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Abstract

Contextual information has been shown to be effective

in helping solve various image understanding tasks. Pre-

vious works have focused on the extraction of contextual

information from an image and use it to infer the properties

of some object(s) in the image. In this paper, we consider

an inverse problem of how to hallucinate missing contex-

tual information from the properties of a few standalone

objects. We refer to it as scene context prediction. This

problem is difficult as it requires an extensive knowledge

of complex and diverse relationships among different ob-

jects in natural scenes. We propose a convolutional neural

network, which takes as input the properties (i.e., category,

shape, and position) of a few standalone objects to predict

an object-level scene layout that compactly encodes the se-

mantics and structure of the scene context where the given

objects are. Our quantitative experiments and user stud-

ies show that our model can generate more plausible scene

context than the baseline approach. We demonstrate that

our model allows for the synthesis of realistic scene images

from just partial scene layouts and internally learns useful

features for scene recognition.

1. Introduction

Scene context refers to how the objects of interest are re-

lated to the environment surrounding them. Context infor-

mation plays an important role in modern computer vision

systems. Recent works have leveraged the scene context to

improve object detection [15, 24], recognition and segmen-

tation [9, 27, 34, 36], and learn visual feature representation

[28]. The prior works attempted to utilize the context infor-

mation existed in an image to infer the properties of some

objects of interest in the image. However, an unexplored

problem is to predict the unknown context of some objects

in the image (i.e., to anticipate what and where the missing

objects are). Given several foreground objects, humans are

remarkably capable of inferring their unknown full scene

context, by relying on extensive commonsense knowledge

of our visual world. For example, given a foreground ob-
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Figure 1. Inferring scene context from a standalone object. A stan-

dalone object provides rich information for predicting its scene

context (i.e., other objects co-occurring with it and their spatial

relations). While the pose and position of the person in the im-

age suggest that the scene may be related to sports activities, the

presence and position of the person provide hints as to what and

where other objects can appear (e.g., the sky in the upper part of

the image, and the pavement in the lower part of the image).

ject in a photo frame as shown in Figure 1, we can reason

about multiple plausible environments surrounding it. The

properties of the given object provide strong hints about the

scene environment, as well as what and where other objects

may appear in the scene.

We are thus interested in a fundamental question of

whether machines can replicate such scene context infer-

ence capability. We believe that the capability of machines

to predict where objects are can benefit many scene gener-

ation and recognition tasks. However, developing a predic-

tive model for scene context can be challenging, as natural

scenes contain a rich variety of semantic objects with com-

plex spatial relations among them. Objects can be at vari-

ous locations with different scales and shapes. Further, this

problem is inherently ambiguous, as the same objects can

have multiple semantically plausible scene contexts.

In this paper, for the first time, we address the problem

of scene context prediction from standalone objects. To this

end, we propose a novel model, which takes as input the

categories, shapes, and positions of one or more objects,

and predicts the scene context for the given objects. Instead

of directly hallucinating low level pixels, our model pre-

dicts the context in the form of an object-level scene layout.

Although lacking detailed appearances, such a representa-

tion captures the important semantics that has been shown

to be sufficient to reconstruct photo-realistic images [16]
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and build the scene structures [43]. Our model consists of

three modules: a shape generator, a region generator, and

a compositor. The shape generator aims to generate ob-

ject shapes of different categories, and the region generator

aims to generate object bounding boxes to indicate possible

object positions and sizes. The outputs of both generators

are then fused and passed to the compositor to generate a

scene layout representing the scene context, which is coher-

ent with the input objects.

To evaluate the effectiveness of our method, we con-

duct quantitative and qualitative experiments on the COCO-

Stuff dataset [2]. Experimental results show that our method

can generate diverse, semantically plausible scene contexts

from the given foreground objects. In addition, we demon-

strate that our model enables realistic full scene image syn-

thesis from only partial scene layouts, and that it internally

learns useful features for scene recognition.

The main contributions of this paper are:

• To our knowledge, we make the first attempt to ad-

dress the problem of predicting unknown environ-

ments where objects of interest reside in.

• We develop a novel neural network architecture to pre-

dict object-level scene contexts from just standalone

foreground objects.

• We demonstrate the value of scene context reasoning

ability, by showing the utility of our model in both im-

age synthesis and scene recognition tasks.

2. Related Work

Modeling scene context. The context of an image con-

tains rich information about how objects and scenes are re-

lated to each other. Cognitive science studies have shown

that contextual information plays a crucial role in human

visual recognition [1, 7]. There are many types of con-

text information, including visual context [11], global scene

context [35], relative location [8], and layout [32].

With deep learning, many tasks are now exploiting con-

textual information to learn visual features and improve vi-

sual understanding performance. On the one hand, con-

text is essential for feature learning. For example, Pathak

et al. [28] proposed a context encoder to learn high-level

semantic features for image inpainting. On the other hand,

context has been shown to be effective in many vision tasks,

such as recognition, detection and segmentation [27, 36].

Multiple contexts can also be combined to improve perfor-

mance. Choi et al. [6] proposed a graphical model to exploit

multiple contexts to identify the out-of-context objects in a

scene. Izadinia et al. [17] encoded the scene category, the

context-specific appearances of objects and their layouts to

learn the scene structure. Chien et al. [5] built a ConvNet to

predict the probability of a pedestrian to be located at some

location in the image. Wang et al. [40] used a variational

auto-encoder to show the possibility of reasonable nonex-

istent human poses in a scene. All these works use the ex-

isting context of the image as an additional cue to reason

about the properties of foreground objects of interest. Our

objective is fundamentally different from these prior works.

Conceptually, we are trying to address an inverse problem,

i.e., to infer the missing scene context from the properties

of the given foreground objects.

Our work also bears some high-level resemblance to

the recent efforts on data-driven indoor scene synthesis.

They attempted to model object arrangements with undi-

rected factor graphs [19], activity graphs [12], and stochas-

tic grammars [29]. Unlike these works that built context in-

formation from pair-wise object relationships, Wang et al.

[38] introduced a deep neural network to learn the priors

of object placements for indoor scene synthesis. Similar to

[38] from a high-level perspective, we also use deep neural

networks to learn priors on the spatial structure of objects

from image data in order to synthesize semantic layouts.

However, unlike [38] which aimed to generate the arrange-

ment of a sparse set of 3D objects, we aim to predict a dense,

pixel-wise scene layout. In addition, we deal with a more

challenging problem as we only use the given object(s) as

input but their method assumes the scene types to be known.

Unsupervised representation learning via context pre-

diction. There have been some efforts on unsupervised

visual representation learning via context prediction. The

skip-gram models [26] learn a word representation by pre-

dicting surrounding words of a single word. Doersch et al.

[10] learned an image representation via predicting the rel-

ative position of patches in an image (i.e., spatial context).

Vondrick et al. [37] learned to anticipate the visual repre-

sentation in a future frame of an unlabeled video (i.e., tem-

poral context). In our work, our ultimate goal is not the

visual representation learning, but the prediction of the sur-

rounding environment of some standalone objects.

Context-based image manipulation. A number of works

have investigated how to use context for image manipula-

tion tasks. Some works used context as a prior to retrieve

and composite the assets. Tan et al. [33] used CNN fea-

tures to capture local context for person composition. By

jointly encoding the context of foreground objects and back-

ground scenes, Zhao et al. [44] learned a feature represen-

tation for compatible foreground object retrieval based on a

given background image. However, the quality of the gener-

ated image depends on the retrieval database. The retrieved

assets may not fulfill the user’s requirement and generate

unrealistic compositions. Other works represented the con-

text as a scene layout and learned a generative network to

manipulate the synthesized image. Wang et al. [39] pro-

posed a GAN model to synthesize and manipulate high res-

olution images from the scene layout. Hong et al. [14] con-
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Figure 2. Overview of our network architecture. Our model takes as input an object layout encoding the properties of input objects

and generates a scene layout representing the scene context. We use the category classifier to pre-train the encoder to obtain the object

embedding features. The object embedding features and a noise vector are concatenated and passed to the shape generator and the region

generator. The shape generator generates the shapes of all C object categories, while the region generator generates the parameters and

confidence values of B bounding boxes to represent the potential region proposals for each category. The boundary thickness of each

bounding box indicates the confidence score of the box. The bounding boxes are then used to warp their corresponding shapes to a coarse

scene layout, which is then refined by a compositor to output a final scene layout. Further, a shape discriminator and a layout discriminator

are introduced to classify the generated object shapes and scene layouts, respectively, as real or fake.

structed a scene layout as an intermediate representation for

image manipulation from text descriptions. A key draw-

back of these methods is that they need complete semantic

layouts or text descriptions as input. With our scene con-

text prediction model, we only need the user to provide a

partial semantic layout containing a few objects, and our

approach can generate diverse plausible scene layouts for

synthesizing realistic full scene images. Thus, our model

can be considered to be complementary to existing image

synthesis methods.

3. Approach

3.1. Problem Formulation

Our goal is to develop a deep neural network that takes

the properties of one or more standalone objects as input to

generate a scene context around the objects, which contains

the other objects that are likely to co-occur with the given

objects. As illustrated in Figure 2, we encode both the input

objects and the predicted scene context using the object-

level semantic layout, which can compactly describe the

classes, shapes, and positions of the objects in a scene lay-

out. Concretely, given an input object layout Xo, our model

learns a function f to generate a scene layout Xs = f(Xo).
We describe each part of our network in details below.

3.2. Scene Context Prediction Network

Encoder. The input to the encoder is an object layout,

Xo ∈ {0, 1}H×W×C , where H and W are the height and

width of the layout, respectively, and C indicates the ob-

ject category of each pixel in the layout in the one-hot vec-

tor format. The encoder extracts object embedding features

from Xo to produce a feature map of size 4 × 4 × 512.

In order to learn a useful object feature representation, we

add a category classifier to predict the presence of each ob-

ject category in the scene context. The category classifier

contains two fully connected layers, followed by a Sigmoid

layer which outputs a C-dimensional vector.

Shape Generator. To increase the diversity of the gen-

erated layout, we add a noise vector zt on top of the object

embedding features by spatial replication and feature chan-

nel concatenation, resulting in concatenated features F . We

then feed F to the shape generator. The output is the soft bi-

nary masks M ∈ [0, 1]16×16×C , representing the shapes of

all object categories. The shape generator module is com-

posed of a sequence of de-convolutional layers. Each layer

is a 4 × 4 de-convolution with a stride of 2, followed by

batch normalization and ReLU. The last layer is a 1 × 1
convolution followed by Sigmoid nonlinearity.

Region Generator. Region generator receives F and

predicts B region proposals for each of the C object cat-

egories. Each region proposal is represented by a bounding

box with four parameters (x, y, w, h) and a confidence score

s. (x, y) refer to the center location of the box. (w, h) refer

to the width and height of the box. The confidence value

represents the probability that the bounding box covers an

object. Thus, the output of the region generator is a tensor

of size B×5×C, where 5 refers to the four parameters plus

the confidence score. The object generator module consists

of a set of residual blocks and convolution operations, fol-
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lowed by two fully connected layers to predict the bounding

box parameters and the confidence scores.

Compositor. To combine the predicted shape masks and

object bounding boxes coherently into a scene layout, for

each object category, we warp the generated shape masks

to the position of the corresponding bounding box using the

bilinear interpolation operator in the spatial transformer net-

work [18]. Note that some artifacts like unlabeled regions

and tiny objects may exist in the fused coarse scene layout.

In addition, the generated object bounding boxes may over-

lap each other, causing occlusion among different objects.

To address these problems, we further convert the coarse

layout to the dense pixelwise scene layout using the Cas-

caded Refinement Module [3].

Discriminators. For a given input (e.g., a standalone ob-

ject on a canvas), there may be multiple scene layouts that

are plausible and consistent with the input. To handle this

multi-modal issue, we introduce two additional discrimina-

tors, as inspired by the recent success of adversarial learning

approaches [13, 16]. One is a shape discriminator Dshape,

and the other is a layout discriminator Dlayout. The input

to the shape discriminator Dshape is the generated shape

masks m
′

c or the real shape masks mc. The input to the lay-

out discriminator Dlayout is the generated scene layouts or

the real scene layouts. Both discriminators encode the input

by a series of downsampling layers, which are implemented

by stride-2 convolutions.

3.3. Training

Due to the complexity of context prediction, it is diffi-

cult to directly train our model end-to-end. Thus, we first

pre-train the category classifier to obtain the object embed-

ding features. We then train all modules together. Let

l = {lc ∈ {0, 1} , c ∈ C} be the ground truth object cate-

gories of an image. We use the cross-entropy loss Lcls for

the category classifier as:

Lcls = −
∑

c∈C

[lc log pc + (1− lc) log(1− pc)], (1)

where lc = 1 if the image contains object category c. pc is

the predicted probability for c.

For the region generator, we use t = (x, y,
√
w,

√
h)T

and s to denote the bounding box parameters and the confi-

dence score of a predicted bounding box, respectively. We

define the loss as:

Lbox =
C∑

i=1

∑

j∈Bi

(pobji,j ||ti,j − t̂i,j ||2 + λ(pobji,j )||si,j − ŝi,j ||2),

(2)

where i ranges over all object categories and j ranges over

all the bounding boxes of category i. t̂i,j and ŝi,j are the

ground truth bounding box parameters and the confidence

score, respectively. p
obj
i,j is an object indicator that is 1 when

the bounding box covers a ground truth object and 0 other-

wise. Since most generated bounding boxes do not cover

any ground truth objects, we introduce a class re-balancing

function λ(x) to prevent the model from predicting a zero

confidence score for most bounding boxes. λ(x) = 1 when

x = 1 and λ(x) = 0.1 when x = 0.

For the shape generator, let m∼pfake(m) be the gener-

ated shapes. Its loss is defined as:

Lshape =Em∼pfake(m)[Lcrs(m, m̂)]+

Em∼pfake(m)[(Dshape(m)− 1)2].
(3)

The first term penalizes the difference between each gen-

erated shape m and its ground truth m̂ using a pixelwise

cross-entropy loss Lcrs. The second term encourages the

shape generator to produce realistic shapes to fool the shape

discriminator. We use L2 norm instead of log, as in the LS-

GAN [25], to stabilize our training.

For the shape discriminator, its adversarial loss is defined

as:

LD
shape =Em∼pfake(m)[(Dshape(m)− 1)2]+

Et∼preal(t)[Dshape(t)
2],

(4)

where t ∼ preal(t) are real shapes.

Finally, the losses for the output scene layout and the lay-

out discriminator are identical to Eq. 3 and 4, respectively,

except that object shapes are replaced with scene layouts.

3.4. Implementation Details

The input object layout is resized to 128 × 128 by near-

est interpolation. To help the network converge, we first

train the category classifier to obtain the object embedding

features. To obtain the values of the object indicator p
obj
i,j ,

which are used in the loss in Eq. 2, we follow the approach

of YOLO [31]. In particular, for each iteration during train-

ing, we feed an input into our network to predict the region

proposals for all object categories. A region proposal of a

category is labeled as positive (i.e., p
obj
i,j = 1) only if it has

an intersection over union (IOU) of at least 0.5 with any

ground truth bounding box of the same category, and la-

beled as negative (i.e., p
obj
i,j = 0) otherwise. The ground

truth confidence score ŝi,j of a predicted bounding box is

defined as the IOU between the predicted bounding box

and the ground truth. Note that during the training stage,

we use the ground truth of object bounding boxes for the

compositor to generate the scene layout. During the test-

ing stage, we choose the generated object bounding boxes

based on the corresponding confidence value. We use the

Adam optimizer [20] for optimization with β1 = 0.5 and

β2 = 0.9999. The learning rate is 2e−4 and the batch size

is 128. For each mini-batch, we alternately minimize the

loss functions to update the parameters of the generators

and discriminators, as in [13].
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4. Experiments

In this section, we train our model to generate scene lay-

outs on the COCO-Stuff [2] dataset. We aim to show that

our model can generate plausible scene contexts from the

input objects with diverse object properties. We show both

qualitative and quantitative results of our method, in com-

parison with a baseline, and evaluate the plausibility of our

generated scene contexts via a user study. Finally, we show

how our model can be used to synthesize realistic scene im-

ages from partial scene layouts and help performance im-

provement on scene recognition.

4.1. Dataset

We perform experiments on the COCO-Stuff dataset,

which augments a subset of the COCO dataset [22] with

additional stuff categories. The dataset annotates 40k train-

ing and 5k testing images with bounding boxes and seman-

tic layouts for both indoor and outdoor scenes, including 80

thing categories and 91 thing categories in total. Our eval-

uation only focuses on outdoor scene images in the dataset,

which have many complex and diverse scene structures and

thus make the scene context prediction problem very chal-

lenging. Given the outdoor scene layouts, we only select

those with 2 to 8 objects in them. To train our network, for

each layout, we randomly select one or two objects and re-

move other regions to form an object layout, which together

with the original semantic layout (referred to as scene lay-

out in this work) form a training pair. If a selected object

covers less than 5% of the image, we skip this object. As

a result, we produce a dataset that contains 72 object cate-

gories (39 thing categories and 33 stuff categories), with a

total of 52,803 training pairs and 1,934 test pairs.

4.2. Baseline

Since we are not aware of any previous works on

scene context prediction, we compare our method with the

pix2pix method [16], which learns a generic mapping be-

tween an input image and an output image with aligned im-

age pairs. We train the baseline using our training dataset so

that it can map an input object layout to an output scene lay-

out, as in our model. Note that we have empirically found

that the baseline tends to produce noise, i.e., small artifacts,

in its outputs. Thus, we refine its results via a simple post-

processing to address the issue. Specifically, we first filter

the initial results by a weighted median filter. We then ap-

ply a guided filter with the filtered images as guide images

to obtain the final results.

4.3. Qualitative Results

Figure 3 shows some qualitative results of our model, in

comparison with those from the baseline. We make sev-

eral observations as follows. First, our method can generate

more visually diverse scene layouts than the baseline. For

example, in the first column, the baseline always gives simi-

lar object categories and positions (e.g., grass, tree and sky),

while our method can generate diverse object categories and

positions, in response to the input object layouts. Second,

the scene layouts predicted by our model are more seman-

tically plausible than those by the baseline. For example,

in the third row of the first column, the baseline predicts

some unlikely spatial relations among the objects for the

scene (i.e., person in sky and grass in sky). In contrast, our

method predicts a sea region given the bird flying on top

of the sand, which is more convincing. Third, our model is

able to generate scene context that respects the input objects

consistently, while the baseline fails to give reasonable re-

sults in some cases (e.g., landing the snowboard on top of

the grass in the fourth row of the first column).

We further investigate how well the change in the spa-

tial relationship between the input objects may affect the

scene context inference of our model, and show the re-

sults in the second column. For example, when we change

the spatial relationship of the person and the airplane from

left/right (first row) to above/below (second row) or in-

side/surrounding (fourth row), the scene layouts by our

model favorably adapt to the inputs, while the baseline tends

to give similar results. We also analyze how different object

sizes and categories affect the predicted scene layouts. In

the third column, we show the different generated scene lay-

outs when changing the size of a car (first and second rows)

or changing the category of the input from boat to tennis

racket (third and fourth rows). Our method can still give

promising results, whereas the baseline predicts less plau-

sible context sometimes (e.g., putting a car on grass (sec-

ond row)). These results suggest that, as compared with the

baseline, our method can generate more diverse, semanti-

cally plausible scenes that fit the input object layouts.

4.4. User Studies

We use Amazon Mechanical Turk (AMT) to evaluate

the quality of our results in terms of two aspects: plausi-

bility (how plausible the generated scene layouts are) and

fitness (how well the generated scene layouts fit the given

inputs). For this experiment, we use 50 input object layouts

randomly chosen form our test dataset. For each input, we

generate scene layouts using our method (Ours) and pix2pix

(Baseline).

Plausibility. We ask AMT workers to judge the gener-

ated layouts and ground truth (GT), by evaluating whether

objects in the scene layouts have incorrect relationships

(plausibility). For those scene layouts that are regarded as

implausible, they are asked to label at least a pair of ob-

jects that have a wrong spatial relation. We had a total of

30 workers in our experiment, with each scene layout being

evaluated by at least 10 workers.
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Figure 3. Qualitative results from our model and the baseline. Given the input object layouts (left diagrams in each column), which contains

one or two standalone objects, we generate the output scene layouts using our model (middle diagrams in each column) and the baseline

(right diagrams in each column).

Baseline Ours GT

Plausibility score ↑ 0.34 ± 0.12 0.73 ± 0.11 0.85 ± 0.08

Table 1. Plausibility scores for the baseline (Baseline), our method

(Ours), and the ground truth (GT).

Ours over Baseline Ours over GT Baseline over GT

Fitness preference 71% 43% 16%

Table 2. Fitness preference for the baseline (Baseline), our method

(Ours), and the ground truth (GT).

For each scene layout, we compute the fraction of work-

ers who have chosen it to be plausible as a plausibility score,

and report the average score for each method in Table 1.

Note that the average score of the ground truth represents

an upper bound performance. The results show that our re-

sults are perceived to be significantly plausible than those

by the baseline and much closer to the ground truth.

Fitness. For this experiment, we show the workers an in-

put object layout along with two scene layouts that are ran-

domly chosen from the three sources (Ours, Baseline and

GT). The workers are asked to select a scene layout that de-

scribes a more plausible context of the input objects. We

had a total of 9 workers in the experiment. The results in

Table 2 show that our results are preferred by the workers

most of time, compared with those by the baseline. Further,

the workers only show a slight preference for the ground

truth layouts over our results. This implies that our results

are considered to fit the input objects better, and comparable

to the ground truth.

4.5. Quantitative Evaluation

We quantitatively evaluate the plausibility of our gen-

erated scene layouts using the object pairwise relationship

priors, which have been widely used in indoor scene syn-

thesis to characterize scene structure [23, 38]. In partic-

ular, we compute the probabilities of pairwise relations

among object classes from a dataset of natural scene im-

ages, and evaluate the likelihood of each generated scene

layout under the probabilities to measure its quality. For-

mally, let C and R be the object categories and pairwise spa-

tial relations, respectively. For each pair of object classes

〈u, v〉 , u, v ∈ C, we compute a probability of them be-

ing in a spatial relation r ∈ R as p(r| 〈u, v〉). Here, we

consider six mutually exclusive spatial relationships, ie,

R ∈ {left, right, above, below, inside, outside}. Given

a generated scene layout X , we define its negative log like-

lihood (NLL) as:

NLL = −
∑

〈u,r,v〉∈T log p(r| 〈u, v〉)
|T | , (5)

where 〈u, r, v〉 iterates over all the possible class pairs de-

noted as T in the layout.

We use 2-fold cross-validation for this evaluation. In par-

ticular, we first split our training dataset uniformly into two

fold. For each fold, we train a model on it, learn the priors

from the other fold, and compute the NLL on the test dataset

against the priors. Finally, we use the mean NLL (NLLall)

over the two fold as our metric for scene layout plausibil-

ity evaluation. In addition, we calculate the input-centric
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Figure 4. Given a partial scene layout or a sketch as input, our method is able to generate a complete scene layout and further synthesize

realistic a full scene image.

mean NLL (NLLobject) to measure how well the predicted

scene layouts fit the inputs. To do this, we only consider the

category pairs where the inputs are involved in Eq. 5.

Table 3 compares the performance of our model to the

baseline. Our method outperforms the baseline by a large

margin in both metrics. This again confirms the superior

performance of our method in predicting plausible and fit-

ting scene context, in comparison to the baseline.

4.6. Ablation Study

To investigate how different components in our network

affect the generation performance, we compare several ab-

lated versions of our model, using the mean NLL introduced

in Section 4.5.

No category classifier. We remove the category classi-

fier, so that there is no pre-training for the object embedding

features.

No discriminators. We remove both shape and layout

discriminators, relying only on the pixelwise cross entropy

losses for model learning.

No shape or layout discriminator. We remove one of

the discriminators.

From the results in Table 3, we can observe that com-

pared with the ablated versions, our full model achieves bet-

ter performance, which demonstrates the necessity of each

component in our model.

4.7. Image Synthesis

We conduct experiments by using our model for image

synthesis. Several recent promising works [3, 30, 39] on

image synthesis have attempted to generate realistic images

from scene layouts. While being able to synthesize stunning

results, they all need a complete scene layout to start with.

The ability of our model to infer scene context from only

Method NLLall ↓ NLLobject ↓
Baseline [16] 2.15 2.11

Ours (No category classifier) 1.77 1.70

Ours (No discriminators) 1.91 1.85

Ours (No shape discriminator) 1.72 1.61

Ours (No layout discriminator) 1.88 1.84

Ours (Full model) 1.69 1.57

Table 3. Quantitative evaluation of the baseline, the ablated ver-

sions of our model and our full model. We evaluate the perfor-

mance with negative log likelihood (NLL) of the generated layouts

under pre-computed pairwise relation priors. NLLall reflects the

overall plausibility of an output layout, and NLLobject indicates

the fitness between the input objects and an output layout.

standalone foreground objects makes it possible to halluci-

nate a full scene image with just a partial semantic layout.

For this task, we leverage the state-of-art image synthe-

sis method [30], which transforms a semantic layout into a

realistic image. The segments are extracted from our train-

ing dataset to generate the memory bank. Given a partial

scene layout, we first use our model to predict a full scene

layout, which is then fed into the image synthesis method

to produce an output image.

In addition to partial semantic layout, we also experi-

ment with using a sketch as an input to our model for im-

age synthesis. To do this, we first need to convert a sketch

into a partial layout required by our model. In particular,

given the images and their semantic layouts in our training

dataset, we use edge detection [42] to obtain the sketches

of randomly chosen foreground objects, by applying post-

processing steps as in [4] (including binarization, thinning,

small component removal, erosion and spur removal). After

that, we train a pix2pix network [16] to map the sketches to
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Method Accuracy

Chance 0.5%

ImageNet-CNN [21] 38.9%

Places-CNN [46] 49.8%

Ours + SVM 39.8%

Ours + Random Init 37.6%

Ours + Finetune 52.4%

Table 4. Outdoor scene recognition accuracy on the SUN dataset

[41]. We evaluate the representation learned by our layout discrim-

inator for scene recognition. We compare the performance of di-

rectly using the learned representation with a SVM (Ours + SVM),

randomly initializing the discriminator (Ours + Random Init) and

fine-tuning the discriminator (Ours + Finetune). For comparison,

we also show the results from ImageNet-CNN and Places-CNN.

partial layouts. During the test stage, given an input sketch,

we first map it to a partial layout, and then transform it to a

full scene image with the above image synthesis process.

In Figure 4, we show some image synthesis results gen-

erated from partial semantic layouts and sketches. As can

be seen, our method can synthesize complex and semanti-

cally meaningful full scene images from sparse user inputs.

4.8. Scene Recognition

We also test the the representation learned by the lay-

out discriminator for outdoor scene recognition on the SUN

dataset [41]. Note that we use 220 outdoor scene categories

for evaluation since our model is trained on outdoor scenes.

To do this, we first replace the output layer of our dis-

criminator with a K-way softmax layer. We then construct

a scene recognition model by using a pre-trained seman-

tic segmentation model [45] to map an input color image

to a scene layout, which is then fed into our discrimina-

tor for classification. We fine-tune our discriminator using

the training splits of the SUN dataset (Ours + Finetune).

We also experiment with randomly initializing the discrim-

inator part of our recognition model (Ours + Random Init)

instead of using learned weights of our discriminator, and

directly using the outputs of the penultimate layer of the

discriminator as features for a multi-class SVM (Ours +

SVM). Note that since we are interested in exploring the

representation of our discriminator, we fix the weights of

the semantic segmentation model during the experiment.

We report the recognition accuracy in Table 4. SVM us-

ing our learned representation as features slightly outper-

forms AlexNet pre-trained on ImageNet [21], but is infe-

rior to the pre-trained Places-CNN [46] that is especially

designed for scene recognition. In addition, while our ran-

domly initialized model is worse than ImageNet-CNN and

Places-CNN, the model initialized from the weights of our

learned discriminator obtains better performance. This is

possibly because, in order to discriminate between real and

Input Our result Input

bird bird

tree sky

airplane airplane

Our result

Figure 5. Failure cases. When the size of an input object is too

small, our method may generate an over-simplified scene context

with a large background only.

fake scene layouts, our discriminator needs to learn a rep-

resentation that captures complex semantic and spatial rela-

tionships among the objects in a scene layout, which is im-

portant to excel scene recognition performance. These re-

sults suggest that learning to hallucinate object-level scene

context helps learn useful features for scene recognition.

5. Conclusion

In this paper, we make an effort to address the problem

of reasoning about the missing environment from the prop-

erties of a few standalone objects. To this end, we propose a

scene context prediction model that estimates scene layouts

from input object layouts in an end-to-end manner. Exten-

sive qualitative and quantitative results show that our model

is able to generate more plausible and diverse scene layouts

that put the input objects into the right context, as compared

with a baseline model. In addition, we demonstrate that

the ability to predict scene contexts enables a image synthe-

sis approach that can generate full scene images from only

sparse, partial user inputs. Finally, we show that learning to

hallucinate scene contexts can be a promising supervisory

signal for learning useful features for scene recognition.

Currently, our model may fail if the input objects are too

small. As shown in Figure 5, if the input layout contains

only a small object, it tends to produce an over-simplified

scene layout with a large background, even though the syn-

thesized scene layout is still plausible. To address this issue,

we would like to explore a multi-scale object modeling ap-

proach to deal with small objects in our future work.
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