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a b s t r a c t 

Accuracy and efficiency are two conflicting challenges for face detection, since effective models tend to 

be computationally prohibitive. To address these two conflicting challenges, our core idea is to shrink the 

input image and focus on detecting small faces. Reducing the image resolution can significantly improve 

the detection speed, but it also results in smaller faces that need to pay more attention. Specifically, we 

propose a novel face detector, dubbed the name Densely Connected Face Proposal Network (DCFPN), with 

high accuracy as well as CPU real-time speed. Firstly, we subtly design a lightweight-but-powerful fully 

convolution network with the consideration of efficiency and accuracy. Secondly, we present a dense 

anchor strategy and a scale-aware anchor matching scheme to improve the recall rate of small faces. 

Finally, a fair L1 loss is introduced to locate small faces well. As a consequence, our proposed method can 

detect faces at 30 FPS on a single 2.60 GHz CPU core and 250 FPS using a GPU for the VGA-resolution 

images. We achieve state-of-the-art performance on the common face detection benchmark datasets. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Face detection is one of the fundamental problems in computer

ision and pattern recognition. It plays an important role in face

ased applications, since accurate and efficient face detection usu-

lly needs to be done first. With the great progress, face detec-

ion has been successfully applied in our daily life. However, there

re still some tough challenges in the uncontrolled face detection

roblem. The challenges mainly come from two requirements for

ace detectors: (1) The large variation of facial changes requires

ace detectors to accurately address a complicated face and non-

ace classification problem; (2) The large search space of arbitrary

ace positions and sizes further imposes a time efficiency require-

ent. These two requirements are conflicting, since high-accuracy

ace detectors tend to be computationally expensive. 

To meet these challenges, face detection has been studied

ainly in two different ways. One way is the cascade based meth-

ds and it starts from the pioneering work of Viola-Jones face de-

ector [1] . Since then, the boosted cascade with simple features

ecomes the most popular and effective design for practical face

etection. A number of improvements to the Viola-Jones face de-
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ector have been proposed in the past decade [2] , which can be

een as a history of more efficiently sampling the output space to

 solvable scale and more effectively evaluation per configuration.

he other way is Convolutional Neural Network (CNN) [3] based

ethods and with the development of deep learning techniques,

he CNN has been successfully applied in face detection tasks. Re-

ently, some works based on R-CNN [4] demonstrate state-of-the-

rt performance on face detection tasks. 

However, these two ways focus on different aspects. The former

ays more attention to efficiency while the latter cares more about

ccuracy. To make face detector perform well on both speed and

ccuracy, one natural idea is to combine the advantages of them.

herefore, cascade CNN based methods [5] are proposed that put

eatures learned by CNN into cascade framework so as to boost the

erformance and keep efficient. However, there are three problems

n cascaded CNN based methods: (1) Their speed is negatively re-

ated to the number of faces on the image. The speed would dra-

atically degrade as the number of faces increases; (2) The cas-

ade based detectors optimize each component separately, mak-

ng the training process extremely complicated and the final model

ub-optimal; (3) For the VGA-resolution images, their runtime ef-

ciency on the CPU is about 14 FPS, which is not fast enough to

each the real-time speed (25 FPS). 

Therefore, it is still one of the remaining open issues for prac-

ical face detectors to achieve CPU real-time speed as well as

aintain high performance. In this work, we develop a state-of-

he-art face detector with CPU real-time speed. The core idea is

o shrink the input image and focus on detecting small faces.
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Table 1 

The receptive field of the last convolutional layer and the default anchor of our 

DCFPN. 

Receptive field 75 × 75, 107 × 107, 139 × 139, 171 × 171, 203 × 203, 235 × 235 

Default anchor 16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256 
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Reducing the high-resolution input image into the low-resolution

image can significantly improve the detection speed, but it also

results in smaller faces that need to pay more attention in or-

der to maintain high performance. Specifically, our DCFPN has a

lightweight-but-powerful network with the consideration of effi-

ciency and accuracy. To improve the recall rate of small faces, a

dense anchor strategy and a scale-aware anchor matching scheme

are introduced. Besides, we present a fair L1 loss to locate small

faces well. Consequently, for VGA images to detect faces bigger

than 40 pixels, our face detector can run at 30 FPS on a single CPU

core and 250 FPS on a GPU card. More importantly, the speed of

DCFPN is invariant to the number of faces on the image. 

A preliminary version of this work has been published on Chi-

nese Conference on Biometric Recognition (CCBR) 2017. 1 Compar-

ing with the preliminary version, this paper proposes a new scale-

aware anchor matching scheme and further improves the state-

of-the-art performance. For clarity, the main contributions of this

work can be summarized as four-fold: 

• We design a lightweight-yet-powerful fully convolution net-

work with the consideration of efficiency and accuracy for the

face detection task. 
• We present a dense anchor strategy and a scale-aware anchor

matching scheme to improve the recall rate of small faces. 
• We introduce a fair L1 loss function that directly regresses box’s

relative center and size in order to locate small faces well. 
• We achieve state-of-the-art performance on the common face

detection benchmark datasets with CPU real-time speed. 

2. Related work 

Face detection approaches can be roughly divided into two dif-

ferent categories. One is based on hand-craft features, and the

other one is built on CNN. This section briefly reviews them and

refer more detailed survey to [2,6,7] . 

Hand-craft based methods. Previous face detection systems are

mostly based on the hand-crafted features. The milestone work of

Viola-Jones [1] proposes to use Haar feature, Adaboost learning and

cascade inference for face detection. After that, many subsequent

works focus on new local features [8,9] , new boosting algorithms

[10–12] and new cascade structures [13–15] . Besides the cascade

framework, the seminal work deformable part model (DPM) [16] is

introduced into the face detection task by [17–21] , which use su-

pervised parts, more pose partition, better training or more effi-

cient inference to achieve better performance. 

CNN based methods. Recently, CNN based methods have showed

advantages in face detection. CCF [22] uses boosting on top of

CNN features for face detection. Farfade et al. [23] fine-tune CNN

model trained on 1 k ImageNet classification task for face and

background classification task. Faceness [24] trains a series of CNNs

for facial attribute recognition to detect partially occluded faces.

CascadeCNN [5] uses six cascaded CNNs to efficiently reject back-

grounds in three stages. STN [25] proposes a new Supervised

Transformer Network and a ROI convolution for face detection.

Similar to Chen et al. [26] , MTCNN [27] presents a multi-task cas-

caded CNNs based framework for joint face detection and align-

ment. UnitBox [28] introduces a new intersection-over-union loss

function. CMS-RCNN [29] uses Faster R-CNN in face detection with

body contextual information. Convnet [30] integrates CNN with 3D

face model in an end-to-end multi-task learning framework. 

Generally, hand-craft based methods are able to achieve CPU

real-time speed, but they are not accurate enough for the uncon-

trolled face detection problem. With learned feature and classi-

fier directly from the image, CNN based methods can differentiate
1 http://ccbr2017.org/ 

 

a  

a  
aces from highly cluttered backgrounds, while they are too time-

onsuming to reach real-time speed. Notably, our proposed DCFPN

s able to achieve real-time speed on the CPU devices as well as

aintain state-of-the-art detection performance. 

. Densely connected face proposal network 

This section presents detail of DCFPN. It includes four key

ontributions that make it accurate and efficient for face detec-

ion: lightweight-but-powerful architecture, dense anchor strategy,

cale-aware anchor matching scheme and fair L1 loss. 

.1. Lightweight-but-powerful architecture 

The architecture of DCFPN encourages feature reuse and leads

o a substantial reduction of parameters. As illustrated in Fig. 1 , it

onsists of two parts. 

Rapidly Digested Convolutional Layers. It is designed for high ef-

ciency via quickly reducing the input image spatial size by 16

imes with narrow but large kernels. On one side, face detection is

 two classification problem and does not require very wide net-

ork, hence the narrow kernels is powerful enough and can result

n faster running speed, especially for CPU devices. On the other

ide, the large kernels are to alleviate the information loss brought

y spatial size reducing. 

Densely Connected Convolutional Layers. Inspired by Huang et al.

31] , each layer in DCCL is directly connected to every other layer

n a feed-forward fashion. It ends with two micro inception layers.

here are two motivations behind the design of DCCL. Firstly, the

CCL is designed to enrich the receptive field of the last convolu-

ional layer that is used to predict the detection results. As listed

n Table 1 , the last convolutional layer of DCFPN has a large scope

f receptive field from 75 to 235 pixels, which is consistent with

ur default anchors and is important for the network to learn vi-

ual patterns for different scales of faces. Secondly, the DCCL aims

t combining coarse-to-fine information across deep CNN models

o improve the recall rate and precision of detection. Deep and

hallow CNN features are really complementary for detection task,

ince the information of the interest region is distributed over all

evels of the convolution network with multiple level abstraction,

nd they should be well organized. 

To sum up, our lightweight-but-powerful architecture consists

f RDCL and CCL. The former is designed to achieve CPU real-time

peed. The latter aims at enriching the receptive fields and com-

ining coarse-to-fine information across different layers to handle

aces of various scales. 

.2. Dense anchor strategy 

As listed in Table 1 , we use 5 default anchors that are associ-

ted with the last convolutional layer. Hence, these 5 default an-

hors have the same tiling interval on the image (i.e., 16 pixels). It

s obviously that there is a tiling density imbalance problem. Com-

aring with large anchors (i.e., 64 × 64, 128 × 128 and 256 × 256),

mall anchors (i.e., 16 × 16 and 32 × 32) are too sparse, which re-

ults in low recall rate of small faces. 

To improve the recall rate of small faces, we proposed the dense

nchor strategy for small anchor. Specifically, without our dense

nchor strategy, there are 5 anchors for every receptive filed center

http://ccbr2017.org/
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Fig. 1. Illustration of the structure of our Densely Connected Face Proposal Network (DCFPN). It consists of the Rapidly Digested Convolutional Layers (RDCL) and the Densely 

Connected Convolutional Layers (DCCL). RDCL is designed for high efficiency by quickly reducing the input image spatial size by 16 times with narrow but large kernels; 

DCCL is aimed at high accuracy by extracting information from different sizes of receptive field at multiple levels of abstraction. 
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 Fig. 2 (a)). To densify one type of anchors, our strategy uniformly

iles several anchors around the center of one receptive field in-

tead of only tiling one. As illustrated in Fig. 2 (b) and 2 (c), the sam-

ling interval of 16 × 16 and 32 × 32 anchor are densed to 4 and

 pixels, respectively. Consequently, for every receptive filed center,

here are total 23 anchors (16 from 16 × 16 anchor, 4 from 32 × 32

nchor and 3 from the rest three anchors). The dense anchor strat-

gy is crucial to improve the recall rate of small faces. 

.3. Scale-aware anchor matching scheme 

During training, a binary label (i.e., positive or negative) need to

e assigned to each anchor. Current anchor matching method first

atches the anchors to the faces with the best Jaccard overlap and

hen matches the anchors to any face with Jaccard overlap higher

han a threshold θ . However, anchor scales are discrete while face

cales are continuous, these faces whose scales distribute away

rom anchor scales cannot match enough anchors, especially for

mall faces, leading to their low recall rate. To solve this prob-

em, we propose a scale-aware anchor matching scheme, which

reats small and large faces differently. It uses the existing match-

ng method for large faces, while applies the proposed matching

ethod for small faces. The procedure is as follow: 

Algorithm: Scale-aware anchor matching scheme 

Input: n anchor boxes → A n ×4 , m gt boxes → G m ×4 

Output: all matched pairs → P

1: Compute IoU between anchor and gt boxes: O n ×m = IoU(A, G ) 

2: R n ×1 = ArgmaxAlongRow (O ) , C m ×1 = ArgmaxAlongColumn (O ) 

3: Match each gt to the anchor with the best IoU: P ← MakePair(A (C) , G ) 

4: for a ∈ A do 

5: for g ∈ G do 

/ ∗- - - - - - - - Large faces: the Jaccard overlap condition - - - - - - - - ∗/ 

6: if 
√ 

area (g) > 20 then 

7: if O (a, g) ≥ 0 . 5 and R (a ) = g then 

8: P ← MakePair(a, g) 

/ ∗- - - - - - - - Small faces: the center distance condition - - - - - - - - ∗/ 

9: if 
√ 

area (g) ≤ 20 and size (a ) = 16 × 16 then 

10: if center(a ) within the scaled down 0.75 box of g and R (a ) = g then 

11: P ← MakePair(a, g) 

Our scheme is roughly the same as existing matching method

xcept that small faces use the center distance condition (clarified

t lines 9–11) instead of the Jaccard overlap. Specifically, for the

mall face ( < 20 pixels), we first scale it down by 0.75 times to

et a shrunk box, then match those 16 × 16 anchors whose center

re within the shrunk box to this small face. This scheme ensures

hat small faces can match enough positive anchor. Anchors that

o not be matched are negative anchors. 
.4. Fair L1 loss function 

As formulated in Eq. (1) , our model is jointly optimized by two

oss functions, L cls and L reg , which compute errors of score and co-

rdinate, respectively. 

 ({ p i } , { t i } ) = 

λ

N cls 

∑ 

i 

L cls (p i , p 
∗
i ) + 

1 

N reg 

∑ 

i 

p ∗i L reg (t i , t 
∗
i ) (1)

Where i is the anchor index and p i is the predicted probability

hat the anchor i is a face. The groundtruth label p ∗
i 

is 1 if the an-

hor is positive, 0 otherwise. As formulated in Eq. (2) , t i and t ∗
i 

is

 vector representing the 4 parameterized coordinates of the pre-

icted box and the GT box. p ∗
i 
L reg means the regression loss is ac-

ivated only for positive anchors and disabled otherwise. The two

erms are normalized by N cls and N reg and weighted by a balanc-

ng parameter λ. In our implementation, the cls and reg term are

ormalized by the number of positive and negative anchors, and

he number of positive anchors, respectively. Because of the imbal-

nce between the number of positive and negative anchors, we set

= 10 to balance these two loss terms. 

We adopt a 2-class softmax loss for L cls . As for L cls , to locate

mall faces well, we propose the fair L1 loss that directly regresses

he predicted boxâ;;s relative center coordinate and its width and

eight as follows: 

t x = x − x a , t y = y − y a , t w 

= w, t h = h 

t ∗x = x ∗ − x a , t ∗y = y ∗ − y a , t ∗w 

= w 

∗, t ∗h = h 

∗ (2) 

here x, y, w , and h denote the box’s center and its size. Variables

, x a , and x ∗ are for the predicted box, anchor box, and GT box,

espectively (likewise for y,w,h ). The scale normalization is imple-

ented to have scale-invariance loss value as Eq. (3) : 

 reg (t , t ∗) = 

∑ 

j∈{ x,y,w,h } 
fair L 1 (t j − t ∗j ) (3)

n which 

fair L 1 (z j ) = 

{| z j | / gt w 

i f j ∈ { x, w } 
| z j | / gt h otherwise 

(4) 

here gt w 

and gt h denote the GT box’s width and height. Com-

are with [32] , the fair L1 loss directly regresses box’s relative cen-

er and size, and implements scale normalization when computing

oss value, which is crucial to locate small faces well. 

.5. Training data and implementation details 

Training data. Our model is trained on 12 , 880 images from

he WIDER FACE training set. To enrich the training dataset, each
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Fig. 2. (a) 5 default anchors at one receptive filed center. (b) 16 × 16 anchor densification. (c) 32 × 32 anchor densification. In (b) and (c), only part of anchors are drawn 

with solid line of different colors, while the others are with dotted line of corresponding color. Best viewed in color. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article). 

Fig. 3. Evaluation results of DCFPN. 
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training image is sequentially processed by the color distortion,

random cropping, scale transformation and horizontal flipping,

eventually getting a 512 × 512 square sub-image from original im-

age. The GT bounding box is ignored if its center coordinate is lo-

cated outside of the square sub-image. In the training process, each

mini-batch is collected randomly from 48 images. For each mini-

batch, all of the positive anchors and half of the negative anchors

are used to train our model. 

Implementation details. The DCFPN is trained end-to-end via us-

ing the standard back-propagation and stochastic gradient descent

(SGD). We randomly initialize all layers by drawing weights from a

zero-mean Gaussian distribution with standard deviation 0.01. We

use 0.9 momentum and 0.0 0 05 weight decay. The maximum num-

ber of iterations is 100 k , and the initial learning rate is set to 0.1

s  
nd multiplied by 0.1 every 20 k iterations. Our model is imple-

ented in Caffe framework [33] . 

. Experiments 

In this section, we firstly analyze our model in an ablative way,

hen evaluate it on the common face detection benchmarks, finally

ntroduce its runtime efficiency. 

.1. Model analysis 

We carry out extensive ablation experiments on the FDDB

ataset to analyze our model. For all the experiments, we use the

ame settings, except for specified changes to the components. To
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Fig. 4. Precision-recall curves on WIDER FACE validation and test sets. 
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F  
etter understand DCFPN, we ablate each component one after an-

ther to examine how each proposed component affects the final

erformance. Firstly, we replace the fair L1 loss with smooth L1

oss. Meantime, the target of regression is the same as RPN. Sec-

ndly, we do not use the scale-aware anchor matching scheme dur-

ng training stage. Finally, we ablate the dense anchor strategy. 

Some promising conclusions can be summed up according to

he ablative results. Firstly, the comparison between the first and
econd columns in Table 2 indicates that the fair L1 loss effec-

ively increases the TPR performance by 0.4%, owning to locat-

ng small faces well. Secondly, the scale-aware anchor matching

cheme is proposed to ensure small faces to match enough an-

hors, and the comparison between the second and third columns

n Table 2 demonstrates that it rises the TPR performance from

4 . 5 to 95.0%, attributing to the higher recall rate of small faces.

inally, our dense anchor strategy is used to increase the density
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Fig. 5. Qualitative results of DCFPN. 
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o

of small anchors (i.e., 16 × 16 and 32 × 32). From the results listed

in Table 2 , we can observe that the TPR on FDDB is reduced from

94 . 5 to 93.7% after ablating the dense anchor strategy. The sharp

decline (i.e., 0.8%) demonstrates the effectiveness of the proposed

dense anchor strategy. 
.2. Evaluation on benchmark 

This section presents the face detection bechmarking using our

roposed DCFPN approach. We compare our results with those of

ther leading methods. 
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Table 2 

Ablative results on FDDB. Accuracy means the true positive rate at 10 0 0 false 

positives. 

Contribution DCFPN 

Designed architecture? � � � � 

Dense anchor strategy? � � � 

Scale-aware scheme? � � 

Fair L1 loss? � 

Accuracy 95.4 95.0 94.5 93.7 
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Table 3 

Overall CPU inference time and TPR compared on different methods. TPR(%) 

means the true positive rate at 10 0 0 false positives on FDDB dataset. For STN 

[25] , its TPR is the true positive rate at 179 false positives and with ROI con- 

volution, it can speed up from 10 to 30 FPS with only 0.6% recall rate drop. 

Approach Resolution Device GHz TPR(%) FPS 

ACF [8] 640 × 480 Intel i7-3770 3.40 85.2 20 

CasCNN [5] 640 × 480 Intel E5-2620 2.00 85.7 14 

FaceCraft [44] 640 × 480 N/A N/A 90.8 10 

STN [25] 640 × 480 Intel i7-4770K 3.50 91.5 10 

MTCNN [27] N/A N/A 2.60 94.4 16 

Ours 640 × 480 Intel E5-2660v3 2.60 95.4 30 
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AFW database [21] . It contains 205 images with 473 labeled

aces from Flickr. We evaluate our detector on this dataset and

ompare with well known research and commercial face detectors.

esearch detectors include [18,20,21,24,34,35] . Commercial detec-

ors include Face.com, Face++ and Google Picasa. As can be ob-

erved from Fig. 3 (a), our method outperforms strong all others by

 large margin. Fig. 5 (a) shows some examples of the face detec-

ion results using the proposed DCFPN on the AFW dataset. 

PASCAL face database [20] . It consists of 851 images with 1335

abeled faces and is collected from the test set of PASCAL person

ayout dataset, which is a subset of PASCAL VOC. There are large

ace appearance and pose variations in this dataset. Note that this

ataset is designed for person layout detection and head annota-

ion is used as face annotation. The cases when the face is oc-

luded are common. Fig. 3 (b) shows the precision-recall curves on

his dataset and our DCFPN method outperforms all other detec-

ors. Fig. 5 (b) shows some examples of the face detection results

sing the proposed DCFPN on the PASCAL face dataset. 

FDDB database [36] . It has 5171 faces in 2845 images taken from

ews articles on Yahoo websites. FDDB uses ellipse face annota-

ions while our DCFPN outputs rectangle outputs. This inconsis-

ency has a great impact to the continuous score. For a more fair

omparison under the continuous score evaluation, we regress a

ransformation matrix according to the ellipse and rectangle anno-

ations, and then transform our rectangle outputs to ellipse out-

uts. As shown in Fig. 3 (c) and 3 (d)), our DCFPN performs better

han all of the published face detection methods, demonstrating

hat DCFPN is able to robustly detect unconstrained faces. Fig. 5 (c)

hows some examples of the face detection results using the pro-

osed DCFPN on the FDDB dataset. 

WIDER FACE database [37] . It has 32,203 images and 393,703

aces with a high degree of variability in scale, pose and oc-

lusion. The database is divided into training (40%), validation

10%) and testing (50%) set with three levels of detection dif-

culty (Easy, Medium and Hard subset). The images and anno-

ations of training and validation set are available online, while

he annotations of testing set are not released and the results

re sent to the database server for receiving the precision-recall

urves. Our DCFPN is trained only on the training set and tested on

oth validation and testing set against recent face detection meth-

ds [8,24,27,29,37–43] . Fig. 4 shows the precision-recall curves

nd mAP values. Our DCFPN, based on an extremely lightweight

etwork, achieves promising performance, i.e. 0.881 (Easy), 0.857

Medium) and 0.774 (Hard) for validation set, and 0.879 (Easy),

.853 (Medium) and 0.771 (Hard) for testing set. Among the

ightweight detectors, our model outperforms others by a large

argin across the three subsets, especially on the hard subset

hich mainly consists of small faces. Besides, our DCFPN performs

etter than some detectors based on ResNet, such as CMS-RCNN

29] and ScaleFace [42] . These results demonstrate that DCFPN

chieves good trade-off between effectiveness and efficiency via

etecting small faces. Fig. 5 (d) shows some examples of the face

etection results using the proposed DCFPN on the WIDER FACE

ataset. 
.3. Runtime efficiency 

CNN based methods have always been accused of their runtime

fficiency, since in most CPU based applications, they are not fast

nough. As listed in Table 3 , comparing with other methods, our

CFPN is efficient and accurate enough to meet practical require-

ents. Specifically, due to the great ability to detect small faces,

ur proposed DCFPN can shrink the test images by a few times

nd detect small faces, in order to reach real-time speed as well

s maintain high performance. This means that faces can be effi-

iently detected by shrinking the test image and detecting smaller

nes. With this advantage, our DCFPN can detect faces bigger than

0 pixels at 30 FPS on a 2.60 GHz CPU for the VGA-resolution im-

ges. Besides, our method with only 3.2 M parameter can directly

un on a GPU card at 250 FPS for the VGA-resolution images. 

. Conclusion 

In this paper, we propose a novel face detector with CPU real-

ime speed as well as high performance. On the one hand, our

CFPN has a lightweight-but-powerful framework that can well in-

orporate CNN features from different sizes of receptive field at

ultiple levels of abstraction. On the other hand, the dense anchor

trategy, the scale-aware anchor matching strategy and the fair L1

oss function are proposed to handle small faces well. The state-of-

he-art performance on common face detection datasets shows its

bility to detect faces in the uncontrolled environment. The pro-

osed detector is very fast, achieving 30 FPS to detect faces bigger

han 40 pixels on CPU and can be accelerated to 250 FPS on GPU

or the VGA-resolution images. 
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