
Neurocomputing 296 (2018) 12–22 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

A visual attention based ROI detection method for facial expression 

recognition 

Wenyun Sun 

a , Haitao Zhao 

b , Zhong Jin 

a , ∗

a School of Computer Science and Engineering, Nanjing University of Science and Technology, China 
b School of Information Science and Engineering, East China University of Science and Technology, China 

a r t i c l e i n f o 

Article history: 

Received 13 April 2017 

Revised 10 February 2018 

Accepted 10 March 2018 

Available online 20 March 2018 

Communicated by H. Yu 

Keywords: 

Facial expression recognition 

Action unit 

Visual attention mechanism 

a b s t r a c t 

In this paper, an eleven-layered Convolutional Neural Network with Visual Attention is proposed for facial 

expression recognition. The network is composed of three components. First, local convolutional features 

of faces are extracted by a stack of ten convolutional layers. Second, the regions of interest are automati- 

cally determined according to these local features by the embedded attention model. Third, the local fea- 

tures in these regions are aggregated and used to infer the emotional label. These three components are 

integrated into a single network which can be trained in an end-to-end scheme. Extensive experiments 

on four kinds of data (namely aligned frontal faces, faces in different poses, aligned unconstrained faces, 

and grouped unconstrained faces) prove that the proposed method can improve the accuracy and obtain 

good visualization. The visualization shows that the learned regions of interest are partly consistent with 

the locations of emotion specific Action Units. This founding confirms the interpretation of Facial Action 

Coding System and Emotional Facial Action Coding System from a machine learning perspective. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The research on facial expression was started by psychologists.

Mehrabian et al. [1] suggested that the combined effect of si-

multaneous verbal, vocal and facial attitude communications is a

weighted sum of their independent effects with the coefficients of

7%, 38% and 55%, respectively. The facial expression plays an im-

portant role in Human Computer Interaction (HCI), affective com-

puting, human behavior analysis, etc. Facial Action Coding System

(FACS) [2] and Emotional Facial Action Coding System (EMFACS)

[3] were proposed by Ekman and Friensen. FACS and EMFACS de-

fine a set of Action Units (AUs) associated with six basic emotions

including angry, disgust, fear, happy, sad and surprise. The Action

Units and six basic emotions became the most commonly used ex-

pression labels for classification / detection tasks in machine learn-

ing. 

In the computer vision community, deep learning based meth-

ods have become more and more popular nowadays. Kahou et al.

[4] and Levi and Hassner [5] use Convolutional Neural Networks

(CNNs) to solve the Facial Expression Recognition (FER) problem.

CNNs are universal non-linear fitting tools for image data. In the

classification problem, they learn posterior probability functions by
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sing back-propagation (BP) algorithm. CNNs make decisions ac-

ording to the learned posterior probability functions. But, human

xperts usually make decisions according to small local Regions Of

nterests (ROIs) of faces which are more explainable. Inspired by

he human behavior, the visual attention mechanism [6] can focus

ttentions on small regions of images. As variants of the classic

NNs, the CNNs with Visual Attention are promising methods for

olving the facial expression recognition problem. 

In this work, 

• An eleven-layered CNN with Visual Attention is proposed for

solving the facial expression recognition problem. The network

extracts deep convolutional features from faces, detects the re-

gions of interests, and uses convolutional features in these re-

gions to infer the emotional label. Like some existing neural

networks with attention mechanism, our convolutional feature

extraction model, attention model and classification model are

integrated into a single network which can be trained in an

end-to-end scheme. 
• Some state-of-the-art methods use ensembles of deep neural

networks, temporal data and multimodal data to achieve supe-

rior performance. We focus our attention on facial expression

recognition algorithm based on single network and single frame

rather than breaking the state-of-the-art. We use controlled ex-

periments to analyze the effects of the visual attention based

ROI detector on four kinds of data, namely aligned frontal

https://doi.org/10.1016/j.neucom.2018.03.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.03.034&domain=pdf
mailto:zhongjin@njust.edu.cn
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Table 1 

The comparison between the visualization based methods and attention based 

methods. 

Method Same Different 

Purpose Data Network Locating procedure 

Visualization based Locate regions Images CNN Independent 

methods [8–10,12] of interests + labels procedure 

Attention based Locate regions Images CNN Forward 

methods of interests + labels + attention −propagation 
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faces, faces in different poses, aligned unconstrained faces, and

grouped unconstrained faces. In all cases, good visualizations

are obtained. The visualizations show that the learned regions

of interests are partly consistent with the locations of emotion

specific Action Units. This founding confirms the interpretation

of FACS and EMFACS from a machine learning perspective. 
• The rest of the paper is organized as follows. Section 2 re-

views the related work. In Section 3 , the main method is pro-

posed. The experiments and results are presented in Section 4 .

Section 5 gives the conclusions. 

. Related work 

.1. Attention mechanism 

The proposed method is inspired by several existing work. Xu

t al. [6] have proposed a method of generating captions of im-

ges. The main idea is using visual attention mechanism to fo-

us the network on a small region of the image. A single word

s inferred from the small region and the language context. While

he language context is changed over the time steps of the Recur-

ent Neural Network (RNN), a sequence of regions and the related

ords are generated. 

Moreover, the attention mechanism can also be applied on the

on-visual tasks. Riemer et al. [7] have proposed an attention

ased method for forecasting time series data. The main idea is

sing attention mechanism to select factors from multiple external

ources. The algorithm can give explanations of decisions which

ay be interesting to a human analyst. 

Focusing the attention on small regions of interests of a high

imensional data is a human-like behavior. But, as a universal non-

inear fitting tool, traditional neural networks accept the whole

igh dimensional inputs. Then, data are processed in parallel in the

lack box. Finally, unexplainable decisions are given. The lack of

xplanation is a serious disadvantage of the traditional neural net-

orks. There are limited number of methods of looking inside of

he traditional neural networks. With the help of attention mech-

nism, the relation of regions of interests and decisions can be

earned automatically. The decisions can be explained by the main

actor of the data. 

.2. Image-specific class saliency visualization 

The Image-Specific Class Saliency Visualization (ISCSV) [8] is

imilar to the method proposed in this work. The tasks of the two

ieces of work are similar. Saliency maps / attention weights are

xtracted from classification CNNs trained on the image-level la-

els. And, no additional pixel-level annotations is required. But, the

ethods of the two pieces of work are totally different: 

• The ISCSV is a visualization method. First, the traditional CNN

is trained without considering the saliency map. Then, the

saliency map is extracted by solving an independent optimiza-

tion problem, i.e. maximizing the class score with respect to the

input image while a pair of image and label is given. 
• In this work, we employ visual attention mechanism which is

embedded in the proposed CNN. The attention weights is ap-

plied on the middle-level feature map rather than the origi-

nal image. Besides, CNN with Visual Attention can be divided

into three parts, namely convolutional part, attention mapping

part and fully connected part. Since the attention mapping is

a build-in part of the network, it can be trained jointly with

other parts. In the test stage, the attention weights is extracted

by performing a forward-propagation pass rather than solving
an independent optimization problem. T  
.3. Deconvolutional neural network 

The Deconvolutional Neural Network [9,10] is another visualiza-

ion method for CNNs. Like the ISCSV method, the Deconvolutional

eural Network solves an independent optimization problem on

 pre-trained CNN. It projects features in the middle layers back

o the input space, and visualizes what activate these features. It

iscovers locatable patterns in a variety of forms: low-level edges,

id-level edge junctions, high-level object parts and complete ob-

ects. It also can be seen as a locator for these objects. 

.4. Simplifying images 

Simplifying Images is a strategy adopted for testing human vi-

ual recognition [11] . Inspired by this method, Zhou et al. [12] de-

igned an automatic procedure to test pre-trained CNNs. First, a

est image is divided into regions by edge segmentations or an-

otated segmentations. Then, segment that produces the smallest

ecrease of the correct classification score is removed. Next, the re-

oval is repeated until the image is not correctly classified. Finally,

he remaining regions contain the minimal information needed by

he network to make a true prediction. 

The ISCSV method, the Deconvolutional Neural Network, the

implifying Images method and our method learn locators as by-

roducts of solving the main classification problems. As it is al-

eady differentiated in Section 2.2 , the main differences between

isualization based methods [8–10,12] and attention based meth-

ds are their network architectures and the locating procedures.

he visualization based methods train normal CNNs first. Then, an

ndependent locator needs to be re-trained / re-calculated for in-

erring the regions of interests. The attention based methods train

ustomized CNNs, while the attention mapping is trained as its

uild-in part. The comparison is summarized in Table 1 . 

.5. AU-aware deep networks 

Liu et al. have proposed an AU-aware Deep Network (AUDN)

13] for facial expression recognition. The network is composed

f four components. First, a single convolutional layer is used

or extracting an over-complete representation. Then, an AU-aware

eceptive fields selection procedure seeks a subset of the over-

omplete representation for simulating the combination of Action

nits. Next, a multi-layer Restricted Boltzmann Machine (RBM) is

sed to learn hierarchical features. Finally, supervised logistic re-

ression and SVM are used for classification. 

Both AUDN and our proposed network use a feature selection

rocedure for seeking AU-aware convolutional features, but there

re two major differences as follows. First, to get benefit from the

eep CNN, we select AU-aware features from the deep convolu-

ional features rather than the shallow ones. The feature extracted

y the stack of ten convolutional layers can describe more complex

tructures [9,10] . Second, all components in our network are deriv-

ble. The entire network can be trained in an end-to-end scheme.

raining the entire network jointly is simpler and more effective
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Fig. 1. The baseline CNN. 
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than training each component separately. End-to-end training has

already become the mainstream for training deep networks. 

Zhou and Shi have proposed a CNN based AU-aware feature

transferring and selecting method [14] . They found that the deep

CNN features pre-trained on generic images are selective to facial

AUs. Based on a feature selection algorithm, these AU-aware fea-

tures can boost performance on FER task. 

Both [14] and our method select features, and both studies care

about the relevance between features and AUs, But, the differences

are obvious. The method of Zhou et al. chooses a subset of the

feature maps. Our method spatially aggregates feature maps into

AU-aware feature vectors by attention mapping. 

2.6. AU-aware patches for facial expression recognition 

Yao et al. [15] have proposed a pair-wise learning strategy to

automatically seek a set of discriminative patches of a facial image.

These learned local patches are consistent with the locations of ex-

pression specific Action Units. Based on the AU-aware features ex-

tracted from these patches, an SVM classifier was trained for facial

expression recognition. This work won the Emotion Recognition in

the Wild Challenge (EmotiW) 2015 [16] . 

In our work, a different way is used to find regions of inter-

ests in facial expression recognition which is smoother than those

patches in [15] . We are going to propose a CNN with Visual At-

tention. The CNN accepts aligned facial images as its input and

generate probabilities of seven emotions as its output. The visual

attention mechanism embedded in the proposed CNN is similar to

the one in the work of Xu et al. [6] . It aggregates the activations

of the last max-pooling layer spatially to form the global feature

vector. With the help of supervised data, the proposed CNN can

be trained in an end-to-end scheme. More details will be given in

Section 3.2 . 

2.7. The state-of-the-art facial expression recognition methods 

The Emotion Recognition in the Wild Challenge (EmotiW) has

been held for five years (2013–2017). The challenge is based

on two benchmarks / datasets: the Static Facial Expressions in

the Wild (SFEW) and the Acted Facial Expressions in the Wild

(AFEW). There are many state-of-the-art facial expression recog-

nition methods break the records of the two benchmarks every

year. On the SFEW benchmark, Kim et al. [17] train multiple CNNs,

and formed hierarchical committees of CNNs using the validation-

accuracy-based exponentially-weighted average rule. Levi and Has-

sner [5] present a novel Local Binary Patterns (LBP) mapping and

combines it with CNN classifiers. On the AFEW benchmark, Ka-

hou et al. [4] combine CNNs, Deep Belief Networks (DBNs) and

Autoencoders for different data modalities to make the frame-

level and audio-level decisions, and then these decisions are to-

gether. Fan et al. [18] use 3D CNNs and the combination of CNN
nd Recurrent Neural Networks (CNN-RNN) to recognize facial ex-

ressions in videos. Yao et al. [19] design a novel CNN namely

oloNet to recognize facial expressions in frames, and fuse the

rame-level decisions together. Hu et al. [20] present a new learn-

ng method named Supervised Scoring Ensemble and a new fu-

ion structure. Knyazev et al. [21] transfer the knowledge learned

n the large-scale face recognition task to the facial expres-

ion recognition task to improve the performance. Vielzeuf et al.

22] propose improved face descriptors based on 2D and 3D CNNs,

nd explore a novel hierarchical method combining features and

cores. 

Almost without exception, these methods use ensembles of

NNs to achieve superior performance. For the audio-video based

motion recognition task on the AFEW dataset, decisions based

n temporal and multimodal data are also fused together. Al-

hough, the current state-of-the-art method [20] achieves a record-

reaking test accuracy of 60.34% on AFEW benchmark. Fewer stud-

es care about the single network performance based on a single

rame. As we know, the single network denoted as “PREP iNor, oA −
 CNN L − F C3072 } R 1 ” in [17] achieves a test accuracy of 52.50% on

FEW benchmark. The single network denoted as “LBP1, cyclic,

GG_M-4096 - Oversampling” in [5] achieves a test accuracy of

4.73% on SFEW benchmark. They are much lower than the ac-

uracy obtained by ensemble network when temporal and multi-

odal data is provided. Since the challenge can be decomposed

nto a set of orthogonal problems, we simplify our research objec-

ive by focusing our attention on one of the directions, design fa-

ial expression recognition algorithm based on single network and

ingle frame. 

Some methods use external data such as FER-2013 dataset

23] and CASIA Web Face dataset [24] to alleviate the small sample

ize problem. We use FER-2013 dataset to enlarge the training set

n our experiment. 

. The proposed method 

.1. The baseline CNN 

At the very beginning, inspired by the VGG network [25] , we

ill propose a CNN for facial expression recognition as the base-

ine. The baseline CNN is illustrated in Fig. 1 . The configuration de-

ails including the layer types and the numbers of activations / pa-

ameters are listed in Table 2 . As listed in Table 2 , the CNN accepts

12 × 144 aligned facial images as its input and generate probabil-

ties of seven emotions as its output. The baseline CNN contains

leven trainable layers including ten 3 × 3 convolutional layers and

ne fully connected layer. The total number of trainable parame-

ers is 360,720 which is much smaller than usual. Such a network

s capable of recognizing emotions of aligned faces. But, unlike a

uman expert, the baseline network can not explain the decisions

ade by itself. 
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Table 2 

The configuration of the baseline CNN. 

Layer Number of activations Number of parameters 

Input layer 112 × 144 × 1 0 

Convolutional layer 112 × 144 × 16 3 × 3 × 1 × 16 

Convolutional layer 112 × 144 × 16 3 × 3 × 16 × 16 

Convolutional layer 112 × 144 × 16 3 × 3 × 16 × 16 

Max-pooling layer 56 × 72 × 16 0 

Convolutional layer 56 × 72 × 32 3 × 3 × 16 × 32 

Convolutional layer 56 × 72 × 32 3 × 3 × 32 × 32 

Convolutional layer 56 × 72 × 32 3 × 3 × 32 × 32 

Max-pooling layer 28 × 36 × 32 0 

Convolutional layer 28 × 36 × 64 3 × 3 × 32 × 64 

Convolutional layer 28 × 36 × 64 3 × 3 × 64 × 64 

Max-pooling layer 14 × 18 × 64 0 

Convolutional layer 14 × 18 × 128 3 × 3 × 64 × 128 

Convolutional layer 14 × 18 × 128 3 × 3 × 128 × 128 

Max-pooling layer 7 × 9 × 128 0 

Dropout layer 1 7 × 9 × 128 0 

Flatten layer 1 8064 0 

Fully connected layer 1 7 8064 × 7 

Soft-max normalization layer 7 0 

1 the bold texts highlight the differences between the CNNs with / without Visual 

Attention. 
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.2. The CNN with visual attention 

As illustrated in Fig. 2 , the CNN is improved by adding an at-

ention mapping between its convolutional part and the fully con-

ected part. Let f : A 0 → z be an attention mapping. A 0 ∈ � 

W × H × C 

s the unfocused convolutional feature (i.e the activation of the last

ax-pooling layer in Fig. 2 ). z ∈ � 

C is the focused feature (i.e. the

nput of the fully connected layer in Fig. 2 ). 

 i = 

W ∑ 

j=1 

H ∑ 

k =1 

B j,k (A 0 ) j,k,i , (1)

 ∈ { 1 , 2 , . . . , C} , 
here B ∈ � 

W × H is a weight map whose elements are determined

y a two layered fully connected neural network mapping g :

 A 0 ) i,j → ( A 2 ) i,j and a soft-max function h : ( A 2 ) i,j → B i,j . 

The two layered fully connected neural network g can be de-

ned as 

(A 1 ) i, j,k = tanh 

( 

C ∑ 

l=1 

(W 1 ) l,k (A 0 ) i, j,l + (b 1 ) k 

) 

, (2) 
Fig. 2. The CNN with 
 ∈ { 1 , 2 , . . . , W } , j ∈ { 1 , 2 , . . . , H} , k ∈ { 1 , 2 , . . . , C 1 } , 

(A 2 ) i, j = tanh ( 

C 1 ∑ 

k =1 

(W 2 ) k (A 1 ) i, j,k + b 2 ) , (3)

 ∈ { 1 , 2 , . . . , W } , j ∈ { 1 , 2 , . . . , H} , 
here W 1 , b 1 , W 2 , b 2 is the parameters of the fully connected

eural network g . As illustrated in Fig. 2 , the convolutional fea-

ure tensor A 0 is spatially divided into vectors. Each vector denotes

he feature at a specific location. The neural network takes one of

hese vectors as its input and generates an importance scalar as its

utput. The neural network evaluate the importance of the input

ector according to its content rather than its location. 

Furthermore, these scalars of importance are normalized by 

 i, j = 

exp(β(A 2 ) i, j ) ∑ W 

k =1 

∑ H 
l=1 exp(β(A 2 ) k,l ) 

, (4) 

 ∈ { 1 , 2 , . . . , W } , j ∈ { 1 , 2 , . . . , H} . 
This equation encourages the sparsity of the weight map B

hich is controlled by β . Thus, Eq. (1) can select fewer regions

f interests and produces the focused feature. In this work, we

et β = 1 , and let Eq. (4) be a standard soft-max function, which

eems suitable for most applications. 

Alternatively, extra constraints can be applied on the weight

ap for some specific tasks. Such as a symmetric constraint is

sually used for processing aligned faces. Formally, the symmetric

eight map can be defined as 

 i, j = 

exp( 1 
2 
β(A 2 ) i, j + 

1 
2 
β(A 2 ) W +1 −i, j ) ∑ W 

k =1 

∑ H 
l=1 exp(β(A 2 ) k,l ) 

, (5) 

 ∈ { 1 , 2 , . . . , W } , j ∈ { 1 , 2 , . . . , H} . 
The symmetric weight map Eq. (5) is a drop-in replacement

f the free symmetric weight map Eq. (4) in our framework. It

an generate symmetric ROIs, which human can clearly recognize

nd understand. But it also has some disadvantage. First, it must

e used on the aligned front faces. Second, it even brings some

egative effects on the performance. In most cases, people should

se Eq. (4) rather than Eq. (5) . Comparisons will be shown in

ection 4.3 . 
visual attention. 
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Table 3 

The configuration of the CNN with visual attention 

Layer Number of activations Number of parameters 

Input layer 112 × 144 × 1 0 

Convolutional layer 112 × 144 × 16 3 × 3 × 1 × 16 

Convolutional layer 112 × 144 × 16 3 × 3 × 16 × 16 

Convolutional layer 112 × 144 × 16 3 × 3 × 16 × 16 

Max-pooling layer 56 × 72 × 16 0 

Convolutional layer 56 × 72 × 32 3 × 3 × 16 × 32 

Convolutional layer 56 × 72 × 32 3 × 3 × 32 × 32 

Convolutional layer 56 × 72 × 32 3 × 3 × 32 × 32 

Max-pooling layer 28 × 36 × 32 0 

Convolutional layer 28 × 36 × 64 3 × 3 × 32 × 64 

Convolutional layer 28 × 36 × 64 3 × 3 × 64 × 64 

Max-pooling layer 14 × 18 × 64 0 

Convolutional layer 14 × 18 × 128 3 × 3 × 64 × 128 

Convolutional layer 14 × 18 × 128 3 × 3 × 128 × 128 

Max-pooling layer 7 × 9 × 128 0 

Visual attention mechanism 128 128 × 66 + 66 × 1 

Dropout layer 128 0 

Fully connected layer 7 128 × 7 

Soft-max normalization layer 7 0 

[1] the bold texts highlight the differences between the CNNs with / without visual 

attention. 
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The configuration details of the improved CNN are listed in

Table 3 . The convolutional parts of the two networks described in

Table 2 and Table 3 are the same. The main difference between

the two networks is the attention mapping part in Table 3 which

aggregates 7 × 9 × 128 dimensional activation together to form an

activation of 128 dimensions. 

Similarly to the proposed attention mapping, the global aver-

age pooling method [26] also averages every activation map of

the last max-pooling layer into a scalar value. But, it does not

use a trainable weight map. It uses an inefficient fixed uniform

weight map in which every element is fixed at 1/ WH . In the facial

expression recognition task, the local features extracted at back-

ground, hair, etc. have no correlation with the emotional labels.

The global feature averaged by these meaningless local features is

inefficient. The global average pooling method does not suitable for

such task. By contrast, the advantage of using a trainable weight

map is obvious. The feature aggregated from the region of inter-

est is more informative than the feature in global average pooling

method. 

4. Experiments 

4.1. Dataset 

The Radboud Faces Database (RaFD) [27] , the FER-2013 dataset

[23] and the Static Facial Expressions in the Wild dataset 2.0

(SFEW) [28] are used in the experiment for evaluating the pro-

posed method. The RaFD contains constrained facial images of 67

subjects. For each subject, faces were recorded in different poses

and gaze directions. The samples belonging to the contempt class

are ignored. The RaFD contains 7035 (67 subjects × 5 poses ×
7 emotions × 3 gaze directions) 681 × 1024 images. These im-

ages are divided into five folds. Subjects in these folds are not over-

lapped (fold #1: subject 1–15, fold #2: subject 16–29, fold #3: sub-

ject 30–43, fold #4: subject 44–57, fold #5: subject 58–73). 

The SFEW dataset 2.0 contains 1766 unconstrained facial im-

ages extracted from movies. These images are divided into training

set, validation set, and test set. Subjects in these sets are not over-

lapped. The training set and the validation set are labeled with six

basic expressions and the neutral class We report the performance

on the validation set since only the labels of test samples are not

public. 
Some researchers involved in EmotiW used FER-2013 as ex-

ernal training set. The FER-2013 dataset contains 35887 uncon-

trained facial images labeled with six basic expressions and the

eutral class in real-world conditions. All these samples are used

s the external training data to improve the performance of un-

onstrained faces. 

The HAPpy PEople Images (HAPPEI) dataset [29] is also used

or evaluating the fully convolutional [30] version of the proposed

ethod. The HAPPEI dataset is designed for group happiness in-

ensity analysis. It contains 4886 samples downloaded from Flickr

nd manually with group level mood intensities. We select four

mages (see the first row of Fig. 7 ) in the HAPPEI dataset for

isualizing the learned attention model in a fully convolutional

cheme. 

.2. Preprocessing and data augmentation 

As illustrated in Fig. 3 , the RaFD is preprocessed into two sets

amely RaFD-FRONT and RaFD-POSE. The RaFD-FRONT contains

nly the aligned frontal faces. Tight bounding boxes of the faces

n RaFD are detected using the Histogram of Oriented Gradients

HOG) feature combined with a linear classifier, an image pyra-

id, and sliding window detection scheme [31] . The landmarks are

etected using a regression based method [32] . 3D shapes of the

aces are estimated from the detected landmarks [33] . Faces are

ligned to a pre-defined 3D facial geometry. The RaFD-FRONT con-

ains 1407 (67 subjects × 1 poses × 7 emotions × 3 gazes) 125 ×
60 images. The RaFD-POSE contains faces in different poses. Faces

n this set are cropped by a fixed bounding box. They are not

recisely aligned. The RaFD-POSE contains 7035 (67 subjects × 5

oses × 7 emotions × 3 gazes) 284 × 284 images. Only the

ntensity channels of images in RaFD-FRONT and RaFD-POSE are

ept. The intensity channels are illumination normalized by the

sotropic diffusion method [34] . To enrich the training set, im-

ges are augmented by small translations and horizontal reflec-

ions. We extract random 112 × 144 / 272 × 272 patches (and

heir horizontal reflections) from the 125 × 160 / 284 × 284

mages and training networks on these extracted patches. During

est, the network makes predictions by extracting patches in the

enter. 

The training and validation set of the SFEW is used. As illus-

rated in Fig. 4 , faces in the SFEW dataset are detected, aligned,

nd illumination normalized by using similar pre-processing steps.

or simplicity, samples are rejected if no face bounding box is de-

ected. Otherwise, only the biggest box is kept. Finally, the training

nd validation sets have 865 and 400 samples respectively since

ome samples are rejected by the face detector. 

The images in HAPPEI dataset are resized to fit the scale

f RaFD-FRONT and RaFD-POSE. Similarly, the isotropic diffusion

ethod is employed for illumination normalization in a fixed-sized

liding window. 

.3. Facial expression recognition on RaFD-FRONT dataset 

The baseline CNN (see Fig. 1 and Table 2 ) was trained and val-

dated on RaFD-FRONT using a 5-fold cross-validation scheme. The

ross entropy loss and the Adam Optimizer [35] was employed. Af-

er 10,0 0 0 epoches, the network achieved a validation accuracy of

7.3% ± 1.2% which is a good result among the recent work. The

aseline network is capable of recognizing emotions of faces in

aFD-FRONT. After the baseline CNN was modified by adding an

ttention mapping between its convolutional part and fully con-

ected part (see Fig. 2 and Table 3 ), the proposed CNN with Vi-

ual Attention achieved a good accuracy of 95.2% ± 2.0% (use free

eight map Eq. (4)) and 94.8% ± 0.8% (use symmetric weight map

q. (5)) . 
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Fig. 3. The RaFD and the preprocessed data. 

Fig. 4. The SFEW dataset and the preprocessed data. 
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Table 4 

The relation between emotions and Action Units [43] . 

Emotions Action units ROI 

Angry 4(Brow Lowerer) + 5B(Slight Upper Lid Raiser)+ Brow + Lid + Lip 

7(Lid Tightener) + 23(Lip Tightener) 

Disgust 9(Nose Wrinkler) + 15(Lip Corner Depressor) + Nose + Lip 

16(Lower Lip Depressor) 

Fear 1(Inner Brow Raiser) + 2(Outer Brow Raiser) + Brow + Lid + Lip + Jaw 

4(Brow Lowerer) + 5(Upper Lid Raiser) + 

7(Lid Tightener) + 20(Lip Stretcher) + 26(Jaw Drop) 

Happy 6(Cheek Raiser) + 12(Lip Corner Puller) Check + Lip 

Sad 1(Inner Brow Raiser) + 4(Brow Lowerer) + Brow + Lip 

15(Lip Corner Depressor) 

Surprise 1(Inner Brow Raiser) + 2(Outer Brow Raiser) + Brow + Lid + Jaw 

5B(Upper Lid Raiser) + 26(Jaw Drop) 
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Besides the evaluation of the performances, the input images

nd weight maps B (projected back to the input space) are av-

raged and visualized for each emotion. As illustrated in Fig. 5 ,

he proposed CNNs with Visual Attention using free weight map

q. (4) and symmetric weight map Eq. (5) are compared. In

ig. 5 (a), without the symmetric constraint, the attention mech-

nism prefers to choose only one side of the face since the

ther side contains redundant information for spatial aggregat-

ng. in Fig. 5 (b), the symmetric weight maps for each type of

he emotions are also demonstrated. The visual attention mecha-

ism using symmetric weight map discovers the symmetric ROIs,

hich human can clearly recognize and understand. These re-

ions are partly consistent with the locations of expression spe-

ific Action Units listed in Table 4 . Our new founding confirms

he interpretation of FACS and EMFACS from a machine learning

erspective. 

Further more, the global average pooling method (fixed uni-

orm weight map) is also evaluated for comparison. All the exper-

ment results are summarised in Table 5 . These compared meth-

ds share the same meta-parameters in their convolutional parts

nd fully connected parts. The baseline CNN uses 7 × 9 × 128 di-

ensional features for the final classification. The CNN with Vi-

ual Attention / global average pooling achieve comparable cross

alidation accuracies, when the dimension of their features is ex-

remely compressed (from 7 × 9 × 128 to 128). Although the pro-

osed method does not achieve the best performance, it is the only
ne which can give an explainable result among the compared

ethods. 

The performances reported in the related work are also com-

ared in Table 5 . The Local Binary Pattern (LBP) [36–38] , Gabor

39] and Local phase quantization (LPQ) [40] are commonly used

and-crafted features for facial expression recognition. The Down

ampling (DS) features are down-sampled 12 × 10 facial patches.

our SVM classifiers are trained on these features separately. The

esult shows that our CNNs are superior to these conventional

ethods. The Facial Expression Generic Elastic Model (FE-GEM)

41] is a novel 3D reconstruction method for aligned faces. It can

econstruct the depth map from a single 2D face. Four SVM clas-

ifiers are trained on features extracted from both the original

aces and the depth maps estimated by FE-GEM. The combination

f Gabor+FE-GEM+SVM achieves the state-of-the-art performances.

he only limitation is that the FE-GEM model needs to be trained

n an external 3D facial dataset [42] . The performances of our

NNs are very close to the state-of-the-art method. CNNs and the

E-GEM are orthogonal techniques. CNNs can accept both the orig-

nal faces and the depth maps estimated by FE-GEM as the multi-

hannel inputs. Such networks may get better results. The combi-

ations of our CNNs and the FE-GEM method are beyond the scope

f this paper. 
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Fig. 5. The visualization of visual attentions for aligned frontal faces. 

(a) use free weight map Eq. (4) , (b) use symmetric weight map Eq. (5) . 

Table 5 

The accuracies of the classifiers. 

Dataset Method Validation accuracy (%) 

RAFD-FRONT The baseline CNN 97.3 ± 1.2 

The CNN with Visual Attention (use Eq. (4) ) 95.2 ± 2.0 

The CNN with Visual Attention (use Eq. (5) ) 94.8 ± 0.8 

The CNN with global average pooling 96.3 ± 1.7 

LBP + SVM [36,37] 86.5 

Gabor + SVM [38] 83.1 

LPQ + SVM [39] 84.8 

DS + SVM [40] 79.0 

LBP + FE-GEM + SVM [41] a 94.5 

Gabor + FE-GEM + SVM [41] a 98.1 

LPQ + FE-GEM + SVM [41] a 94.4 

DS + FE-GEM + SVM [41] a 90.8 

RAFD-POSE The baseline CNN 87.2 ± 2.8 

The CNN with Visual Attention (use Eq. (4) ) 93.1 ± 0.6 

The CNN with global average pooling 92.8 ± 1.7 

Human recognition rate [27] 82.0 

SFEW The baseline CNN 38.5 

The CNN with Visual Attention (use Eq. (4) ) 40.0 

The CNN with global average pooling 32.8 

The baseline CNN 

a 46.3 

The CNN with Visual Attention (use Eq. (4) ) a 48.3 

The CNN with global average pooling a 42.8 

Kim’s CNN 

b 52.5 

Levi’s LBP + CNN 

c 44.7 

PHOG + LPQ + SVM [27] 36.0 

a Trained on external dataset. 
b The winner of EmotiW-2015-SFEW, the network is referred as “PREP iNor, oA − { CNN L −

F C3072 } R 1 ” in [17] . 
c The network is referred as “LBP1, cyclic, VGG_M-4096 - Oversampling” in [5] . 
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4.4. Facial expression recognition on RaFD-POSE dataset 

In this section, our networks are evaluated on the unaligned

RaFD-POSE. This task is more challenging than that in Section 4.3 .

For the reason that the image size of the RaFD-POSE is different

from the one of RaFD-FRONT, slight modifications should be made
ased on the network described in Tables 2 and 3 . The dimension

f the input layer is enlarged from 112 × 144 to 272 × 272. The

imensions of the activation maps of the convolutional layers and

he dimensions of the hidden fully connected layers are enlarged

orrespondingly. The other meta-parameters remain the same as

hose listed in Tables 2 and 3 . 
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Fig. 6. The visualization of visual attentions for faces in different poses. 
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Both CNNs with / without visual attention mechanism were

rained and validated on RaFD-POSE using a 5-fold cross-validation

cheme. The cross entropy loss and the Adam Optimizer [35] was

mployed. After 130 epoches, the proposed network achieved good

erformance as listed in Table 5 . Compared with the classification

ask on aligned frontal faces in Section 4.3 , the visual attention

echanism is more important in this experiment. It may play a

ole of landmark locator for unaligned faces. Therefore, the cross

alidation accuracy increases 5.9% (from 87.2 to 93.1%) with the

elp of the visual attention mechanism. 

As illustrated in Fig. 6 , the input images and weight maps B

projected back to the input space) are averaged and visualized per

motion per pose. Similar to the visualization in Fig. 5 , the regions

f interests for each type of the emotions have been successfully

iscovered. Furthermore, these regions are pose invariant. In each
olumn of Fig. 6 , the region of interest always locates the corre-

ponding Action Units, while the face is rotating. Suppose that we

ave ideally collected sufficient facial images in continuous yaw /

itch angles. The difference between two adjacent images can be

een as a kind of small deformation. The continuous mapping: in-

ut X → A 0 → B may be trained to give smooth and correct atten-

ion weights while the facial image deforms continually. In prac-

ice, even the training data RaFD-POSE have only five poses, the

ontinuous mapping still seems to be well trained. 

Further more, the global average pooling method (fixed uniform

eight map) is also evaluated for comparison. As listed in Table 5 ,

he baseline CNN is not suitable for unaligned faces. It achieves

he lowest cross validation accuracy of 87.2%. The CNN with global

verage pooling achieves a better accuracy of 92.8%. By contrast,

he proposed CNN with Visual Attention (use Eq. (4) ) achieves the

est accuracy of 93.1%, even the dimension of the feature is ex-

remely compressed (from 17 × 17 × 128 to 128). Our CNNs sur-

ass the human recognition rate which is reported by the creator

f the dataset [27] . 

The attention model has different effects on different datasets.

he accuracy on the RaFD-POSE dataset increases 5.9% (from 87.2

o 93.1%) by inducing the attention model. Compared to it, the at-

ention model does not improve the accuracy on the RaFD-FRONT

ataset (from 97.3 to 95.2%). A suitable explanation is that the at-

ention model has its two sides. On the positive side, it has a simi-

ar function to a face detector or an AU detector. It detects the ROI,

mplifies the signals in the ROI and suppresses the background

oises. On the negative side, the attention model is a learning sys-

em. The ROI predicting error has bad effects on the subsequent

rocessing. In Figs. 5 and 6 , the ROI in the aligned / unaligned facial

xpression recognition task is different. In unaligned facial expres-

ion recognition tasks, the positive side dominates the result since

he attention model makes the feature pose invariant. The ROIs of

he unaligned faces are generally smaller and more variable than

hose of the aligned faces. In aligned facial expression recognition

asks, the ROI is stable. The fully connected layer of the neural

etwork can learn connecting weights which tells the importance

f different local regions, reduce the requirement of the attention

ased ROI detection. The negative side dominates the result. In a

ord, we should make the best use of the advantages and bypass

he disadvantages according to the above analysis. 

The confusion matrices evaluated on the first fold of the

aFD-FRONT dataset and the RaFD-POSE dataset are illustrated in

able 6 . The confusion matrices show that the networks sepa-

ate each class from others well, except for the surprise-fear and

eutral-sad pairs which are naturally hard to distinguish. 

.5. Facial expression recognition on SFEW dataset 

The proposed method is also evaluated on the unconstrained

FEW dataset and FER-2013 dataset. The learning method is sim-

lar to that in Section 4.3 . The cross entropy loss and the Adam

ptimizer [35] was employed to train the baseline CNN, the CNN

ith Visual Attention, and the CNN with global average pooling on

he preprocessed SFEW dataset. The validation accuracies at epoch

00(trained with FER-2013) / 10,000(trained without FER-2013) are

isted in Table 5 . The visual attention model improves the the per-

ormance of the baseline CNN by 1.5% (from 38.5 to 40.0%). More-

ver, by using the external training data the performance is further

mproved by 8.3% (from 40.0 to 48.3%). Compared to it, the global

verage pooling makes the performance worse since it is very sen-

itive to background noises. 

Some state-of-the-art methods use ensembles of deep neural

etworks to achieve superior performance [4,5,17–22] . This paper

ocuses on facial expression recognition algorithm based on sin-

le network and single frame. For the sake of fairness, only single
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Fig. 7. The visualization of visual attentions on the HAPPEI dataset. 

Table 6 

The confusion matrices. 

(a) The baseline CNN method validated on RaFD-FRONT (%) (b) The CNN with Visual Attention (use Eq. (4) ) method validated on RaFD-FRONT (%) 

A D F H N Sa Su A D F H N Sa Su 

A 100.0 0.0 0.0 0.0 0.0 0.0 0.0 A 94.9 0.0 0.0 0.0 0.0 5.1 0.0 

D 0.0 100.0 0.0 0.0 0.0 0.0 0.0 D 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

F 0.0 0.0 97.4 0.0 0.0 0.0 2.6 F 0.0 0.0 89.7 0.0 0.0 2.6 7.7 

H 0.0 0.0 0.0 100.0 0.0 0.0 0.0 H 0.0 0.0 0.0 100.0 0.0 0.0 0.0 

N 0.0 0.0 0.0 0.0 100.0 0.0 0.0 N 0.0 0.0 0.0 0.0 100.0 0.0 0.0 

Sa 0.0 0.0 0.0 0.0 5.1 94.9 0.0 Sa 2.6 0.0 0.0 0.0 12.8 84.6 0.0 

Su 0.0 0.0 0.0 0.0 0.0 0.0 100.0 Su 0.0 0.0 2.6 0.0 0.0 0.0 97.4 

(c) The baseline CNN method validated on RaFD-POSE (%) (d) The CNN with Visual Attention (use Eq. (4) ) method validated on RaFD-POSE (%) 

A D F H N Sa Su A D F H N Sa Su 

A 86.2 1.0 2.1 0.0 7.2 3.6 0.0 A 97.4 0.5 0.0 2.1 0.0 0.0 0.0 

D 4.1 90.3 2.1 1.5 1.0 1.0 0.0 D 4.1 92.8 0.5 2.1 0.0 0.0 0.5 

F 0.0 0.0 81.5 0.0 7.2 0.5 10.8 F 0.0 1.0 97.4 0.0 0.0 0.0 1.5 

H 0.5 0.5 0.0 99.0 0.0 0.0 0.0 H 0.0 0.0 0.0 100.0 0.0 0.0 0.0 

N 6.2 0.0 0.5 0.5 83.6 8.7 0.5 N 2.1 0.0 3.1 2.1 87.2 5.6 0.0 

Sa 10.3 0.0 5.1 0.0 20.5 62.6 1.5 Sa 2.6 0.5 5.6 0.0 3.1 88.2 0.0 

Su 0.0 0.0 5.6 0.0 0.0 0.0 94.4 Su 0.0 0.0 6.7 0.0 0.0 0.0 93.3 
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networks are compared in Table 5 . The proposed CNN with Visual

Attention outperforms the baseline CNN, the CNN with global av-

erage pooling, and the PHOG+LPQ+SVM method proposed by the

creator of the SFEW dataset [16,28] . Also, our method is close to

the state-of-the-art single networks [5,17] . The Kim’s CNN [17] is

a member of the ensemble network which won the EmotiW-2015-

SFEW challenge. 

The unconstrained facial expression recognition task is more

challenging than the constrained one. Although the faces are

aligned, they have various of dirty backgrounds out of the ROI. The

features extracted from the dirty background will reduce the ac-

curacies. Theoretically, CNN feature can be invariant to these back-

grounds. But due to the small sample size limitation, calculating

the relative importance of the pixels (i.e. the attention map) is
ore practical. The performance can be improved by aggregating

he features in the ROI. 

.6. Visualizing the learned attention model on HAPPEI dataset 

Our last experiment provides a preliminary evaluation of the

roposed network on grouped unconstrained faces. We directly

xtend the proposed network to its fully convolutional version

30] for processing images of arbitrary size efficiently. As illustrated

n Fig. 2 , the convolutional part calculates convolutional feature

aps for arbitrary-sized images. The attention mapping part gener-

tes variable-sized attention weights, and aggregates variable-sized

onvolutional feature maps into a fixed-length 1D vector. Although
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Table 7 

Comparing of feature aggregating methods. 

Method Receptive field Needs learning 

Max-pooling Small local patches No 

Stacked max-pooling Large local patches No 

Global average pooling The whole image No 

Visual attention mechanism The region of interest 

of the whole image 

Yes 
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he dimensions of the input and activation of these layers are vari-

ble, the numbers of parameters are always fixed. 

Our Fully Convolutional Neural Network (FCNN) is trained on

he RaFD-POSE dataset and visualized on the HAPPEI dataset [29] .

ore exactly, only four test images in the HAPPEI dataset are se-

ected for visualization (see the first row of Fig. 7 ). Each image is

 group photo containing several faces with various backgrounds.

ur network was trained on the constrained RaFD-POSE. It has not

een such complicated test images before. The inferred attention

eights are illustrated in the second row of Fig. 7 . Our network

akes many false positives in background areas for the reason that

he background model is never learned. We simply used soft fa-

ial bounding boxes detected by an existing face detector [31] to

uppress these false positives. To our surprise, the suppressed at-

ention weight maps look good. As shown in the bottom row of

ig. 7 , the regions of interests of the faces are similar to those in

igs. 5 and 6 . It shows that the proposed network can also be ex-

ended to its fully convolutional version for grouped faces. 

.7. Further analysis of the visual attention mechanism 

The visual attention mechanism extremely compress the high-

evel feature from a 7 × 9 × 128 / 17 × 17 × 128 dimensional tensor

o a 128 dimensional vector without loosing classification accu-

acy. The elements of the 128 dimensional vector denote the ex-

stences of factors in the region of interest. Table 7 compares three

ommonly used feature aggregating methods namely max-pooling,

lobal average pooling [26] and visual attention mechanism. The

ifferences of these methods are obvious. 

• Max-pooling is often paired with convolutions. A CNN often

contains a stack of convolution layers and max-pooling layers.

Stacked max-pooling layers are designed to reduce the spatial

dimensions of the activation map and increase the area of the

receptive field of the elements in the deep activation map. For

the reason that the max operator is sensitive to noise, max-

pooling can not be used globally. 
• Global average pooling sums out the feature map spatially, thus

the network is more robust to spatial translations of the input.

The receptive field of global average pooling is the whole im-

age. 
• Visual attention mechanism is very close to global average

pooling. It sums out the feature map spatially based on atten-

tion weights B . The weights are learned from the supervised

data and tell the importance of the regions. The receptive field

of visual attention mechanism is the region of interest of the

whole image. Visual attention mechanism is more reasonable

than global average pooling. 

In facial expression recognition task, humans always pay their

ttentions around eyes and mouths and ignore the hairs, noses,

ars, backgrounds, etc. The behavior of humans is a kind of expla-

ation for the proposed CNN with Visual Attention. Furthermore,

xperts defined the Action Units precisely according the muscu-

ar movements in different regions. Then they defined six emo-

ions according to six combinations of Action Units. The existences

f Action Units are latent factors in facial expression recognition.
ggregating features using the learned attention weights can be

iewed as a kind of rough detection for latent factors. 

. Conclusion 

A CNN with Visual Attention is proposed for solving the facial

xpression recognition problem. Some empirical studies show that

he proposed network is able to learn regions of interests which

re partly consistent with the locations of expression specific Ac-

ion Units. Our founding confirms the interpretation of FACS and

MFACS from a machine learning perspective. 

Learning meaningful latent factors for specific tasks is an in-

eresting topic. It may be a good way to understand the internal

echanism of neural networks. In this work, the regions of inter-

sts for facial expression recognition are located by the proposed

NN with Visual Attention. According to the interpretation of FACS

nd EMFACS, aggregating features in these regions is efficient. Fur-

hermore, the latent factors should not be limited to the Action

nits studied in this paper. Such as common properties of a per-

on, local textures, temporal motions, etc. are important clues for

xpression recognition. They should be pay attention to in the fur-

her work. 
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