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Abstract

We present FoveaBox, an accurate, flexible and com-
pletely anchor-free framework for object detection. While
almost all state-of-the-art object detectors utilize the prede-
fined anchors to enumerate possible locations, scales and
aspect ratios for the search of the objects, their perfor-
mance and generalization ability are also limited to the de-
sign of anchors. Instead, FoveaBox directly learns the ob-
ject existing possibility and the bounding box coordinates
without anchor reference. This is achieved by: (a) predict-
ing category-sensitive semantic maps for the object existing
possibility, and (b) producing category-agnostic bounding
box for each position that potentially contains an object.
The scales of target boxes are naturally associated with fea-
ture pyramid representations for each input image.

Without bells and whistles, FoveaBox achieves state-of-
the-art single model performance of 42.1 AP on the stan-
dard COCO detection benchmark. Specially for the objects
with arbitrary aspect ratios, FoveaBox brings in signifi-
cant improvement compared to the anchor-based detectors.
More surprisingly, when it is challenged by the stretched
testing images, FoveaBox shows great robustness and gen-
eralization ability to the changed distribution of bounding
box shapes. The code will be made publicly available.

1. Introduction

Object detection requires the solution of two main tasks:
recognition and localization. Given an arbitrary image, an
object detection system needs to determine whether there
are any instances of semantic objects from predefined cate-
gories and, if present, to return the spatial location and ex-
tent. To add the localization functionality to generic object
detection systems, sliding window approaches have been
the method of choice for many years [25][7].

Recently, deep learning techniques have emerged as
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Figure 1. The RetinaNet object detection performances with dif-
ferent anchor numbers v.s. the proposed FoveaNet. With anchor
density increasing, the performance gets saturated in RetinaNet.
While FoveaNet shows better performance without the utilization
of anchors. An improved variant of FoveaNet achieves 42.1 AP
with ResNeXt-101 backbone, which is not shown in this figure.
More details are given in §4.1.

powerful methods for learning feature representations au-
tomatically from data [43][16]. R-CNN [12] and Fast R-
CNN [11] use a few thousands of category-independent re-
gion proposals to reduce the searching space for an image.
The region proposal generation stage is subsequently re-
placed by anchor-based Region Proposal Networks (RPN)
[40]. Since then, the anchor boxes are widely used as a
common component for searching possible regions of in-
terest for modern object detection frameworks. In short,
anchor method suggests dividing the box space (including
position, scale, aspect ratio) into discrete bins and refining
the object box in the corresponding bin. Most state-of-the-
art detectors rely on anchor boxes to enumerate the possible
locations, scales, and aspect ratios for target objects [30].
Anchors are regression references and classification candi-
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Figure 2. AP difference of FoveaNet and RetinaNet on COCO dataset. Both models use ResNet-FPN-50 as backbone and 800 input scales.
FoveaBox shows improvement in most of the classes, especially for classes whose bounding boxes are likely to be more arbitrary, such as
toothbrush, fork, snowboard, tie and train.

dates to predict proposals for two-stage detectors (Faster R-
CNN [40], FPN [27]) or final bounding boxes for single-
stage detectors (SSD [31], RetinaNet [28]). Nevertheless,
the anchor boxes can be regarded as a feature-sharing slid-
ing window scheme to cover the possible locations of ob-
jects.

However, the utilization of anchor boxes or (candidate
boxes) has some drawbacks. First, anchor boxes intro-
duce additional hyper-parameters of design choices. One
of the most important factors in designing anchor boxes
is how densely it covers the location space of the targets.
To achieve a good recall rate, the anchors are carefully
designed based on the statistics computed from the train-
ing/validation set. Second, one design choice based on a
particular dataset is not always applicable to other appli-
cations, which harms the generality[46]. For example, an-
chors are usually square for face detection. While pedes-
trian detection needs more tall anchors. Third, since there
is a large set of candidate object locations regularly sampled
across an image, dense object detectors usually rely on ef-
fective techniques to deal with the foreground-background
class imbalance challenge [28][23][41].

One choice to improve the anchor generation process is
to make it more flexible. Most recently, there are some suc-
cessful works trying to improve the capacity of the anchor
boxes [46][45][49]. In MetaAnchor [46], anchor functions
are dynamically generated from the arbitrary customized
prior boxes. The Guided-Anchoring method [45] jointly
predicts the locations where the center of objects are likely
to exist as well as the scales and aspect ratios at different po-
sitions. In [49], the authors also suggest dynamically learn
the anchor shapes. Nevertheless, these works still rely on
the enumeration of possible scales and aspect ratios for the
optimization of the model. In MetaAnchor, the input of the
anchor functions is the regular sampled anchors with differ-

ent aspect ratios and scales. In Guided-Anchoring, the au-
thors assume that the center of each anchor is fixed and sam-
ple multiple pairs of (w, h) to approximate the best shape
centered at the corresponding position.

In contrast, human vision system can recognize the lo-
cations of instance in space and predict the boundary given
the visual cortex map, without any pre-defined shape tem-
plate [1]. In other words, we human naturally recognize the
object in the visual scene without enumerating the candi-
date boxes. Inspired by this, an intuitive question to ask is,
is the anchor boxes scheme the optimal way to guide the
search of the objects? If the answer is no, could we design
an accurate object detection framework without the depen-
dence of anchors or candidate boxes? Without candidate
anchor boxes, one might expect a complex method is re-
quired to achieve comparable results. However, we show
that a surprisingly simple and flexible system can match the
prior state-of-the-art object detection performance without
the requirement of candidate boxes.

To this end, we present FoveaBox, a completely anchor-
free framework for object detection. FoveaBox is motivated
from the fovea of human eyes: the center of the vision field
(object) is with the highest visual acuity. FoveaBox jointly
predicts the locations where the object’s center area is likely
to exist as well as the bounding box at each valid location.
Thanks to the feature pyramidal representations [27], dif-
ferent scales of objects are naturally detected from multiple
levels of features. To demonstrate the effectiveness of the
proposed detection scheme, we combine the recent progress
of feature pyramid networks and our detection head to form
the framework of FoveaBox. Without bells and whistles,
FoveaBox gets state-of-the-art single-model results on the
COCO object detection task [29]. Our best single model,
based on a ResNeXt-101-FPN backbone, achieves a COCO
test-dev AP of 42.1, surpassing most of previously pub-



lished anchor based single-model results.
Since FoveaBox does not rely on the default anchors

both at training phase and inference, it is more robust to
bounding box distributions. To verify this, we manually
elongate the images as well as the annotations of the val-
idation set, and compare the robustness of FoveaBox with
the previous anchor-based models [28]. Under this setting,
FoveaBox outperforms the anchor-based methods by a large
margin. We believe the simple training/inference manner of
FoveaBox, together with the flexibility and accuracy, will
benefit future research on object detection and relevant top-
ics.

2. Related work
Classic Object Detectors: Prior to the success of deep
CNNs, the widely used detection systems are based on the
combination of independent components (HOG [5], SIFT
[33] etc.). DPM [8] and its variants help extending object
detectors to more general object categories and have leading
results for many years [6]. The sliding-window approach is
the leading detection paradigm for searching the object of
interest in classic object detection frameworks.
Modern Object Detectors: Modern object detectors are
generally grouped into two factions: two-stage, proposal
driven detectors and one-stage, proposal free methods. For
two-stage detectors, the first stage generates a sparse set of
object proposals, and the second stage classifies the propos-
als as well as refines the coordinates with the sliding win-
dow manner. Such pipeline is first demonstrated its effec-
tiveness by R-CNN [12] and is widely used in later two-
stage methods [15][11]. In Faster R-CNN [40], the first
stage (RPN) simultaneously predicts object bounds and ob-
jectness scores at each pre-defined sliding window anchor
with a light-weight network. Several attempts have been
performed to boost the performance of the detector, includ-
ing feature pyramid [27][24][21], multiscale [44][34], and
object relations [17], etc.

Compared to two-stage approaches, the one-stage
pipeline skips object proposal generation and predicts
bounding boxes and class scores in one evaluation. Most
top one-stage detectors rely on the anchor boxes to enu-
merate the possible locations of target objects (e.g. SSD
[31], DSSD [9], YOLOv2/v3 [38][39], and RetinaNet [28]).
In CornerNet [26], the authors propose to detect an object
bounding box as a pair of keypoints. CornerNet adopts the
Associative Embedding [35] technique to separate differ-
ent instances. Some prior works share similarities with our
work, and we will discuss them in more detail in §5.

3. FoveaBox
FoveaBox is a single, unified network composed of a

backbone network and two task-specific subnetworks. The

box prediction 
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Figure 3. FoveaBox object detector. For each output spacial posi-
tion that potentially presents an object, FoveaBox directly predicts
the confidences for all target categories and the bounding box.

backbone is responsible for computing a convolutional fea-
ture map over an entire input image and is an off-the-shelf
convolutional network. The first subnet performs per pixel
classification on the backbone’s output; the second subnet
performs bounding box prediction for the corresponding
position. While there are many possible choices for the de-
tails of these components, we take the RetinaNet’s design
[28] for simplicity and fair comparison.

3.1. Feature Pyramid Network Backbone

We adopt the Feature Pyramid Network (FPN) [27] as
the backbone network for the subsequent detection. In gen-
eral, FPN uses a top-down architecture with lateral connec-
tions to build an in-network feature pyramid from a single-
scale input. Each level of the pyramid can be used for de-
tecting objects at a different scale. We construct a pyramid
with levels {Pl}, l = 3, 4, · · · , 7, where l indicates pyramid
level. Pl has 1/2l resolution of the input. All pyramid lev-
els have C = 256 channels. For further details about FPN,
we refer readers to [27][28].
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Figure 4. FoveaBox network architecture. The design of the
architecture follows RetinaNet [28] to make a fair comparison.
FoveaBox uses a Feature Pyramid Network [27] backbone on top
of a feedforward ResNet architecture. To this backbone, FoveaBox
attaches two subnetworks, one for classifying the corresponding
cells and one for predict the (x1, y1, x2, y2) of ground-truth object
boxes. For each spatial output location, the FoveaBox predicts one
score output for each class and the corresponding 4-dimensional
box, which is different from previous works attaching A anchors
in each position (usually A = 9).



3.2. Scale Assignment

While our goal is to predict the boundary of the target ob-
jects, directly predicting these numbers is not stable, due to
the large scale variations of the objects. Instead, we divide
the scales of objects into several bins, according to the num-
ber of feature pyramidal levels. Each pyramid has a basic
area ranging from 322 to 5122 on pyramid levels P3 to P7,
respectively. So for level Pl, the basic area Sl is computed
by

Sl = 4l · S0. (1)

Analogous to the ResNet-based Faster R-CNN system
that uses C4 as the single-scale feature map, we set S0 to
16 [40]. Within FoveaBox, each feature pyramid learns to
be responsive to objects of particular scales. The valid scale
range of the target boxes for pyramid level l is computed as

[Sl/η
2, Sl · η2], (2)

where η is set empirically to control the scale range for
each pyramid. Target objects not in the corresponding scale
range are ignored during training. Note that an object may
be detected by multiple pyramids of the networks, which is
different from previous practice that maps objects to only
one feature pyramid [27][14].

3.3. Object Fovea

Each output set of pyramidal heatmaps has K channels,
where K is the number of categories, and is of size H ×W
(Fig. 4). Each channel is a binary mask indicating the possi-
bility for a class. Given a valid ground-truth box denoted as
(x1, y1, x2, y2). We first map the box into the target feature
pyramid Pl with stride 2l

x
′

1 =
x1
2l
, y

′

1 =
y1
2l
,

x
′

2 =
x2
2l
, y

′

2 =
y2
2l
,

c
′

x = x
′

1 + 0.5(x
′

2 − x
′

1),

c
′

y = y
′

1 + 0.5(y
′

2 − y
′

1).

(3)

The positive area (fovea) Rpos = (x
′′

1 , y
′′

1 , x
′′

2 , y
′′

2 ) of the
quadrangle on the score map is designed to be roughly a
shrunk version of the original one (see Fig. 3):

x
′′

1 = c
′

x − 0.5(x
′

2 − x
′

1)σ1,

y
′′

1 = c
′

y − 0.5(y
′

2 − y
′

1)σ1,

x
′′

2 = c
′

x + 0.5(x
′

2 − x
′

1)σ1,

y
′′

2 = c
′

y + 0.5(y
′

2 − y
′

1)σ1,

(4)

where σ1 is the shrunk factor. Each cell inside the posi-
tive area is annotated with the corresponding target class la-
bel for training. For the definition of negative samples, we

introduce another shrunk factor σ2 to generate Rneg using
Eq.(4). The negative area is the whole feature map exclud-
ing area in Rneg . If a cell is unassigned, it will be ignored
during training. The positive area usually accounts for a
small portion of the whole feature map, so we use Focal
Loss [28] to train the target Lcls of this branch.

3.4. Box Prediction

The object fovea only encodes the existence possibility
of the target objects. To decide the location, the model must
predict the bounding box for each potential instance. Each
ground-truth bounding box is specified in the way G =
(x1, y1, x2, y2). Our goal is to learn a transformation that
maps the networks localization outputs (tx1

, ty1
, tx2

, ty2
) at

cell (x, y) in the feature maps to the ground-truth box G:

tx1
= log

2l(x+ 0.5)− x1
z

,

ty1 = log
2l(y + 0.5)− y1

z
,

tx2 = log
x2 − 2l(x+ 0.5)

z
,

ty2 = log
y2 − 2l(y + 0.5)

z
,

(5)

where z =
√
Sl is the normalization factor to project the

output space to space centered around 1, leading to an eas-
ier and stable learning of the target. This function first maps
the coordinate (x, y) to the input image, then computes the
normalized offset between the projected coordinate and G.
Finally the targets are regularized with the log-space func-
tion.

For simplicity, we adopt the widely used Smooth L1 loss
[40] to train the box prediction Lbox. After the targets be-
ing optimized, we can generate the box boundary for each
positive cell (x, y) on the output feature maps. We note that
Eq.(5) and the inverse transformation can be easily imple-
mented by an element-wise layer in modern deep learning
frameworks [36][4].

3.5. Optimization

FoveaBox is trained with stochastic gradient descent
(SGD). We use synchronized SGD over 4 GPUs with a total
of 8 images per minibatch (2 images per GPU). Unless oth-
erwise specified, all models are trained for 270k iterations
with an initial learning rate of 0.005, which is then divided
by 10 at 180k and again at 240k iterations. Weight decay
of 0.0001 and momentum of 0.9 are used. In addition to
the standard horizontal image flipping, we also utilize ran-
dom aspect ratio jittering to reduce the over-fitting. We set
σ1 = 0.3, σ2 = 0.4 when defining Rpos and Rneg . Each
cell inside Rneg is annotated with the corresponding loca-
tion target for bounding box training.



method #sc #ar AP AP50 AP75

RetinaNet 1 1 30.2 49.0 31.7
RetinaNet 2 1 31.9 50.0 34.1
RetinaNet 3 1 31.9 49.4 33.8
RetinaNet 1 3 32.4 52.4 33.9
RetinaNet 2 3 34.2 53.1 36.5
RetinaNet 3 3 34.2 53.2 36.9
RetinaNet 4 3 33.9 52.1 36.2
FoveaBox n/a n/a 36.0 55.2 37.9

(a) Varying anchor density of RetinaNet [28] and FoveaBox

method AP APu<3 AP3≤u<5 APu≥5

RetinaNet 34.2 36.5 24.5 10.2
RetinaNet∗ 35.3 37.1 25.3 16.3
FoveaBox 36.0 37.1 27.4 18.4

(b) Detection performance with different aspect ratios

method backbone AR100 AR300 AR1000

RPN ResNet-50 44.5 51.1 56.6
FoveaBox ResNet-50 53.0 57.5 61.8

(c) Region proposal results

Table 1. Ablation experiments for FoveaBox. All models are trained on MS COCO trainval35k and tested on minival. If not
specified, ResNet-50-FPN backbone and a 600 pixel train and test image scale are used to do the ablation study. (a) FoveaBox and
varying anchor density of RetinaNet. In RetinaNet, increasing beyond 9 anchors does not shown further gains, while FoveaBox could
get much better result without anchor enumeration. (c) With the same exact network, FoveaBox is more robust at higher object aspect
ratio (min( h

w
, w
h
)) thresholds. (c) FoveaBox could also generate high quality region proposals when changing the optimization target to a

class-agnostic head.

3.6. Inference

During inference, we first use a confidence threshold of
0.05 to filter out predictions with low confidence. Then,
we select the top 1000 scoring boxes from each predic-
tion layer. Next, non-maximum suppression (NMS) with
threshold 0.5 are applied for each class separately. Finally,
the top-100 scoring predictions are selected for each image.
This inference setting is exactly the same as that in Detec-
tron baseline [13]. Although there are more intelligent ways
to perform post-processing, such as bbox voting [10], Soft-
NMS [2] or test-time image augmentations, in order to keep
simplicity and to fairly compare against the baseline mod-
els, we do not use those tricks here.

4. Experiments
We present experimental results on the bounding box de-

tection track of the challenging COCO benchmark [29]. For
training, we follow common practice [14][28] and use the
COCO trainval35k split (union of 80k images from
train and a random 35k subset of images from the 40k
image val split). We report lesion and sensitivity studies
by evaluating on the minival split (the remaining 5k im-
ages from val). For our main results, we report COCO AP
on the test-dev split, which has no public labels and re-
quires use of the evaluation server.

4.1. Ablation Study

Various anchor densities and FoveaBox: One of the most
important design factors in a anchor-based detection sys-
tem is how densely it covers the space of possible image
boxes. As anchor-based detectors use a fixed sampling grid,
a popular approach for achieving high coverage of boxes
in these approaches is to use multiple anchors [27][28] at
each spatial position to cover boxes of various scales and
aspect ratios. One may expect that we can always get better

performance when attaching denser anchors on each posi-
tion. To verify this assumption, we sweep over the number
of scale and aspect ratio anchors used at each spatial posi-
tion and each pyramid level in RetinaNet, including a single
square anchor at each location to 12 anchors per location
(Table.1(a)). Increasing beyond 6-9 anchors does not show
further gains. The saturation of performance w.r.t. density
implies the handcrafted, over-density anchors do not offer
an advantage.

Over-density anchors not only increase the foreground-
background optimization difficulty, but also likely to cause
the ambiguous position definition problem. For each out-
put spatial location, there are A anchors whose labels are
defined by the IoU with the ground-truth. Among them,
some of the anchors are defined as positive samples, while
others are negatives. However they are sharing the same in-
put features. The classifier needs to not only distinguish the
samples from different positions, but also different anchors
at the same position.

In contrast, FoveaBox explicitly predicts one target at
each position and gets no worse performance than the best
anchor-based model. The label of the target is defined by
if it is inside an object’s bounding box. Compare with the
anchor based scheme, FoveaBox enjoys several advantages.
(a) Since we only predict one target at each position, the
output space has been reduced to 1/A of the anchor-based
method, where A is the anchor number at each position.
Since the foreground-background classification challenge
has been mitigated, it is easier for the solver to optimize
the model. (b) There is no ambiguous problem and the op-
timization target is more straightforward. (c) FoveaBox is
more flexible, since we do not need to extensively design
the anchors to see a relatively better choice.

Analysis of Scale Assignment: In Eq.(2), η controls the
scale assignment extent for each pyramid. When η =

√
2,



the object scales are divided into non-overlapping bins, and
each bin is predicted by the corresponding feature pyramid.
As η increases, each pyramid will response to more scales
of objects. Table 2 shows the impact of η on the final detec-
tion performance. We set η = 2 for all other experiments.

η AP AP50 AP75 APS APM APL

1.5 35.0 54.4 36.7 17.8 38.9 48.3
2.0 36.0 55.2 37.9 18.6 39.4 50.5
2.5 35.7 55.2 37.6 18.3 39.7 49.3
3.0 35.5 54.5 37.5 17.3 40.4 49.9
4.0 34.6 53.0 36.5 16.2 39.8 48.9

Table 2. Varying η for FoveaBox.

FoveaBox is more robust to box distributions: Unlike
the traditional predefined anchor strategy, one of the major
benefits of FoveaBox is the robust prediction of bounding
boxes. To verify this, we conduct two experiments to com-
pare the localization performance of different methods.

In the first experiment, we divide the boxes in the valida-
tion set into three groups according to the ground-truth as-
pect ratios U = {ui = min( hi

wi
, wi

hi
)}, i = 1, · · · , N , where

N is the instance number in the dataset. We compare Fove-
aBox and RetinaNet at different aspect ratio thresholds, as
shown in Table 1(b). Here ∗ means training the model with
aspect ratio jittering. We see that both methods get best per-
formance when u is low. Although FoveaBox also suffers
performance decrease when u increases, it is much better
than the anchor-based RetinaNet.

To further validate the robustness to bounding boxes of
different methods, we manually stretch the image as well
as the annotations in the validation set, and exam the be-
haviors of different detectors. Fig. 5 shows the localization
performance at different h/w stretching thresholds. Under
the evaluation criterion that h/w = 1, the performance gap
between the two detectors is relatively small. The gap starts
to increase as we increase the stretching threshold. Specif-
ically, FoveaBox gets 21.3 AP when stretching h/w by 3
times, which is 3.7 points better than RetinaNet∗ counter-
part.

The anchor-based methods rely on box regression with
anchor reference to generate the final bounding box. In
practice, the regressor is trained for the positive anchors,
which will harm the generality when predicting more arbi-
trary shapes of the targets. In FoveaBox, each prediction po-
sition is not associated with the particular reference shape,
and it directly predicts the target ground-truth boxes. Since
FoveaBox allows arbitrary aspect ratios, it is capable of cap-
turing those extremely tall or wide objects better. See some
qualitative examples in Fig. 6.

Per-class difference: Fig. 2 shows per-class AP differ-
ence of FoveaBox and RetinaNet. Both of them are with

Figure 5. Evaluating boxes at different h/w stretching thresh-
olds. * means training the model with aspect ratio jittering. Since
we see similar trends when stretching w/h, we only show h/w
stretching results here.

(a) (b) 

Figure 6. Qualitative comparison of RetinaNet (a) and FoveaBox
(b). Our model shows improvements in classes with large aspect
ratios. Better viewed in color.

ResNet-50-FPN backbone and 800 input scale. The verti-
cal axis shows APFoveaBox-APRetinaNet. FoveaBox shows
improvement in most of the classes, especially for classes
whose bounding boxes are likely to be more arbitrary. For
class toothbrush, fork, sports ball, snowboard, tie and train,
the AP improvements are larger than 5 points.

Generating high-quality region proposals: Changing the
classification target to class-agnostic head is straightfor-
ward and could generate region proposals. We compare
the proposal performance against region proposal network
(RPN) [40] and evaluate average recalls (AR) with different
numbers of proposals on COCO minival set, as shown in



Figure 7. FoveaBox results on the COCO minival set. These results are based on ResNet-101, achieving a single model box AP of
38.9. For each pair, left is the detection results with bounding box, category, and confidence. Right is the score output map with their
corresponding bounding boxes before feeding into non-maximum suppression (NMS). The score probability in each position is denoted
by the color density. These figures demonstrate that FoveaBox could directly generate accurate, robust box predictions, without the
requirement of candidate anchors.

Table 1(c).
Surprisingly, our method outperforms the RPN baseline

by a large margin, among all criteria. Specifically, with top
100 region proposals, FoveaBox gets 53.0 AR, outperform-
ing RPN by 8.5 points. This validates that our model’s ca-
pacity in generating high quality region proposals.

Across model depth and scale: Table 3 shows FoveaBox
utilizing different backbone networks and input resolutions.
The inference settings are exectly the same as RetinaNet,
and the speed is also on par with the corresponding baseline.

depth scale AP AP50 AP75 APS APM APL

RetinaNet 50 400 30.5 47.8 32.7 11.2 33.8 46.1
FoveaBox 50 400 31.9 49.3 33.8 12.7 36.1 48.7
RetinaNet 50 600 34.2 53.2 36.9 16.2 37.4 47.4
FoveaBox 50 600 36.0 55.2 37.9 18.6 39.4 50.5
RetinaNet 50 800 35.7 55.0 38.5 18.9 38.9 46.3
FoveaBox 50 800 37.1 57.2 39.5 21.6 41.4 49.1
RetinaNet 101 400 31.9 49.5 34.1 11.6 35.8 48.5
FoveaBox 101 400 33.3 51.0 35.0 12.9 38.0 51.3
RetinaNet 101 600 36.0 55.2 38.7 17.4 39.6 49.7
FoveaBox 101 600 38.0 57.8 40.2 19.5 42.2 52.7
RetinaNet 101 800 37.8 57.5 40.8 20.2 41.1 49.2
FoveaBox 101 800 38.9 58.4 41.5 22.3 43.5 51.7

Table 3. FoveaBox across different input resolutions and model
depths.

As shown in Table 3, FoveaBox improves on RetinaNet

baselines consistently by 1 ∼ 2 points. When analysing
the performances on small, medium and large object scales,
we observe that the improvements come from all scales of
objects.

4.2. Main Results

We compare FoveaBox to the state-of-the-art methods
in object detection in Table 4. All instantiations of our
model outperform baseline variants of previous state-of-the-
art models. The first group of detectors on Table 4 are
two-stage detectors, the second group one-stage detectors,
and the last group the FoveaBox detector. FoveaBox out-
performs all single-stage detectors under ResNet-101 back-
bone, under all evaluation metrics. This includes the very
recent one-stage CornerNet [26]. FoveaBox also outper-
forms most two-stage detectors, including FPN [27] and
Mask R-CNN [14].

Two-stage detectors rely on region-wise sub-networks to
further classify the sparse region proposals. Cascade R-
CNN extends the two-stage scheme to multiple stages to
further refine the regions. Since FoveaBox could also gen-
erate region proposals by changing the model head to class
agnostic scheme (Table 1(c)), we believe it could further
improve the performance of two-stage detectors, which be-
yond the focus of this paper.



backbone AP AP50 AP75 APS APM APL

two-stage
Faster R-CNN+++[16]* ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN by G-RMI[19] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w FPN[27] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w TDM[42] Inception-ResNet-v2 36.8 57.7 39.2 16.2 39.8 52.1
Mask R-CNN[14] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
Relation Network [17] DCN-101 39.0 58.6 42.9 - - -
IoU-Net [20] ResNet-101 40.6 59.0 - - - -
Cascade R-CNN [3] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

one-stage
YOLOv2 [37] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [9] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
YOLOv3 [39] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 [9] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet [28] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
ConRetinaNet [22] ResNet-101 40.1 59.6 43.5 23.4 44.2 53.3
CornerNet[26]* Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9
RetinaNet [28] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

ours
FoveaBox ResNet-101 40.6 60.1 43.5 23.3 45.2 54.5
FoveaBox ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6

Table 4. Object detection single-model results v.s. state-of-the-arts on COCO test-dev. We show results for our FoveaBox models
with 800 input scale. Both RetinaNet and FoveaBox are trained with scale jitter and for 1.5× longer than the same model from Table 3.
Our model achieves top results, outperforming all one-stage and most two-stage models. The entries denoted by “*” use bells and whistles
at inference.

5. More Discussions to Prior Works

Before closing, we investigate some relations and differ-
ences between FoveaBox and some prior works.

Score Mask for Text Detection: The score mask tech-
nique has been widely used in the area of text detection
[48][18][50]. Such works usually utilize the fully convolu-
tional networks [32] to predict the existence of target scene
text and the quadrilateral shapes. Compared with scene
text detection, generic object detection is more challenging
since it faces more occlusion, multi-class classification and
scale problems. Naively adopting the text detection meth-
ods into generic object detection usually gets poor perfor-
mances.
Guided-Anchoring [45]: It jointly predicts the locations
where the center of objects of interest are likely to exist
as well as the scales and aspect ratios centered at the cor-
responding locations. If (x, y) is not in the target center,
the detected box will not be the optimal one. Guided-
Anchoring relies the center points to give the best predic-
tions. In contrast, FoveaBox predicts the (left, top, right,
bottom) boundaries of the object for each foreground posi-
tion, which is more robust.
FSAF [51]: This is a contemporary work with FoveaBox.
It also tries to directly predict the bounding boxes of the
target objects. The differences between FoveaBox and
FSAF are: (a) FSAF relies online feature selection mod-
ule to select suitable features for each instance and anchors.
While in FoveaBox, instance of a particular scale is simul-
taneously optimized by adjacent pyramids, determined by

Eq.(2), which is more simple and robust. (b) For the op-
timization of box boundary, FSAF utilizes the IoU-Loss
[47] to maximize the IoU between the predicted box and
groundtruth. While in FoveaBox, we use the Smooth L1

loss to directly predict the four boundaries, which is more
simple and straightforward. (c) FoveaBox shows much bet-
ter performance compared with FSAF, as shown in Table
5.

method backbone AP AP50 AP75

FSAF ResNet-50 35.9 55.0 37.9
FSAF+Retina ResNet-50 37.2 57.2 39.4

FoveaBox ResNet-50 37.1 57.2 39.5
FoveaBox+Retina ResNet-50 38.1 57.8 40.5

Table 5. Performance comparison of the contemporary work FSAF
[51] and FoveaBox. ’+Retina’ means combining the results of the
relevant methods and the outputs of anchor-based RetinaNet.

CornerNet [26]: CornerNet proposes detecting objects by
the top-left and bottom-right keypoint pairs. The key step
of CornerNet is to recognize which keypoints belong to
the same instance and grouping them correctly. In con-
trast, the instance class and the bounding box are associated
together in FoveaBox. We directly predict the boxes and
classes, without any grouping scheme to separate different
instances.

6. Conclusion
We have presented FoveaBox for generic object detec-

tion. By simultaneously predict the object position and the



corresponding boundary, FoveaBox gives a clean solution
for detecting objects without prior candidate boxes. We
demonstrate its effectiveness on standard benchmarks and
report extensive experimental analysis.
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