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Abstract

Scale variation is one of the key challenges in object de-
tection. In this work, we first present a controlled exper-
iment to investigate the effect of receptive fields for scale
variation in object detection. Based on the findings from the
exploration experiments, we propose a novel Trident Net-
work (TridentNet) aiming to generate scale-specific feature
maps with a uniform representational power. We construct
a parallel multi-branch architecture in which each branch
shares the same transformation parameters but with differ-
ent receptive fields. Then, we adopt a scale-aware training
scheme to specialize each branch by sampling object in-
stances of proper scales for training. As a bonus, a fast ap-
proximation version of TridentNet could achieve significant
improvements without any additional parameters and com-
putational cost compared with the vanilla detector. On the
COCO dataset, our TridentNet with ResNet-101 backbone
achieves state-of-the-art single-model results of 48.4 mAP.
Codes are available at https://git.io/fj5vR.

1. Introduction
In recent years, deep convolutional neural networks

(CNNs) [16, 35, 29] have achieved great success in ob-
ject detection. Typically, these CNN-based methods can
be roughly divided into two types: one-stage methods such
as YOLO [32] or SSD [29] which directly utilizes feed-
forward CNN to predict the bounding boxes of interest,
while two-stage methods such as Faster R-CNN [35] or
R-FCN [10] first generate proposals, and then exploit the
extracted region features from CNN for further refinement.
However, a central issue for both methods is the handling of
scale variation. The scales of object instances could vary in
a wide range, which impedes the detectors, especially those
very small or very large ones.

* Equal Contribution

To remedy the large scale variation, an intuitive way is
to leverage multi-scale image pyramids [1], which is popu-
lar in both hand-crafted feature based methods [12, 30] and
current deep CNN based methods (Figure 1(a)). Strong ev-
idence [21, 28] shows that deep detectors [35, 10] could
benefit from multi-scale training and testing. To avoid
training objects with extreme scales (small/large objects in
smaller/larger scales), SNIP [38, 39] proposes a scale nor-
malization method that selectively trains the objects of ap-
propriate sizes in each image scale. Nevertheless, the in-
crease of inference time makes the image pyramid methods
less favorable for practical applications.

Another line of efforts aims to employ in-network fea-
ture pyramids to approximate image pyramids with less
computation cost. The idea is first demonstrated in [13],
where a fast feature pyramid is constructed for object de-
tection by interpolating some feature channels from nearby
scale levels. In the deep learning era, the approximation
is even easier. SSD [29] utilizes multi-scale feature maps
from different layers and detects objects of different scales
at each feature layer. To compensate for the absence of se-
mantics in low-level features, FPN [25] (Figure 1(b)) further
augments a top-down pathway and lateral connections to
incorporate strong semantic information in high-level fea-
tures. However, region features of objects with different
scales are extracted from different levels of FPN backbone,
which in turn are generated with different sets of parame-
ters. This makes feature pyramids an unsatisfactory alter-
native for image pyramids.

Both the image pyramid and the feature pyramid meth-
ods share the same motivation that models should have dif-
ferent receptive fields for objects of different scales. Despite
the inefficiency, the image pyramid fully utilizes the repre-
sentational power of the model to transform objects of all
scales equally. In contrast, the feature pyramid generates
multi-level features thus sacrificing the feature consistency
across different scales. This leads to a decrease in effective
training data and a higher risk of overfitting for each scale.
The goal of this work is to get the best of two worlds by
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(a) Image Pyramid (b) Feature Pyramid (c) Trident Network

Figure 1: (a) Using multiple images of several scales as input, the image pyramid methods perform feature extraction and
object detection independently for each scale. (b) The feature pyramid methods utilize the features from different layers of
CNNs for different scales, which is computational friendly. This figure takes FPN [25] as an example. (c) Our proposed
Trident Network generates scale-aware feature maps efficiently by trident blocks with different receptive fields.

creating features with a uniform representational power for
all scales efficiently.

In this paper, instead of feeding in multi-scale inputs
like the image pyramid, we propose a novel network struc-
ture to adapt the network for different scales. In particu-
lar, we create multiple scale-specific feature maps with the
proposed trident blocks as shown in Figure 1(c). With the
help of dilated convolutions [41], different branches of tri-
dent blocks have the same network structure and share the
same parameters yet have different receptive fields. Fur-
thermore, to avoid training objects with extreme scales, we
leverage a scale-aware training scheme to make each branch
specific to a given scale range matching its receptive field.
Finally, thanks to weight sharing through the whole multi-
branch network, we could approximate the full TridentNet
with only one major branch during inference. This approx-
imation only brings marginal performance degradation. As
a result, it could achieve significant improvement over the
single-scale baseline without any compromise of inference
speed. This property makes TridentNet more desirable over
other methods for practical uses.

To summarize, our contributions are listed as follows:

• We present our investigation results about the effect
of the receptive field in scale variation. To our best
knowledge, we are the first to design controlled ex-
periments to explore the receptive field on the object
detection task.

• We propose a novel Trident Network to deal with scale
variation problem for object detection. Through multi-
branch structure and scale-aware training, TridentNet
could generate scale-specific feature maps with a uni-
form representational power.

• We propose a fast approximation, TridentNet Fast,
with only one major branch via our weight-sharing
trident-block design, thus introducing no additional
parameters and computational cost during inference.

• We validate the effectiveness of our approach on the

standard COCO benchmark with thorough ablation
studies. Compared with the state-of-the-art methods,
our proposed method achieves an mAP of 48.4 using
a single model with ResNet-101 backbone.

2. Related Work

Deep Object Detectors. Deep learning based object de-
tection methods have shown dramatic improvements in both
accuracy and speed recently. As one of the predominant de-
tectors, two-stage detection methods [16, 15, 35, 10, 5, 23]
first generate a set of region proposals and then refine them
by CNN networks. In [16], R-CNN generates region pro-
posals by Selective Search [40] and then classifies and re-
fines the cropped proposal regions from the original image
by a standard CNN independently and sequentially. To re-
duce the redundant computation of feature extraction in R-
CNN, SPPNet [18] and Fast R-CNN [15] extract the feature
of the whole image once, and then generate region features
through spatial pyramid pooling and RoIPooling layers, re-
spectively. The RoIPooling layer is further improved by
RoIAlign layer [17] to address the coarse spatial quantiza-
tion problem. Faster R-CNN [35] first proposes a unified
end-to-end framework for object detection. It introduces
a region proposal network (RPN) which shares the same
backbone network with the detection network to replace the
original standalone time-consuming region proposal meth-
ods. To further improve the efficiency of Faster R-CNN, R-
FCN [10] constructs position-sensitive score maps through
a fully convolutional network to avoid the RoI-wise head
network. To avoid additional large score maps in R-FCN,
Light-Head R-CNN [23] uses a thin feature map and a
cheap R-CNN subnet to build a two-stage detector more ef-
ficiently.

On the other hand, one-stage methods which are popu-
larized by YOLO [32, 33, 34] and SSD [29], aim to be more
efficient by directly classifying the pre-defined anchors and
further refining them using CNNs without the proposal gen-
eration step. Based on the multi-layer prediction module
in SSD, DSSD [14] introduces additional context informa-



tion with deconvolutional operators to improve the accu-
racy. RetinaNet [26] proposes a new focal loss to address
the extreme foreground-background class imbalance which
stands out as a central issue in one-stage detectors. Inherit-
ing the merits of two-stage approaches, RefineDet [42] pro-
poses an anchor refinement module to first filter the negative
anchor boxes and coarsely adjust the anchor boxes for the
next detection module.

Methods for handling scale variation. As the most chal-
lenging problem in object detection, large scale variation
across object instances hampers the accuracy of detectors.
The multi-scale image pyramid [21, 28, 11] is a common
scheme to improve the detection methods, especially for
objects of small and large scales. Based on the image
pyramid strategy, SNIP [38] proposes a scale normalization
method to train objects that fall into the desired scale range
for each resolution during multi-scale training. To perform
multi-scale training more efficiently, SNIPER [39] only se-
lects context regions around the ground-truth instances and
sampled background regions for each scale during training.
However, SNIP and SNIPER still suffer from the inevitable
increase of inference time.

Instead of taking multiple images as input, some meth-
ods utilize multi-level features of different spatial reso-
lutions to alleviate scale variation. Methods like Hyper-
Net [22] and ION [2] concatenate low-level and high-level
features from different layers to generate better feature
maps for prediction. Since the features from different lay-
ers usually have different resolutions, specific normaliza-
tion or transformation operators need to be designed be-
fore fusing multi-level features. Instead, SSD [29] and MS-
CNN [4] perform object detection at multiple layers for ob-
jects of different scales without feature fusion. TDM [37]
and FPN [25] further introduce a top-down pathway and lat-
eral connections to enhance the semantic representation of
low-level features at bottom layers. PANet [28] enhances
the feature hierarchies in FPN by additional bottom-up path
augmentation and proposes adaptive feature pooling to ag-
gregate features from all levels for better prediction. Rather
than using features from different layers, our proposed Tri-
dentNet generates scale-specific features through multiple
parallel branches, thus endowing our network the same rep-
resentational power for objects of different scales.

Dilated convolution. Dilated convolution [41] (aka
Atrous convolution [20]) enlarges the convolution kernel
with original weights by performing convolution at sparsely
sampled locations, thus increasing the receptive field size
without additional cost. Dilated convolution has been
widely used in semantic segmentation to incorporate large-
scale context information [41, 6, 43, 7]. In the object de-
tection field, DetNet [24] designs a specific detection back-

bone network to maintain the spatial resolution and enlarge
the receptive field using dilated convolution. Deformable
convolution [11] further generalizes dilated convolution by
learning the sampling location adaptively. In our work, we
employ dilated convolution in our multi-branch architecture
with different dilation rates to adapt the receptive fields for
objects of different scales.

3. Investigation of Receptive Field
There are several design factors of the backbone net-

work that may affect the performance of object detectors
including downsample rate, network depth, and the recep-
tive field. Several works [4, 24] have already discussed their
impacts. The effects of the first two factors are straightfor-
ward: deeper network with low downsample rate may in-
crease the complexity, but benefit the detection task in gen-
eral. Nevertheless, as far as we know, there is no previous
work that studies the impact of the receptive field in isola-
tion.

To investigate the effect of the receptive field on the de-
tection of objects with different scales, we replace some
convolutions in the backbone network with their dilated
variants [41]. We use different dilation rates to control the
receptive field of a network.

Dilated convolution with a dilation rate ds inserts ds − 1
zeros between consecutive filter values, enlarging the ker-
nel size without increasing the number of parameters and
computations. Specifically, a dilated 3×3 convolution could
have the same receptive field as the convolution with the
kernel size of 3 + 2(ds − 1). Suppose the total stride of
current feature map is s , then a dilated convolution of
rate ds could increase the receptive field of the network by
2(ds−1)s. Thus if we modify n conv layers with ds dilation
rate, the receptive field could be increased by 2(ds − 1)sn.

We conduct our pilot experiment using a Faster R-
CNN [35] detector with the ResNet-C4 backbone on the
COCO [27] dataset. The results are reported in the COCO-
style mmAP on all objects and objects of small, medium
and large sizes, respectively. We use ResNet-50 and
ResNet-101 as the backbone networks and vary the dilation
rate ds of the 3×3 convolutions from 1 to 3 for the residual
blocks in the conv4 stage.

Table 1 summarizes the results. We can find that as the
receptive field increases (larger dilation rate), the perfor-
mance of the detector on small objects drops consistently on
both ResNet-50 and ResNet-101. While for large objects,
the detector benefits from the increasing receptive fields.
The above findings suggest that:

1. The performance on objects of different scales are in-
fluenced by the receptive field of a network. The most
suitable receptive field is strongly correlated with the
scale of objects.



Figure 2: Illustration of the proposed TridentNet. The multiple branches in trident blocks share the same parameters with
different dilation rates to generate scale-specific feature maps. Objects of specified scales are sampled for each branch during
training. The final proposals or detections from multiple branches will be combined using Non-maximum Suppression
(NMS). Here we only show the backbone network of TridentNet. The RPN and Fast R-CNN heads are shared among
branches and ignored for simplicity.

Backbone Dilation AP APs APm APl

ResNet-50
1 0.332 0.174 0.384 0.464
2 0.342 0.168 0.386 0.486
3 0.341 0.162 0.383 0.492

ResNet-101
1 0.379 0.200 0.430 0.528
2 0.380 0.191 0.427 0.538
3 0.371 0.181 0.410 0.538

Table 1: Object detection results with different receptive
fields using Faster R-CNN [35] evaluated on the COCO
minival dataset [27].

2. Although ResNet-101 has a large enough theoreti-
cal receptive field to cover large objects (greater than
96×96 resolution) in COCO, the performance of large
objects could still be improved when enlarging the di-
lation rate. This finding shares the same spirit in [31]
that the effective receptive field is smaller than the the-
oretical receptive field. We hypothesize that the ef-
fective receptive field of detection networks needs to
balance between small and large objects. Increasing
dilation rates enlarges the effective receptive field by
emphasizing large objects, thus compromising the per-
formance of small objects.

The aforementioned experiments motivate us to adapt
the receptive field for objects of different scales as detailed
in the next section.

4. Trident Network
In this section, we describe our scale-aware Trident Net-

work (TridentNet) for object detection. The proposed Tri-

dentNet consists of weight sharing trident blocks and a de-
liberately designed scale-aware training scheme. Finally,
We also present the inference details of TridentNet, includ-
ing a fast inference approximation method.

4.1. Network Structure

Our goal is to inherit the merits of different receptive
field sizes and avoid their drawbacks for detection networks.
We propose a novel Trident architecture for this goal as
shown in Figure 2. In particular, our method takes a single-
scale image as input, and then creates scale-specific feature
maps through parallel branches where convolutions share
the same parameters but with different dilation rates.

Multi-branch Block We construct TridentNets by re-
placing some convolution blocks with the proposed tri-
dent blocks in the backbone network of a detector. A tri-
dent block consists of multiple parallel branches in which
each shares the same structure with the original convolution
block except the dilation rate.

Taking ResNet as an example, for a single residual block
in the bottleneck style [19], which consists of three convo-
lutions with kernel size 1×1, 3×3 and 1×1, a correspond-
ing trident block is constructed as multiple parallel residual
blocks with different dilation rates for the 3×3 convs, as
shown in Figure 3. Stacking trident blocks allows us to con-
trol receptive fields of different branches in an efficient way
similar to the pilot experiment in Section 3. Typically, we
replace the blocks in the last stage of the backbone network
with trident blocks since larger strides lead to a larger differ-
ence in receptive fields as needed. Detailed design choices
could be referred in Section 5.2.
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Figure 3: A trident block constructed from a bottleneck
residual block.

Weight sharing among branches. An immediate prob-
lem of our multi-branch trident block is that it introduces
several times parameters which may potentially incur over-
fitting. Fortunately, different branches share the same struc-
ture (except dilation rates) and thus make weight sharing
straightforward. In this work, we share the weights of all
branches and their associated RPN and R-CNN heads, and
only vary the dilation rate of each branch.

The advantages of weight sharing are three-fold. It re-
duces the number of parameters and makes TridentNet need
no extra parameters compared with the original detector.
It also echoes with our motivation that objects of different
scales should go through a uniform transformation with the
same representational power. A final point is that transfor-
mation parameters could be trained on more object samples
from all branches. In other words, the same parameters are
trained for different scale ranges under different receptive
fields.

4.2. Scale-aware Training Scheme

The proposed TridentNet architecture generates scale-
specific feature maps according to the pre-defined dilation
rates. However, the degradation in Table 1 caused by scale
mismatching (e.g. small objects on the branch with too large
dilation) still exists for every single branch. Thus, it is natu-
ral to detect objects of different scales on different branches.
Here, we propose a scale-aware training scheme to improve
the scale awareness of every branch and avoid training ob-
jects of extreme scales on mismatched branches.

Similar to SNIP [38], we define a valid range [li, ui] for
each branch i. During training, we only select the propos-
als and ground truth boxes whose scales fall in the corre-
sponding valid range of each branch. Specifically, for an
Region-of-Interest (RoI) with width w and height h on the

input image(before resize), it is valid for branch i when:

li ≤
√
wh ≤ ui. (1)

This scale-aware training scheme could be applied on both
RPN and R-CNN. For RPN, we select ground truth boxes
which are valid for each branch according to Eq. 1 during
anchor label assignment. Similarly, we remove all invalid
proposals for each branch during the training of R-CNN.

4.3. Inference and Approximation

During inference, we generate detection results for all
branches and then filter out the boxes which fall outside
the valid range of each branch. We then use NMS or
soft-NMS [3] to combine the detection outputs of multiple
branches and obtain the final results.

Fast Inference Approximation A major drawback of
TridentNet is the slow inference speed due to its branching
nature. Here we propose TridentNet Fast, a fast approxima-
tion of TridentNet with only one branch during inference.
For a three-branch network as in Figure 2, we use the mid-
dle branch for inference since its valid range covers both
large and small objects. In this way, TridentNet Fast incurs
no additional time cost compared with a standard Faster R-
CNN detector. Surprisingly, we find that this approximation
only exhibits a slight performance drop compared with the
original TridentNet. This may due to our weight-sharing
strategy, through which multi-branch training is equivalent
to within-network scale augmentation. Detailed ablation of
TridentNet Fast could be found in Section 5.3.

5. Experiments
In this section, we conduct experiments on the COCO

dataset [27]. Following [2, 25], we train models on the
union of 80k training images and 35k subset of validation
images (trainval35k), and evaluate on a set of 5k valida-
tion images (minival). We also report the final results on
a set of 20k test images (test-dev). We first describe the
implementation details of TridentNets and training settings
in Section 5.1. We then conduct thorough ablation experi-
ments to validate the proposed method in Section 5.2. Fi-
nally, Section 5.4 compares the results of TridentNets with
state-of-the-art methods on the test-dev set.

5.1. Implementation Details

We re-implement Faster R-CNN [35] as our baseline
method in MXNet [8]. Following other standard detec-
tors [16, 35], the network backbones are pre-trained on the
ImageNet [36]. The stem, the first residual stage, and all BN
parameters are freezeed. The input images are resized to a
short side of 800. Random horizontal flip is adopted during
training. By default, models are trained in a batch size of



Backbone Method Multi-branch Weight-sharing Scale-aware AP AP50 APs APm APl

ResNet-101

(a) Baseline - - - 37.9 58.8 20.0 43.0 52.8

(b) Multi-branch X 39.0 59.7 20.6 43.5 55.1

(c) TridentNet w/o scale-aware X X 40.3 61.1 21.8 44.7 56.7
(d) TridentNet w/o sharing X X 39.3 60.4 21.4 43.8 54.2

(e) TridentNet X X X 40.6 61.8 23.0 45.5 55.9

ResNet-101-Deformable

(a) Baseline - - - 39.9 61.3 21.6 45.0 55.6

(b) Multi-branch X 40.5 61.5 21.9 45.3 56.8

(c) TridentNet w/o scale-aware X X 41.4 62.8 23.4 45.9 57.4
(d) TridentNet w/o sharing X X 40.3 61.6 22.9 45.0 55.0

(e) TridentNet X X X 41.8 62.9 23.6 46.8 57.1

Table 2: Results on the COCO minival set. Starting from our baseline, we gradually add multi-branch design, weight sharing
among branches and scale-aware training scheme in our TridentNet for ablation studies.

16 on 8 GPUs. Models are trained in 12 epochs by default,
with the learning rate starting from 0.02 and decreased by
a factor of 0.1 after the 8th and 10th epoch. The 2× or
3× training schemes means doubling or tripling the total
training epochs and learning rate schedules accordingly. We
adopt the output of conv4 stage in ResNet [19] as the back-
bone feature map and the conv5 stage as the R-CNN head
in both baseline and TridentNet. If not otherwise specified,
we adopt three branches as our default TridentNet structure.
For each branch in TridentNet, the top 12000/500 propos-
als are kept before/after NMS and we sample 128 ROIs for
training. The dilation rates are set to 1, 2 and 3 in three
branches, respectively. When adopting scale-aware train-
ing scheme for TridentNet, we set the valid ranges of three
branches as [0, 90], [30, 160] and [90,∞], respectively.

For the evaluation, we report the standard COCO eval-
uation metric of Average Precision (AP) [27] as well as
AP50/AP75. We also report COCO-style APs, APm and
APl on objects of small (less than 32×32), medium (from
32×32 to 96×96) and large (greater than 96×96) sizes.

5.2. Ablation Studies

Components of TridentNet. First, we analyze the impor-
tance of each component in TridentNet. The baseline meth-
ods (Table 2(a)) are evaluated on ResNet-101 and ResNet-
101-Deformable [11] backbones. Then we gradually apply
our multi-branch architecture, weight sharing design, and
scale-aware training scheme.

1. Multi-branch. Based on the pilot experiment, Ta-
ble 2(b) evaluates a straightforward way to get the
best of multiple receptive fields. This multi-branch
variant improves over the baselines on AP for both
ResNet-101 (from 37.9 to 39.0) and ResNet-101-
Deformable (from 39.9 to 40.5), especially for large
objects (2.3/1.2 increase). This indicates that even the

simplest multi-branch design could benefit from differ-
ent receptive fields.

2. Scale-aware. Table 2(d) shows the ablation re-
sults of adding scale-aware training based on multi-
branch (Table 2(b)). It brings additional improve-
ments (0.8/1.0 increase on ResNet-101/ResNet-101-
Deformable) for small objects but drops in perfor-
mance for large objects. We conjecture that the scale-
aware training design prevents each branch from train-
ing objects of extreme scales, but may also bring about
the over-fitting problem in each branch caused by re-
duced effective samples.

3. Weight-sharing. By applying weight sharing on
multi-branch (Table 2(c)) and TridentNet (Table 2(e)),
we could achieve consistent improvements on both two
base networks. This demonstrates the effectiveness of
weight-sharing. It reduces the number of parameters
and improves the performance of detectors. With the
help of weight-sharing (Table 2(e)), all branches share
the same parameters which are fully trained on objects
of all scales, thus alleviating the over-fitting issue in
scale-aware training (Table 2(d)).

Finally, TridentNets achieve significant improvements
(2.7/1.9 AP increase) on the two base networks. It also
reveals that the proposed TridentNet structure is compati-
ble with methods like deformable convolution [11] which
could adjust receptive field adaptively.

Number of branches. We study the choice of the num-
ber of branches in TridentNets. Table 3 shows the results
using one to four branches. Note that we do not add scale-
aware training scheme here to avoid elaborately tuning valid
ranges for different numbers of branches. The results in
Table 3 demonstrate that TridentNets consistently improve



Branches AP AP50 APs APm APl

1 33.2 53.8 17.4 38.4 46.4
2 35.9 56.7 19.0 40.6 51.2
3 36.6 57.3 18.3 41.4 52.3
4 36.5 57.3 18.8 41.4 51.9

Table 3: Results on the COCO minival set using different
number of branches on ResNet-50.

Stage AP AP50 APs APm APl

Baseline 33.2 53.8 17.4 38.4 46.4
conv2 34.1 54.8 17.1 39.1 48.6
conv3 34.4 55.0 17.5 39.3 49.0
conv4 36.6 57.3 18.3 41.4 52.3

Table 4: Results on the COCO minival set by replacing conv
blocks with trident blocks in different stages of ResNet-50.

over the single-branch method (baseline) with 2.7 to 3.4 AP
increase. As can be noticed, four branches do not bring fur-
ther improvement over three branches. Thus, considering
the complexity and performance, we choose three branches
as our default setting.

Stage of Trident blocks. We conduct ablation study on
TridentNet to find the best stage to place trident blocks
in ResNet. Table 4 shows the results of applying trident
blocks in conv2, conv3 and conv4 stages, respectively. The
corresponding total strides are 4, 8 and 16. Comparing
with conv4 stage, TridentNets on conv2 and conv3 stages
achieve minor increase over the baseline. This is because
the strides in conv2 and conv3 feature maps are not large
enough to widen the discrepancy of receptive fields between
three branches.

Number of trident blocks. As the conv4 stage in ResNet
has multiple residual blocks, we also conduct ablation study
to explore how many trident blocks are needed for Trident-
Net. Here we replace different numbers of residual blocks
with trident blocks on conv4 on ResNet-101. The results in
Figure 4 show that when the number of trident blocks grows
beyond 10, the performance of TridentNet becomes stable.
This indicates the robustness of TridentNet with respect to
the number of trident blocks, when the discrepancy of re-
ceptive fields between branches is large enough.

Performance of each branch. In this section, we inves-
tigate the performance of each branch of our multi-branch
TridentNet. We evaluate the performance of each branch
independently without removing the detections out of the
scale-aware range. Table 5 shows the results of every single
branch and three branches combined. As expected, through

Figure 4: Results on the COCO minival set using different
number of trident blocks on ResNet-101.

Method Branch No. AP AP50 APs APm APl

Baseline - 37.9 58.8 20.0 43.0 52.8

TridentNet

Branch-1 31.5 53.9 22.0 43.3 29.9
Branch-2 37.8 58.4 18.0 45.3 53.4
Branch-3 31.9 48.8 7.1 37.9 56.1

3 Branches 40.6 61.8 23.0 45.5 55.9

Table 5: Results of each branch in TridentNet evaluated on
the COCO minival set. The dilation rates of three branches
in Trident Network are set as 1, 2 and 3. The results are
based on ResNet-101.

Scale-aware Ranges AP AP50 APs APm APl

(a) Baseline 37.9 58.8 20.0 43.0 52.8
(b) [0, 90], [30, 160], [90,∞] 37.8 58.4 18.0 45.3 53.4
(c) [0, 90], [0,∞], [90,∞] 39.3 60.1 19.1 44.6 56.4
(d) [0,∞], [0,∞], [0,∞] 40.0 61.1 20.9 44.3 56.6

Table 6: Results of TridentNet Fast under different scale-
aware range schemes evaluated on the COCO minival set.
All results are based on ResNet-101 and share the same
hyper-parameters.

scale-aware training, branch-1 with the smallest receptive
field achieves good results on small objects, branch-2 works
well on objects of the medium scale while branch-3 with the
largest receptive field is good at large objects. Finally, the
three-branch method inherits the merits from three single
branches and achieves the best results.

5.3. Fast Inference Approximation

To reduce the inference time of TridentNet, we propose
TridentNet Fast which uses a single major branch to approx-
imate the three-branch results during inference. As indi-
cated in Table 5, branch-2 emerges as a natural candidate
for the major branch as its scale-aware range covers most
objects. We investigate the effect of scale-aware ranges for
scale-aware training in Table 6. As shown in Table 6(c), by
enlarging the scale-aware range of the major branch to in-
corporate objects of all scales, the performance of Trident



Method Backbone AP AP50 AP75 APs APm APl

Cascade R-CNN [5] ResNet-101-FPN 42.8 62.1 46.3 23.7 45.5 55.2
DCNv2 [44] ResNet-101-DeformableV2 46.0 67.9 50.8 27.8 49.1 59.5
DCR [9] ResNet-101-FPN-Deformable 43.1 66.1 47.3 25.8 45.9 55.3
SNIP [38] ResNet-101-Deformable 44.4 66.2 44.9 27.3 47.4 56.9
SNIPER [39] ResNet-101-Deformable 46.1 67.0 51.6 29.6 48.9 58.1
TridentNet ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
TridentNet* ResNet-101-Deformable 46.8 67.6 51.5 28.0 51.2 60.5
TridentNet* + Image Pyramid ResNet-101-Deformable 48.4 69.7 53.5 31.8 51.3 60.3

Table 7: Comparisons of single-model results for different object detection methods evaluated on the COCO test-dev set.

Fast improves by 1.5 AP over the default scale-aware range
setting. Furthermore, extending scale-aware ranges for all
three branches achieves the best performance of 40.0 AP,
which is close to the original TridentNet result of 40.6 AP.
We hypothesize this may due to the weight-sharing strat-
egy. Since the weights of the major branch are shared on
other branches, training all branches in the scale-agnostic
scheme is equivalent to perform within-network multi-scale
augmentation.

5.4. Comparison with State-of-the-Arts

In this section, we evaluate TridentNet on COCO test-
dev set and compare with other state-of-the-art methods.
Here we report the results of our methods under different
settings in Table 7.

TridentNet, which is to directly apply our method on
Faster R-CNN with ResNet-101 backbone in the 2× train-
ing scheme, achieves 42.7 AP without bells and whistles.

To fairly compare with SNIP and SNIPER, we apply
multi-scale training, soft-NMS, deformable convolutions,
large-batch BN, and the 3× training scheme on Trident-
Net and get TridentNet*. It gives an AP of 46.8, already
surpassing image pyramid based SNIP and SNIPER in the
single-scale testing setting. If we adopt the image pyramid
for testing, it further improves the result of TridentNet* to
48.4 AP. To our best knowledge, for single models with
ResNet-101 backbone, our result is the best entry among
state-of-the-art methods. Furthermore, TridentNet* Fast +
Image Pyramid achieves 47.6 AP.

Compare with other scale handling methods. In this
section, we compare TridentNet with other popular scale
handling methods like FPN [25] and ASPP [7]. FPN is
the de facto model for handling scale variation in detection.
ASPP is a special case of TridentNet with only one trident
block and dilation rates of three branches set to (6, 12, 18),
followed by a feature fusion operator. To fairly compare
with FPN, we adopt a 2fc head instead of a conv5 head for
models in this section. Table 8 compares these methods
under the same training setting. TridentNet improves sig-

Method AP AP50 AP75 APs APm APl

2fc Baseline 39.8 61.7 43.0 22.0 44.7 54.4
FPN† [25] 39.8 61.3 43.3 22.9 43.3 52.6
ASPP 39.7 60.4 42.7 21.7 44.5 53.9
TridentNet 42.0 63.5 45.5 24.9 47.0 56.9

Table 8: Comparisons of detection results on the COCO
minival set. Following FPN†, all methods are based on
ResNet-101 with 2fc head using 2× training schedule.

nificantly over other methods on all scales. It shows the
effectiveness of scale specific feature maps generated by
TridentNet with the same set of parameters. Furthermore,
TridentNet Fast achieves 41.0 AP which improves 1.2 AP
over the baseline with no computation cost.

6. Conclusion

In this paper, we present a simple object detection
method called Trident Network to build in-network scale-
specific feature maps with the uniform representational
power. A scale-aware training scheme is adopted for our
multi-branch architecture to equip each branch with the spe-
cialized ability for corresponding scales. The fast inference
method with the major branch makes TridentNet achieve
significant improvements over baseline methods without
any extra parameters and computations.
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