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Abstract. Most current license plate (LP) detection and recognition ap-
proaches are evaluated on a small and usually unrepresentative dataset
since there are no publicly available large diverse datasets. In this paper,
we introduce CCPD, a large and comprehensive LP dataset. All images
are taken manually by workers of a roadside parking management com-
pany and are annotated carefully. To our best knowledge, CCPD is the
largest publicly available LP dataset to date with over 250k unique car
images, and the only one provides vertices location annotations. With
CCPD, we present a novel network model which can predict the bound-
ing box and recognize the corresponding LP number simultaneously with
high speed and accuracy. Through comparative experiments, we demon-
strate our model outperforms current object detection and recognition
approaches in both accuracy and speed. In real-world applications, our
model recognizes LP numbers directly from relatively high-resolution
images at over 61 fps and 98.5% accuracy.

Keywords: Object detection · Object recognition · Object segmenta-
tion · Convolutional neural network

1 Introduction

License plate detection and recognition (LPDR) is essential in Intelligent Trans-
port System and is applied widely in many real-world surveillance systems, such
as traffic monitoring, highway toll station, car park entrance and exit manage-
ment. Extensive researches have been made for faster or more accurate LPDR.

However, challenges for license plate (LP) detection and recognition still ex-
ist in uncontrolled conditions, such as rotation (about 20◦ onwards), snow or
fog weather, distortions, uneven illumination, and vagueness. Most papers con-
cerning LPDR [1,2,3,4,5,6,7,8,9,10] often validate their approaches on extremely
limited datasets (less than 3,000 unique images), thus might work well only
under some controlled conditions. Current datasets for LPDR (see Table 1,2)
either lack in quantity (less than 10k images) or diversity (collected from fixed
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Fig. 1. Sample images from CCPD. Each image above is labelled with its bounding
box (the yellow border) and four vertices location (four red dots). Other annotations
are omitted here for simplicity.

surveillance cameras) because an artificial collection of LP pictures requires a
lot of manpower. However, uncontrolled conditions are common in real world. A
truly reliable LPDR system should function well in these cases. To aid in better
benchmarking LPDR approaches, we present our Chinese City Parking Dataset
(CCPD).

CCPD collects data from roadside parking in all the streets of one provincial
capital in China where residuals own millions of cars. Each parking fee collector
(PFC) works on one street from 07:30 AM to 10:00 PM every day regardless
of weather conditions. For each parking bill, the collector is required to take
a picture of the car with an Android handheld POS machine and manually
annotates the exact LP number. It is worth noting that images from handheld
devices exhibit strong variations due to the uncertain position and shooting angle
of handheld devices, as well as varying illuminations and different backgrounds
at different hours and on different streets (see Figure 1). Each image in CCPD
has detailed annotations in several aspects concerning the LP: (i) LP number.
(ii) LP bounding box. (iii) Four vertices locations. (iv) Horizontal tilt degree
and vertical tilt degree [11]. (v) Other relevant information like the LP area,
the degree of brightness, the degree of vagueness and so on. Details about those
annotations are explained in section 3.

Most papers [3,4,5,6,7] separate LPDR into two stages (detection · recogni-
tion) or three stages (detection · segmentation · character recognition) and pro-
cess the LP image step by step. However, separating detection from recognition
is detrimental to the accuracy and efficiency of the entire recognition process.
An imperfect bounding box prediction given by detection methods might make
a part of the LP missing, and thus results in the subsequent recognition failure.
Moreover, operations between different stages such as extracting and resizing the
LP region for recognition are always accomplished by less efficient CPU, making
LP recognition slower. Given these two observations, we come to the intuition
that the LP recognition stage can exploit convolutional features extracted in the
LP detection stage for recognizing LP characters. Following that, we design a
novel architecture named Roadside Parking net (RPnet) for accomplishing LP
detection and recognition in a single forward pass. It’s worth noting that we
are not the first to design an end-to-end deep neural network which can localize
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LPs and recognize the LP number simultaneously. However, exploiting Region
Proposal Network and Bi-directional Recurrent Neural Networks, the end-to-
end model put forward by Li et al. [12] is not efficient as it needs 0.3 second to
accomplish the recognition process on a Titan X GPU. By contrast, based on a
simpler and more elegant architecture, RPnet can run at more than 60 fps on a
weaker NVIDIA Quadro P4000.

Both CCPD and the code for training and evaluating RPnet are available
under the open-source MIT License at: https://github.com/detectRecog/CCPD.

To summarize, this paper makes the following contributions:

– We introduce CCPD, the largest and the most diverse publicly available
dataset for LPDR to date. CCPD provides over 250k unique car images with
detailed annotations, nearly two orders of magnitude more images than other
diverse LP datasets.

– We propose a novel network architecture for unified LPDR named RPnet
which can be trained end-to-end. As feature maps are shared for detection
and recognition and losses are optimized jointly, RPnet can detect and rec-
ognize LPs more accurately and at a faster speed.

– By evaluating state-of-the-art detection and recognition models on CCPD,
we demonstrate our proposed model outperforms other approaches in both
accuracy and speed.

2 Related Work

Our work is related to prior art in two aspects: publicly available datasets (as
shown in Table 1,2), and existing algorithms on LPDR. Except for [12] which
proposed a unified deep neural network to accomplish LPDR in one step, most
works separate LP detection from LP recognition.

2.1 Datasets for LPDR

Most datasets for LPDR [13,14,15] usually collect images from traffic monitoring
systems, highway toll station or parking lots. These images are always under even
sunlight or supplementary light sources and the tilt angle of LPs does not exceed
20◦.

Caltech [13] and Zemris [14] collected less than 700 images from high-resolution
cameras on the road or freeways and thus had little variations on distances and
tilt degrees. The small volume of images is not sufficient to cover various con-
ditions. Therefore, those datasets are not convincing to evaluate LP detection
algorithms. Different from previous datasets, Azam et al. [10] and Hsu et al.

[16] pointed out researches on LP detection under hazardous conditions were
scarce and specifically looked for images in various conditions like great tilt an-
gles, blurriness, weak illumination, and bad weather. Compared with CCPD,
the shooting distance of these images varies little and the number of images is
limited.

https://github.com/detectRecog/CCPD
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Zemris [14] Azam [10] AOLPE [16] CCPD

Year 2002 2015 2017 2018
Number of images 510 850 4200 250k
Var in distance ✗ ✗ ✗ ✓

Var in tilt degrees ✗ ✓ ✓ ✓

Var in blur ✗ ✓ ✓ ✓

Var in illumination ✓ ✓ ✓ ✓

Var in weather ✓ ✓ ✓ ✓

Annotations ✗ ✗ ✓ ✓

Table 1. A comparison of publicly available datasets for LP detection and CCPD. Var
denotes variations.

SSIG [17] ReId [15] UFPR [3] CCPD

Year 2015 2017 2018 2018
Number of LPs 2000 76k 4500 250k
Var in tilt degrees ✗ ✗ ✗ ✓

Var in blur ✗ ✓ ✓ ✓

Var in illumination ✗ ✗ ✗ ✓

Char dataset ✓ ✗ ✗ ✓

Vertices annotation ✗ ✗ ✗ ✓

Table 2. A comparison of publicly available datasets for LP recognition and CCPD.
Var denotes variations.

Current datasets for LP recognition usually collect extracted LP images and
annotate their corresponding LP numbers. As shown in Table 2, SSIG [17] and
UFPR [3] captured images by cameras on the road. These images were collected
on a sunny day and rarely had tilted LPs. Before we introducing CCPD, ReId [15]
is the largest dataset for LP recognition with 76k extracted LPs and annotations.
However, gathered from surveillance cameras on highway toll gates, images in
ReId are relatively invariant in tilt angles, distances, and illuminations. Lack
of either quantity or variance, current datasets are not convincing enough to
comprehensively evaluate LP recognition algorithms.

2.2 LP detection algorithms

LP detection algorithms can be roughly divided into traditional methods and
neural network models.

Traditional LP detection methods always exploit the abundant edge informa-
tion [18,19,20,21,22,23,24] or the background color features [25,26]. Hsieh et al.

[19] utilized morphology method to reduce the number of candidates significantly
and thus speeded up the plate detection process. Yu et al. [21] proposed a robust
method based on wavelet transform and empirical mode decomposition analysis
to locate a LP. In [22] the authors analyzed vertical edge gradients to select true
plate regions. Wang et al. [23] exploited cascade AdaBoost classifier and a voting



Towards End-to-End License Plate Detection and Recognition 5

mechanism to elect plate candidates. In [27] a new pattern named Local Struc-
ture Patterns was introduced to detect plate regions. Moreover, based on the
observation that the LP background always exhibits a regular color appearance,
many works utilize HSI (Hue, Saturation, Intensity) color space to filter out the
LP area. Deb et al. [25] applied HSI color model to detect candidate regions and
achieve 89% accuracy on 90 images. In [26] the authors also exploited a color
checking module to help find LP regions.

Recent progress on Region-based Convolutional Neural Network [28] stim-
ulates wide applications [3,4,12,16] of popular object detection models on LP
detection problem. Faster-RCNN [29] utilizes a region proposal network which
can generate high-quality region proposals for detection and thus detects objects
more accurately and quickly. SSD [30] completely eliminates proposal generation
and subsequent pixel or feature resampling stages and encapsulates all computa-
tion in a single network. YOLO [31] and its improved version [32] frame object
detection as a regression problem to spatially separated bounding boxes and
associated class probabilities.

2.3 LP recognition algorithms

LP Recognition can be classified into two categories: (i) segmentation-free meth-
ods. (ii) segment first and then recognize the segmented pictures. The former
[33,34] usually utilizes LP character features to extract plate characters directly
to avoid segmentation or delivers the LP to an optical character recognition
(OCR) system [35] or a convolutional neural network [15] to perform the recog-
nition task. For the latter, the LP bounding box should be determined and shape
correction is applied before segmentation. Various features of LP characters can
be utilized for segmentation like Connected components analysis (CCA) [36]
and character-specific extremal regions [37]. After segmentation, current high-
performance methods always train a deep convolutional neural network [38] or
utilize features around LP characters like SIFT [39].

3 CCPD Overview

In this section, we introduce CCPD – a large, diverse and carefully annotated
LP dataset.

3.1 Data creation and privacy concerns

CCPD collects images from a city parking management company in one provin-
cial capital in China where car owners own millions of vehicles. The company
employs over 800 PFCs each of which charges the parking fee on a specific street.
Each parking fee order not only records LP number, cost, parking time and so
on, but also requires PFC to take a picture of the car from the front or the rear
as a proof. PFCs basically have no holidays and usually work from early morn-
ing (07:30 AM) to almost midnight (10:00 PM). Therefore, CCPD has images
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Fig. 2. CCPD layout.

under diverse illuminations, environments in different weather. Moreover, as the
only requirement for taking photos is containing the LP, PFC may shoot from
various positions and angles and even makes a slight tremor. As a result, images
in CCPD are taken from different positions and angles and are even blurred.

Apart from the LP number, each image in CCPD has many other anno-
tations. The most difficult part is annotating the four vertices locations. To
accomplish this task, we first manually labelled the four vertices locations over
10k images. Then we designed a network for locating vertices from a small image
of LP regions and exploited the 10k images and some data augmentation strate-
gies to train it. Then, after training this network well, we combined a detection
module and this network to automatically annotate the four vertices locations
of each image. Finally, we hired seven part-time workers to correct these anno-
tations in two weeks. Details about the annotation process are provided in the
supplementary material.

In order to avoid leakage of residents’ privacy, CCPD removes records other
than the LP number of each image and selects images from discrete days and in
different streets. In addition, all image metadata including device information,
GPS location, etc., is cleared and privacy regions like human faces are blurred.

3.2 Dataset splits and Statistics

CCPD provides over 250k unique LP images with detailed annotations. The
resolution of each image is 720 (Width) × 1160 (Height) × 3 (Channels). In
practice, this resolution is enough to guarantee that the LP in each image is
legible. The average size of each file is about 200 kilobytes (a total of over 48.0
Gigabytes for the entire dataset).

Each image in CCPD is labelled in the following aspects:

– LP number. Each image in CCPD has only one LP. Each LP number is
comprised of a Chinese character, a letter, and five letters or numbers. The
LP number is an important metric for recognition accuracy.
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Description

CCPD-Base The only common feature of these photos is the inclusion of a license plate.
CCPD-DB Illuminations on the LP area are dark, uneven or extremely bright.
CCPD-FN The distance from the LP to the shooting location is relatively far or near.
CCPD-Rotate Great horizontal tilt degree (20◦ ∼ 50◦) and the vertical tilt degree varies from -10◦ to 10◦.
CCPD-Tilt Great horizontal tilt degree (15◦ ∼ 45◦ degrees) and vertical tilt degree (15◦ ∼ 45◦).
CCPD-Blur Blurry largely due to hand jitter while taking pictures.
CCPD-Weather Images taken on a rainy day, snow day or fog day.
CCPD-Challenge The most challenging images for LPDR to date.
CCPD-NP Images of new cars without a LP.

Table 3. Descriptions of different sub-datasets in CCPD.

– LP bounding box. The bounding box label contains (x, y) coordinates of the
top left and bottom right corner of the bounding box. These two points can
be utilized to locate the minimum bounding rectangle of LP.

– Four vertices locations. This annotation contains the exact (x, y) coordinates
of the four vertices of LP in the whole image. As the shape of the LP is
basically a quadrilateral, these vertices location can accurately represent the
borders of the LP for object segmentation.

– Horizontal tilt degree and vertical tilt degree. As explained in [11], the hori-
zontal tilt degree is the angle between LP and the horizontal line. After the
2D rotation, the vertical tilt degree is the angle between the left border line
of LP and the horizontal line.

– Other information concerning the LP like the area, the degree of brightness
and the degree of vagueness.

Current diverse LPDR datasets [10,16,40] usually contains less than 5k im-
ages. After dividing these challenging images into different categories [40], some
categories contains less than 100 images. Based on this observation, we select
images under different conditions to build several sub-datasets for CCPD from
millions of LP images. The distribution of sub-datasets in CCPD is shown in
the Figure 2. Descriptions of these sub-datasets are shown in Table 3. Statistics
and samples of these sub-datasets are provided in the supplementary material.

We further add CCPD-Characters which contains at least 1000 extracted
images for each possible LP character. CCPD-Characters is designed for training
neural networks to recognize segmented character images. More character images
can be automatically extracted by utilizing annotations of images in CCPD.

4 The Roadside Parking Net (RPnet)

In this section, we introduce our proposed LP detection and recognition frame-
work, called RPnet, and discuss the associated training methodology.

4.1 Model

RPnet, as shown in Figure 3, is composed of two modules. The first module
is a deep convolutional neural network with ten convolutional layers to extract
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Fig. 3. The overall structure of our RPnet. It consists of ten convolutional layers with
ReLU and Batch Normalization, several MaxPooling layers with Dropout and several
components composed of fully connected layers. Given an input RGB image, in a single
forward computation, RPnet predicts the LP bounding box and the corresponding LP
number at the same time. RPnet first exploits the Box Regression layer to predict the
bounding box. Then, refer to the relative position of the bounding box in each feature
map, RPnet extracts ROIs from several already generated feature maps, combine them
after pooling them to the same width and height (16*8), and feeds the combined
features maps to the subsequent Classifiers.

different level feature maps from the input LP image. We name this module ‘the
detection module’. The detection module feeds the feature map output by the
last convolutional layer to three sibling fully-connected layers which we name
‘the box predictor’ for bounding box prediction. The second module, named
‘the recognition module’, exploits region-of-interest (ROI) pooling layers [28] to
extract feature maps of interest and several classifiers to predict the LP number
of the LP in the input image. The entire module is a single, unified network for
LP detection and recognition.

Using a popular terminology ‘attention’ [41] in neural networks, the detection
module serves as the ‘attention’ of this unified network. It tells the recognition
module where to look. Then the recognition module extracts the ROI from shared
feature maps and predicts the LP number.

Feature Extraction RPnet extracts features from the input image by all the
convolutional layers in the detection module. As the number of layers increases,
the number of channels increases and the size of the feature map decreases pro-
gressively. The later feature map has higher level features extracted and thus is
more beneficial for recognizing the LP and predicting its bounding box. Suppose
the center point x-coordinate, the center point y-coordinate, the width, and the
height of the bounding box are bx, by, bw, bh respectively. Let W and H be the
width and the height of the input image. The bounding box location cx, cy, w, h

satisfies:

cx =
bx

W
cy =

by

H
w =

bw

W
h =

bh

H
, 0 < cx, cy, w, h < 1
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Multi-layer feature maps for recognition Empirically feature maps from
different layers within a network are empirically known to have different recep-
tive field sizes [42]. Moreover, previous works such as [43] have shown that using
feature maps from the lower layers can improve semantic segmentation quality
because the lower layers capture more fine details of the input objects. Similarly,
feature maps from relatively lower layers also matter for recognizing LP char-
acters as, just like the object borders in semantic segmentation, the area of the
LP is expected to be very small relative to the entire image. After the detec-
tion module accomplishes the computation of all convolutional layers, the box
predictor outputs the bounding box location (cx, cy, w, h). For a feature layer of
size mxn with p channels, as shown in Figure 3, the recognition module extracts
feature maps in the bounding box region of size (m∗h)∗ (n∗w) with p channels.
By default, RPnet extracts feature maps at the end of three low-level layers: the
second, fourth, sixth convolutional layer. The sizes of extracted feature maps are
(122 ∗ h) ∗ (122 ∗ w) ∗ 64, (63 ∗ h) ∗ (63 ∗ w) ∗ 160, (33 ∗ h) ∗ (33 ∗ w) ∗ 192. In
practice, extracting feature maps from higher convolutional layers makes recog-
nition process slower and offers little help in improving the recognition accuracy.
After these feature maps are extracted, RPnet exploits ROI Pooling layers to
convert each extracted feature into a feature map with a fixed spatial extent of
PH ∗PW (e.g., 8∗16 in this paper). Afterwards, these three resized feature maps
8 ∗ 16 ∗ 64, 8 ∗ 16 ∗ 160 and 8 ∗ 16 ∗ 192 are concatenated to one feature map of
size 8 ∗ 16 ∗ 416 for LP number classification.

4.2 Training

RPnet can be trained end-to-end on CCPD and accomplishes LP bounding box
detection and LP number recognition in a single forward. The training involves
choosing suitable loss functions for detection performance and recognition per-
formance, as well as pre-training the detection module before training RPnet
end-to-end.

Training objective The RPnet training objective can be divided into two
parts: the localization loss (loc) and the classification loss (cls). Let N be the
size of a mini-batch in training. The localization loss (see Equation (1)) is a
Smooth L1 loss [28] between the predicted box (pb) and the ground truth box
(gb). Let the ground-truth seven LP numbers be gni(1 ≤ i ≤ 7). pni(1 ≤ i ≤ 7)
denotes predictions for the seven LP characters and each LP character prediction
pni contains nci float numbers, each representing the possibility of belonging to
a specific character class. The classification loss (see Equation (2)) is a cross-
entropy loss. With the joint optimization of both localization and classification
losses, the extracted features would have richer information about LP charac-
ters. Experiments show that both detection and recognition performance can be
enhanced by jointly optimizing these two losses.

Lloc(pb, gb) =
∑

N

∑

m∈{cx,cy,w,h}

smoothL1(pb
m − gbm) (1)
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Lcls(pn, gn) =
∑

N

∑

1≤i≤7

{−pni[gni] + log(
∑

1≤j≤nci

exp(pni[j]))} (2)

L(pb, pn, gb, gn) =
1

N
(Lloc(pb, gb) + Lcls(pn, gn)) (3)

Pre-training detection module Before training PRnet end-to-end, the de-
tection module must provide a reasonable bounding box prediction (cx, cy, w, h).
A reasonable prediction (cx, cy, w, h) must meet 0 < cx, cy, w, h < 1 and might
try to meet w

2 ≤ cx ≤ 1 − w
2 ,

h
2 ≤ cy ≤ 1 − h

2 , thus can represent a valid ROI
and guide the recognition module to extract feature maps. Unlike most object
detection related papers [29,31] which pre-train their convolutional layers on Im-
ageNet [44] to make these layers more representative, we pre-train the detection
module from scratch on CCPD as the data volume of CCPD is large enough
and, for locating a single object such as a license plate, parameters pre-trained
on ImageNet are not necessarily better than training from scratch. In practice,
the detection module always gives a reasonable bounding box prediction after
being trained 300 epochs on the training set.

5 Evaluations

In this section, we conduct experiments to compare RPnet with state-of-the-
art models on both LP detection performance and LP recognition performance.
Furthermore, we explore the effect of extracting features maps from different
layers on the final recognition accuracy.

All data comes from our proposed CCPD, the largest publicly available an-
notated LP Dataset to date. All our training tasks are accomplished on a GPU
server with 8 CPU (Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz), 60GB RAM
and one Nvidia GPU (Tesla P100 PCIe 16GB). All our evaluation tasks are fin-
ished on desktop PCs with eight 3.40 GHz Intel Core i7-6700 CPU, 24GB RAM
and one Quadro P4000 GPU.

5.1 Data preparation

As aforementioned in section 3, CCPD-Base consists of approximately 200k
unique images. We divide CCPD-Base into two equal parts. One as the de-
fault training set, another as the default evaluation set. In addition, several sub-
datasets (CCPD-DB, CCPD-FN, CCPD-Rotate, CCPD-Tilt, CCPD-Weather,
CCPD-Challenge) in CCPD are also exploited for detection and recognition
performance evaluation. Apart from Cascade classifier [45], all models used in
experiments rely on GPU and are fine-tuned on the training set. For models
without default data augmentation strategies, we augment the training data by
randomly sampling four times on each image to increase the training set by five
times. More details are provided in the supplementary material.

We did not reproduce our experiments on other datasets because most cur-
rent available LP datasets [13,14,15] are not as diverse as CCPD and their data
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FPS AP Base(100k) DB FN Rotate Tilt Weather Challenge

Cascade classifier[45] 32 47.2 55.4 49.2 52.7 0.4 0.6 51.5 27.5
SSD300[30] 40 94.4 99.1 89.2 84.7 95.6 94.9 83.4 93.1

YOLO9000[32] 42 93.1 98.8 89.6 77.3 93.3 91.8 84.2 88.6
Faster-RCNN[29] 15 92.9 98.1 92.1 83.7 91.8 89.4 81.8 83.9
TE2E[12] 3 94.2 98.5 91.7 83.8 95.1 94.5 83.6 93.1
RPnet 61 94.5 99.3 89.5 85.3 94.7 93.2 84.1 92.8

Table 4. LP detection precision (percentage) of state-of-the-art detection models on
each test set. AP denotes average precision in the whole test set and FPS denotes
frames per second.

volume is far fewer than CCPD. Thus, detection accuracy or recognition ac-
curacy on other datasets might not be as convincing as on CCPD. Moreover,
we also did not implement approaches not concerning machine learning like [8]
because in practice, when evaluated on a large-scale dataset, methods based on
machine learning always perform better.

5.2 Detection

Detection accuracy metric We follow the standard protocol in object detec-
tion Intersection-over-Union (IoU) [12].

The bounding box is considered to be correct if and only if its IoU with
the ground-truth bounding box is more than 70% (IoU > 0.7). All models are
fine-tuned on the same 100k training set.

We set a higher IoU boundary in the detection accuracy metric than TE2E
[12] because a higher boundary can filter out imperfect bounding boxes and thus
better evaluates the detection performance. The results are shown in Table 4.
Cascade classifier has difficulty in precisely locating LPs and thus performs badly
under a high IoU threshold and it is not robust when dealing with tilted LPs.
Concluded from the low detection accuracy 77.3% on CCPD-FN, YOLO has a
relatively bad performance on relatively small/large object detection. Benefited
from the joint optimization of detection and recognition, the performance of both
RPnet and TE2E surpasses Faster-RCNN and YOLO9000. However, RPnet can
recognize twenty times faster than TE2E. Moreover, by analysing the bounding
boxes predicted by SSD, we found these boxes wrap around LPs very tightly.
Actually, when the IoU threshold is set higher than 0.7, SSD achieves the highest
accuracy. The reason might be that the detection loss is not the only training
objective of RPnet. For example, a little imperfect bounding box (slightly smaller
than the ground-truth one) might be beneficial for more correct LP recognition.

5.3 Recognition

Recognition Accuracy Metric. A LP recognition is correct if and only if
the IoU is greater than 0.6 and all characters in the LP number are correctly
recognized.
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FPS AP Base(100k) DB FN Rotate Tilt Weather Challenge

Cascade classifier + HC 29 58.9 69.7 67.2 69.7 0.1 3.1 52.3 30.9
SSD300 + HC 35 95.2 98.3 96.6 95.9 88.4 91.5 87.3 83.8
YOLO9000 + HC 36 93.7 98.1 96.0 88.2 84.5 88.5 87.0 80.5
Faster-RCNN+ HC 13 92.8 97.2 94.4 90.9 82.9 87.3 85.5 76.3
TE2E 3 94.4 97.8 94.8 94.5 87.9 92.1 86.8 81.2
RPnet 61 95.5 98.5 96.9 94.3 90.8 92.5 87.9 85.1

Table 5. LP recognition precision (percentage) on each test set. Apart from TE2E
and RPnet, we append a high-performance model to other object detection models for
subsequent LP recognition. HC denotes Holistic-CNN [15].

Fig. 4. Detection and recognition results on CCPD with our RPnet model. Each image
is the smaller license plate area extracted from the original resolution 720 (Width) ×

1160 (Height) × 3 (Channels).
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Fig. 5. Performance analysis on extracting feature maps from different layers or mul-
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To our knowledge, before us, TE2E[12] is the only end-to-end network for
LPDR. Apart from TE2E and our RPnet, in our evaluations we combine state-
of-the-art detection models with a state-of-the-art recognition model named
Holistic-CNN [15] as comparisons to TE2E and RPnet. We fine-tuned Holistic-
CNN on the training set produced by extracting the LP region from the same
100k images according to their ground-truth bounding box. On the test set pro-
duced in a similar manner, Holistic-CNN can recognize over 200 small LP region
images per second with a 98.5% accuracy.

As shown in Table 5, these combined models can achieve high recognition
speed (36fps) and high recognition accuracy (95.2%). As a result of precise LP
bounding boxes predicted by SSD, the model combining SSD and Holistic-CNN
achieves up to 95.2% average precision on CCPD. However, by sharing feature
maps between the detection module and recognition module, RPnet achieves a
much faster recognition rate 61 FPS and a slightly higher recognition accuracy
95.5%.

In addition, it’s worth noting that nearly all evaluated models fail to per-
form well on CCPD-Rotate, CCPD-Weather, and especially CCPD-Challenge.
Difficulties of detection and recognition on these three sub-datasets are partly
resulted from the scarce of LPs under these conditions in training data. Their
low performances partly demonstrate that by classifying LPs into different sub-
categories, CCPD can evaluate LPDR algorithms more comprehensively.

5.4 Model analysis

Samples of detection and recognition results produced by evaluating RPnet on
CCPD are shown in Fig. 4. To understand RPnet better, we carried out some
controlled experiments to examine how each layer affects performance. For all
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variants of RPnet in experiments, we use the same settings and input size as the
original RPnet, except for specified changes.

Higher layer matters in the recognition module We number ten convo-
lutional layers in RPnet Ci, 0 ≤ i ≤ 9. Therefore, the original RPnet described in
Section 4 can be denoted RP135 because it extracts feature maps from C1, C3, C5

for LP character recognition. Similarly, we implement RP1, RP3, and RP5 where
feature maps are extracted from only one specific layer. The results are shown
in Fig. 5 (a). Among these four models, RP1 only reaches the lowest accuracy
93.5%, while all other models achieve an accuracy higher than 97.5 %. From
RP1 to RP5, with the higher layer is exploited for feature extraction, the recog-
nition accuracy increases and the epochs needed for fitting decreases. With a
single layer C5 for feature extraction, RP5 achieves almost the same accuracy as
RP135. Though lower layers can improve semantic segmentation quality, higher
order features seem to be more useful for recognition tasks.

Feature extraction from more layers not necessarily increases the

accuracy Based on the knowledge that the sixth convolutional layer C5 might
have a greater impact on the recognition accuracy, we trained two new models
RP35 and RP12345 for performance analysis which also exploits C5 and has
different number of layers for feature extraction. As shown in Fig. 5 (b), from
RP5 to RP35 to RP135, the number of layers for feature extraction increases
and the recognition accuracy that can be achieved also increases. However, with
five layers for feature extraction, RP12345 not only introduces significantly more
recognition time, but its accuracy decreased. Extracting features from too many
layers and not having enough neurons for analysing might lead to poor general-
ization.

6 Conclusions

In this paper, we present a large-scale and diverse license plate dataset named
CCPD and a novel network architecture named RPnet for unified license plate
detection and recognition. Images in CCPD are annotated carefully and are
classified into different categories according to different features of LPs. The great
data volume (250k unique images), data diversity (eight different categories),
and detailed annotations make CCPD a valuable dataset for object detection,
object recognition, and object segmentation. Extensive evaluations on CCPD
demonstrate our proposed RPnet outperforms state-of-the-art approaches both
in speed and accuracy. Currently, RPnet has been put into practice for road-
side parking services. Its accuracy and speed significantly surpass other existing
commercial license plate recognition systems.
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