlight important samples. On both MS COCO and
PASCAL VOC dataset, PISA achieves consistent improve-
ments over random sampling and hard mining counterparts.



Appendix A: Derivative of CARL
As discussed in Section 4.2, we prove that there is a positive
correlation between ∂Lcarl

∂pi
and L(di, d̂i), where

Lcarl =

n∑
i=1

ciL(di, d̂i)

ci =
vi

1
n

∑n
i=1 vi

vi = ((1− b)pi + b)k

(5)

By chain rule,

∂Lcarl
∂pi

=
∂Lcarl
∂ci

∂ci
∂pi

= L(di, d̂i)
∂ci
∂pi

(6)

Furthermore,
∂ci
∂pi

=
∂ci
∂vi

∂vi
∂pi

(7)

Denoting S =
∑n
i=1 vi, we have

∂ci
∂vi

=
n

S
(1− vi

S
) (8)

The batch size is usually large, so vi << S. Thus we have

∂ci
∂vi
≈ n

S
(9)

On the other hand,
∂vi
∂pi

= (1− b)k((1− b)pi + b)k−1 (10)

We have 0 ≤ b < 1 and k > 0, so ∂vi
∂pi

> 0. Especially when
k = 1, ∂vi∂pi

= 1− b.
Combining (6)(7)(9)(10),

∂Lcarl
∂pi

=
n

S

∂vi
∂pi
L(di, d̂i) (11)

When k = 1, ∂Lcarl

∂pi
= n(1−b)

S L(di, d̂i), indicating that
∂Lcarl

∂pi
is proportional to L(di, d̂i), otherwise ∂Lcarl

∂pi
and

L(di, d̂i) are positively correlated.

Appendix B: Implementation details
We use 8 Tesla V100 GPUs in all experiments. For SSD, we
train the model for a total of 120 epochs with a minibatch of
64 images (8 images per GPU). The learning rate is initial-
ized as 0.001 and decreased by 0.1 after 80 and 110 epochs.
For other methods, we adopt ResNet-50 or ResNeXt-101-
32x4d as the backbone. FPN is used by default. The batch
size is 16 (2 images per GPU). Models are trained for 12
epochs with an initial learning rate of 0.02, which is de-
creased by 0.1 after 8 and 11 epochs respectively. We sam-
ple 512 RoIs from 2000 proposals and the ratio of posi-
tive/negative samples is set to 1:3. PISA consists of ISR

(ISR-P and ISR-N) and CARL with one exception, i.e., ISR-
N is not used in single-stage models because the number of
negative samples in single-stage models are much greater
than two-stage ones, which will intruduce significant over-
head for training time.
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