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Abstract

In the research area of computer vision and artificial intel-
ligence, learning the relationships of objects is an important
way to deeply understand images. Most of recent works de-
tect visual relationship by learning objects and predicates re-
spectively in feature level, but the dependencies between ob-
jects and predicates have not been fully considered. In this
paper, we introduce deep structured learning for visual rela-
tionship detection. Specifically, we propose a deep structured
model, which learns relationship by using feature-level pre-
diction and label-level prediction to improve learning ability
of only using feature-level predication. The feature-level pre-
diction learns relationship by discriminative features, and the
label-level prediction learns relationships by capturing depen-
dencies between objects and predicates based on the learnt
relationship of feature level. Additionally, we use structured
SVM (SSVM) loss function as our optimization goal, and
decompose this goal into the subject, predicate, and objec-
t optimizations which become more simple and more inde-
pendent. Our experiments on the Visual Relationship Detec-
tion (VRD) dataset and the large-scale Visual Genome (VG)
dataset validate the effectiveness of our method, which out-
performs state-of-the-art methods.

Introduction
Although significant progress has been made on image
recognition, including both global image classification
(Szegedy et al. 2015; He et al. 2016; Szegedy et al. 2017)
and local object detection (Ren et al. 2015; Dai et al. 2016),
with the assistance of deep learning techniques (LeCun,
Bengio, and Hinton 2015) and large scale training data
(Deng et al. 2009; Xiao et al. 2010; Krishna et al. 2017),
there still exists a huge gap in deep understanding of images.
Recently, visual relationship detection has attracted more
and more research attentions. Investigating on this problem
can go one step further to understand images, and should be
a potentially important topic in artificial intelligence. Fur-
thermore, visual relationship, reflects relations between t-
wo objects such as spatial relations, action relations, is a
description of the finer granularity of objects in the image.
In addition, visual relationship is also useful for improving
image retrieval (Lu et al. 2016), visual question answering
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Figure 1: The results of visual relationship detection con-
tain: 1) the location of objects and the concept of objects, 2)
triplet representation of two objects.

(VQA) (Santoro et al. 2017), and object detection (Zhang et
al. 2017).

Visual relationship detection is to detect all possible rela-
tions between objects. As shown in Figure 1, an object rela-
tionship in an image I can be represented byR<sub,pre,obj>,
where sub = {cs, os}, obj = {co, oo}, os, oo are bounding
boxes of sub, obj respectively, cs, co belong to classification
space of object, pre belongs to classification space of pred-
icate. The goal of visual relationship detection is to extract
a series of relationships A = {R<>, R<>, · · · , R<>} from
I .

The main challenges of visual relationship detection are:
1) The size of the classification space of possible relation-
ships is huge. 2) The long-tail distribution of relationships
lead to an extremely imbalanced dataset, where it is hard
to collect enough training images for all the relationships,
especially for infrequent relationships. For example, Visu-
al Genome dataset (Krishna et al. 2017) contains over 75K
distinct visual relationships, and the number of samples for
each relationship ranges from just a handful to over 10K.

A natural approach to detect visual relationship is to treat
it as a classification task. But this approach may work in a
restricted context where the number of predicted space is
moderate, such strategy would meet with a fundamental dif-
ficulty in a large number of imbalanced classes.



An alternative strategy is to learn the object and predi-
cate respectively. This approach has been used in most of
recent works (Lu et al. 2016; Liang, Lee, and Xing 2017;
Dai, Zhang, and Lin 2017; Zhang et al. 2017) due to the fol-
lowing reasons: 1) The number of detectors declines dras-
tically by using N + K detectors (N is the number of ob-
ject categories, andK is the number of predicate categories)
to search the whole space of relationships. 2) Objects and
predicates appear independently more frequently, which are
more easy to learn compared with the infrequent relation-
ships. However, this approach breaks up the structures of
relationships between objects and predicates. For example,
in the VRD training data (Lu et al. 2016), there is only 7,701
types of relationships with 100× 100× 70 size space of re-
lationships. To address this dilemma and obtain reasonable
relationships, Lu et al. (Lu et al. 2016) leverage prior lan-
guage knowledge, and Liang et al. (Liang, Lee, and Xing
2017) employ the graph of relationships.

In the strategy of learning the object and predicate re-
spectively, the most difficult challenge is the low predicted
accuracy of predicates. Although there appears some new
approaches in recent works, such as using the union region
of two objects (Lu et al. 2016; Zhu, Jiang, and Li 2017;
Liang, Lee, and Xing 2017) and the positional information
of objects (Zhang et al. 2017; Dai, Zhang, and Lin 2017;
Zhu, Jiang, and Li 2017), these approaches exist a gap in pre-
cise representations of predicates. Firstly, the union region
of two objects contains some noises, such as other objects.
Secondly, the positional information of objects is exploited
without embedding visual information that may lead to weak
discrimination. A feasible approach to solve these problem-
s is employing deep structured learning, which learns dis-
criminative features, especially for predicates, and captures
dependencies between objects and predicates directly.

In this paper, we introduce deep structured learning for vi-
sual relationship detection. In particular, we propose a deep
structured model, which comprises feature-level relation-
ship prediction and label-level relationship prediction. The
feature-level prediction is to predict two objects and a predi-
cate respectively by learning discriminative features, and the
label-level prediction is to capture dependencies between
objects and predicates based on the predicted relationship
of feature level. The two predicted relationships determine
the final relationships by weighted summing. Additionally,
we use SSVM loss as our optimization goal, and decompose
this goal into the subject, predicate, and object optimization
goals. After decomposing, the optimizations become more
simple and more independent.

To sum up, the main contributions of this work are as fol-
lows: 1) we propose a deep structured model for visual re-
lationship detection, and this model captures dependencies
between objects and predicates based on the predicted rela-
tionship at feature level. 2) SSVM loss function is exploited
as our optimization goal, which is decomposed into the sub-
ject, predicate and object optimization goals for more simple
and more independent optimizations.

Related work
Visual relationship detection. In earlier works, some base
relationships are exploited to assist other computer vi-
sion tasks. For example, some spatial relations like “be-
low”, “above” are exploited for object categorization (Gal-
leguillos, Rabinovich, and Belongie 2008) and segmentation
(Gould et al. 2008), and co-occurring relation is employed
to assist scene classification (Izadinia, Sadeghi, and Farhadi
2014). Besides, some research tasks, such as human-object
interactions (Gkioxari et al. 2017; Yao and Fei-Fei 2010), a
few specific relationships (Sadeghi and Farhadi 2011), are
also used by researchers.

Recently, the task of object relationship detection is pro-
posed by Lu et al.(Lu et al. 2016), which combines appear-
ance features and a language prior for relationship detec-
tion. To further improve the above work, Zhu et al. (Zhu,
Jiang, and Li 2017) exploit spatial distributions of objects.
Instead of calculating a language prior score of relationship,
Liang et al. (Liang, Lee, and Xing 2017) employ a direct-
ed semantic action graph built on language priors, to detect
visual relationships in the framework of deep enforcement
learning. The above works are all using additional knowl-
edge for relationship detection. Integrated into a single net-
work that is learned in an end-to-end framework for rela-
tionship detection, Zhang et al. (Zhang et al. 2017) propose
a VtransE model employing the key idea of transE, which
learns embedding representations of triplets in natural lan-
guage processing, and Dai et al. (Dai, Zhang, and Lin 2017)
propose a deep relational networks. Compared with the V-
transE, our method learns the structures of relationships in
label level. Our method differs the deep relational networks
(Dai, Zhang, and Lin 2017) in two aspects: 1) We learn dis-
criminative feature of the predicate using the features of two
objects. 2) The dependencies of objects and predicates are
captured only by one layer.

Deep structured learning. There are two principal ap-
proaches to structured prediction: as a feed-forward func-
tion y = f(x), and using an energy-based viewpoint y =
argminy′E(x, y′) (LeCun et al. 2006). The feed-forward
function models the structure only in feature levels, for ex-
ample, using a fully convolution network models the struc-
ture of feature levels for image segmentation (Long, Shel-
hamer, and Darrell 2015). In contrast, the energy-based ap-
proach models the structure in both feature levels and la-
bel levels and can obtain more desirable results in most
of cases, but this approach may involve non-trivial opti-
mization, where the learning and prediction are more com-
plex. Therefore, most of approaches explore an approxi-
mate learning procedure to solve this optimization (Chen
et al. 2015; Belanger and McCallum 2016). A feasible ap-
proach is modeling the structure of feature levels and cap-
turing dependencies of labels with a feed-forward func-
tion. For example, Liu et al. (Liu et al. 2015) propose a
deep neural network, where the structure of feature level-
s is learnt by a deep convolution architecture, the depen-
dency of labels is captured by additional two-layer convo-
lution based on the prediction of feature levels, and the sum
of two predictions decide the final prediction. Inspired by
this work, we also capture the structure of relationship us-
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Figure 2: Network architecture of deep structured learning for visual relationship detection. An input image is first through the
object detection module, which is a convolutional network that outputs a set of detected objects. Then, every pair of objects is
fed into the relationship prediction module for relationship learning. In the relationship prediction module, the 4096-dimension
feature of subject, object and union are obtained from the cov5 3 layer of the trained Faster R-CNN object detector, and the
128-dimension spatial feature is learnt by convolutional neural network (CNN) (Dai, Zhang, and Lin 2017), which is composed
of three convolutional layers. These features are inputted into a multi-layer neural network to obtain feature-level prediction
and label-level prediction. In the feature-level prediction, we share learnt weights for the prediction of subject and object.

ing additional layer based on the predictions of two ob-
jects and a predicate. In addition, deep structured learn-
ing is widely used for multi-label classification (Belanger
and McCallum 2016), pose estimation (Song et al. 2017;
Carreira et al. 2016), image segmentation (Liu et al. 2015;
Long, Shelhamer, and Darrell 2015) and so on. However,
deep structured learning has not been exploited for visual
relationship detection.

Method
As shown in Figure 2, our proposed framework compris-
es object detection and relationship prediction. Object de-
tection is used to locate regions of objects, and a series of
object pairs are prepared for relationship prediction. In the
relationship prediction, we firstly extract the visual features
of two objects and their union, and employ a convolution-
al neural network (Dai, Zhang, and Lin 2017) to learn spa-
tial features. The features are inputted into a neural network
to learn feature-level scores of relationships, and simultane-
ously learn the label-level scores of relationships based on
the predicted feature-level scores. The two predicted scores
determine the final predicted relationships. The following
paragraphs introduce the two stages.

Object detection. In this work, we use Faster R-CNN
(Ren et al. 2015) to locate a set of objects, and generate a
series of object pairs. Then each candidate object pairs with
two bounding boxes and a cov5 3 layer feature map of the
image are obtained for the relationship prediction, where the
cov5 3 layer feature map can be reused to extract features of
candidate objects.

Relationship prediction. The key components of rela-
tionship prediction module are feature-level prediction and
label-level prediction. The feature-level predication is to ob-

tain feature-level scores of relationships, and the label-level
prediction is to calculate the label-level scores of relation-
ships by capturing dependencies between objects and predi-
cates. The final score of predicted relationship is the weight-
ed sum of the two scores. We will discuss each component
next, and finally give the details of the learning method.

Feature-level prediction
Given a pair of object bounding boxes < os, oo >, the
feature-level relationship is to predict two objects and a
predicate respectively. The feature of objects and predicates
for predicted relationship are obtained using a neural net-
work, which is illustrated in Figure 2. The size of input fea-
ture of subject, object and the union is 7×7×512 after ROI
pooling, and each feature is inputted into a fully connected
layer, where the weights come from fc6 layer of the trained
Faster R-CNN model, with outputting a feature vector of
4096 dimensions, which is equal to the feature vector taken
from the fc6 layer of the trained Faster R-CNN model. Our
main goal is to reduce the size of learnt parameters to pre-
vent overfitting. The two-channel input of binary value for
learning the 128-D spatial feature with three convolutional
layers, one for the subject and the other for the object, are
down-sampled to the size 32 × 32. Finally, the feature vec-
tor of predicted relationship of objects and subjects is 2048
dimensions, the feature vector of predicted relationship of
predicates is 4096 dimensions, and the corresponding pre-
dicted scores of the subject, the predicate, and the object in
feature level are calculated as follows:

Sfeat(si) = wT
i fs + bi

Sfeat(pk) = wT
pk
fp + bpk

Sfeat(oj) = wT
j fo + bj



where fs, fp,fo are feature vectors of subject, predicate,
object respectively, Sfeat(si) is the feature-level score of ith
object category of subject, wi, bi are the learnt parameters to
calculate Sfeat(si), Sfeat(pk) is the feature-level score of
kth predicate category, wpk

, bpk
are the learnt parameters

to calculate Sfeat(pk), Sfeat(oj) is the feature-level score
of jth object category of object, and wj , bj are the learnt
parameters to calculate Sfeat(oj).

Label-level prediction
In the structured learning, the common methods are learning
a matrix to capture the interaction of pairwise labels, such
as first-order Markov/Conditional random field, which may
involve non-trivial optimization. Inspired by the work (Liu
et al. 2015), we capture the dependencies of labels based on
the feature-level prediction. The corresponding label-level
scores are calculated as follows:


Sld(si) = wT

psiSfeat(p) + wT
osiSfeat(o)

Sld(pk) = wT
spk
Sfeat(s) + wT

opk
Sfeat(o)

Sld(oj) = wT
sojSfeat(s) + wT

pojSfeat(p)

where Sfeat(s), Sfeat(p), Sfeat(o) are three vectors,
which are feature-level scores of the subject, the predicate
and the object respectively, Sld(si) is the label-level score
of ith object category of subject, wpsi ,wosi are the learn-
t parameters to calculate Sld(si), Sld(pk) is the label-level
score of kth predicate category, wspk

, wopk
are the learnt

parameters to calculate Sld(pk), Sld(oj) is the label-level s-
core of jth object category of object, and wsoj , wpoj are the
learnt parameters to calculate Sld(oj).

Training
The final score of relationship is S(R<si,pk,oj>| < os, oo >
) = Sfeat(si) + Sfeat(pk) + Sfeat(oj) + Sfeat(oj) +
αSld(si)+βSld(pk)+γSld(oj), where α, β and γ are hyper-
parameters. Our learning target is that given a pair of object
bounding boxes < os, oo >, the ground-truth relationship
R<> has the highest score S(R<>| < os, oo >). In this pa-
per, we employ SSVM loss as our optimization objective due
to SSVM has shown it’s effectiveness to address the issue of
involving complex outputs such as multiple dependent out-
put variables and structured output spaces (Tsochantaridis et
al. 2005). The SSVM minimizes:

L =
∑

<ois,oio>,Ri

max
R

(4(Ri, R) + S(R| < ois, oio >))

−S(Ri| < ois, oio >) (1)

where4(Ri, R) is an error function between a prediction
R and the ground truth Ri. The 4(Ri, R) can be decom-
posed into three terms: 4(Ri, R) = 4(si, s) +4(pi, p) +
4(oi, o), where 4(si, s), 4(pi, p), 4(oi, o) are the error
functions of subject, predicate, object respectively. Then E-
q. 1 can be decomposed into the sum of the following three
terms:



Ls =
∑
si

max
s

(4(si, s) + Sfeat(s) + αSld(s))

−(Sfeat(si) + αSld(si)) (2)

Lp =
∑
pi

max
p

(4(pi, p) + Sfeat(p) + βSld(p))

−(Sfeat(pi) + βSld(pi)) (3)

Lo =
∑
oi

max
o

(4(oi, o) + Sfeat(o) + γSld(o))

−(Sfeat(oi) + γSld(oi)) (4)

Where Ls is subject optimization, Lp is predicate opti-
mization, and Lo is object optimization. For optimizing Eq.
1, the computational complexity of the maximum score of
relationship is N2K. But for the three terms, this compu-
tational complexity of the maximum score of relationship
is down to 2N + K. After decomposing, the optimizations
become more simple and more independent.

Experiment
We will validate the effectiveness of the proposed deep
structured model for visual relationship detection by answer-
ing the following two questions. Q1: Is the deep structured
model effective for visual relationship detection? Q2: Is the
learnt structure of relationship reasonable by this deep struc-
tured model?

Datasets and Metrics
Datasets. we evaluate our proposed method on Visual re-
lationship detection (VRD) (Lu et al. 2016) and Visual
Genome (VG) (Zhang et al. 2017) datasets. a) VRD: the
dataset contains 5,000 images with 100 object categories and
70 predicate categories, and is annotated 37,993 relation-
ships with 7,701 types. We follow the same train/test split
as in (Lu et al. 2016), i.e., 4,000 training images contain-
ing 30,355 relationships with 6,672 types and 1,000 test im-
ages containing 7,638 relationships with 2,747 types, where
1,169 relationships with 1,029 types are only in the test data.
b) VG: the dataset contains 99,652 images with 200 objec-
t categories and 100 predicates, resulting in 1,090,027 rela-
tionships with 19,561 types and 57 predicates per object cat-
egory. We also follow the same train/test split as in (Zhang
et al. 2017), 73,794 training images containing 803,276 re-
lationships with 19,236 types, and 25,858 test images con-
taining 286,751 relationships with 16,592 types.

Evalutaion. we evaluate our proposed method for the
following tasks. Phrase detection: given an input image,
output a phrase < sub, pre, obj > and localize the entire
phrase with one bounding box having intersection over u-
nion (IoU ) > 0.5 with the ground-truth bounding box. Re-
lationship detection: given an input image, output a rela-
tionship < sub, pre, obj > and localize both the subject
and the object with their bounding boxes having IoU > 0.5
with the ground-truth bounding boxes respectively. Phrase
prediction: given an input image and two objects bounding
boxes, output a phrase < sub, pre, obj >. Following (Lu
et al. 2016), we use Recall@50 (R@50) and Recall@100
(R@100) as evaluation metrics for detection. R@x com-
putes the fraction of times of the correct relationship, which
is predicted in the top x confident relationship predictions in



Table 1: Performances of phrase detection and relationship
detection using various methods on VRD and VG datasets.

Phrase Det (%) Relationship Det (%)
R@100 R@50 R@100 R@50

VRD

F 18.44 16.98 13.90 12.96
Fo 23.41 21.99 17.07 16.15

F+L 23.12 21.62 17.37 16.28
Fo+L 23.92 22.61 18.26 17.27

VG

F 9.07 7.46 4.73 3.90
Fo 10.66 8.90 5.71 4.77

F+L 14.43 11.77 7.33 5.96
Fo+L 14.35 12.07 7.50 6.37

Table 2: Performances of phrase prediction using various
methods on VRD and VG datasets. we use Precision (P )
as the evaluation metric.

P (%) F Fo F+L Fo+L
VRD 26.43 35.94 34.32 36.28
VG 16.58 19.39 26.67 26.86

an image. In the task of phrase prediction, we use Precision
(P ) as the evaluation metric.

Experimental setup
Implementation details. The object detection architecture
of Faster-RCNN is the VGG-16 network (Simonyan and
Zisserman 2014). At the training time, we sample a mini-
batch containing 256 region proposals generated by the RP-
N of Faster-RCNN, each of which is positive if it has an
IoU > 0.7 with some ground-truth regions and it is nega-
tive if the IoU < 0.3. At the test time, we sample 300 re-
gion proposals generated by RPN with IoU > 0.7. After the
classification layer, we perform non-maximum suppression
(NMS) with IoU > 0.5 for every class on the 300 proposals.
In the VRD dataset, the proposals with probability of a cate-
gory> 0.5 are retained for NMS, resulting in 12.3 proposals
per image on average. In the VG dataset, the proposals with
the probability of a category> 0.3 are retained for NMS, re-
sulting in 15.3 proposals per image on average. After object
detection, each two objects is served for relationship pre-
diction in the two cases: a) there is an intersection between
the two bounding boxes of objects, b) the ratio of the sum
area of two bounding boxes to the area of union bounding
box is bigger than 0.4. In addition, due to the lack of train-
ing images for object detection in the VRD data, we select
32,715 images of the VG data to train Faster-RCNN mod-
el, and verify on the VRD training data obtaining 28.1%
mAP. In the prediction of relationship, we empirically set
4(si, s) = 3, 4(pi, p) = 3, 4(oi, o) = 3, a momentum of
0.9, α = r = 0.005, β = 0.2, a weight decay of 0.05 for the
VRD dataset, and α = r = 0.1, β = 0.3, a weight decay of
0.001 for the VG dataset.

Our Model. We perform ablation studies on our model
and compare the results. Specifically, we consider the fol-
lowing variants of our model:

• F. Detecting visual relationship only uses feature-level

prediction, but the prediction of predicate does not use
the features of two objects.

• Fo. Detecting visual relationship only uses feature-level
prediction, and the prediction of predicate uses the fea-
tures of two objects.

• F+L. Detecting visual relationship uses feature-level pre-
diction and label-level prediction, but the prediction of
predicate does not use the features of two objects.

• Fo+L. Detecting visual relationship uses feature-level
prediction and label-level prediction, and the prediction
of predicate uses the features of two objects.

Experimental results
Table 1 compares the performance of our proposed method
in both phrase detection and relationship detection, and the
performance of our proposed method in phrase prediction
is shown in Table 2. From the experimental results, we can
obtain the following observations:

1). The method of ‘Fo’ have a significant advantage over
the method of ’F’ in the VRD dataset, but this advantage is
weaker in the VG dataset. A possible reason is that there ex-
ists more noises in the VG dataset, which leads to learning a
noisy feature of the predicate. On the whole, the experimen-
tal performance has been improved by using the features of
two objects in feature-level relationship prediction. This il-
lustrates that the method of using the features of two objects
can learn a stronger discriminative feature of the predicate.

2). The method of ’F+L’ thoroughly outperforms the
method of ’F’ with an improvement of more than 4% on the
task of phrase detection and more than 3% on the task of re-
lationship detection on two datasets. In addition, the method
of ’Fo+L’ have a significant improvement over the method of
’Fo’ only on the VG dataset, but this improvement is smaller
on the VRD dataset. The main reasons are: a). The method of
’F’ gets more information of the structures of relationships
from label-level relationship prediction, compared with the
method of ’Fo’. b). The method of ’Fo+L’ gets more infor-
mation of the structures of relationships in the VG dataset
from the label-level prediction, compared with this method
on the VRD dataset. In a word, by adding the label-level
prediction, we can obtain a performance improvement based
on the same feature-level prediction. This validates that the
structures of relationships have been captured in this label-
level prediction and the deep structured model is effective
for visual relationship detection (Q1). Furthermore, the av-
erage processing time per image of the relationship predic-
tion phase is 0.08 seconds and 0.28 seconds for VRD dataset
and VG dataset respectively.

To analyze what structures have been learnt in the deep
structured model (Q2), we resort to the fully connected layer
in label-level prediction. Figure 3 shows the weight informa-
tion of fully connected layer of “subject - predicate” (wsp∗ )
and “object - predicate” (wop∗ ) in label-level prediction. We
list 5 subjects and 5 objects, which are the top 5 of high fre-
quency in the training data, and list another 5 subjects and
5 objects, which are the last 5 of low frequency in the train-
ing data. The corresponding predicates of top 3 and last 3
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Figure 3: The ranks of learnt weights of “subject - predicate” and “object - predicate” in VRD and VG dataset.

of subjects and objects, ranked by the weight values in de-
scending order, are listed in Figure 3. We also compare this
rank of learnt weights with the rank of frequency at the same
“subject-predicate” or “object-predicate” in the training da-
ta. The blue predicates are the top-3 predicates appeared in
the top 20 of frequency, or the last-3 predicates appeared in
the last 20 of frequency. The brown predicates are the top-3
predicates appeared in the last 20 of frequency, or the last-3
predicates appeared in the top 20 of frequency. We can find
that the blue predicates have a consistent rank of frequency,
and the brown predicates have an adverse rank of frequency.
From this figure, we have the following discussions:

1). The ranks of learnt weights of “subject - predicate” and
“object - predicate” are basically satisfying. Most of ranks of
the learnt weights are reasonable, especially for the objects
of height frequency. For example, in the VRD data, when
the subject is “person”, the top 3 are “person - wear”, “per-
son - eat” and “person - watch” which are possible actions
of the person, and the last 3 contains “person - cover” and
“person - park” which are impossible actions of person. In
the VG dataset, when the object is “building”, the top 3 are
“on back of - building” and “above - building” which are
possible positional relations to the building, and the last 3
contains “swing - building” and “say - building” which are
the impossible actions to the building.

2). Despite there are some unreasonable ranks of weights
of “subject - predicate” and “object - predicate” (For exam-
ple, in the VRD data, when the subject is “building”, the
“building - park on” and “building - ride” are impossible ac-
tions to building, but appear in the top 3), the overall ranks
are reasonable. To evaluate the rationality of the rank, we

use the ratio of consistent ranks (blue) to inconsistent ranks
(brown), and our hypothesis is that the rank of frequency
is reasonable. The larger the ratio of the total of consistent
ranks to the total of inconsistent ranks is, the more reason-
able ranks have been learnt. In the VRD dataset, the ratio
value is 33/24, and this ratio value is up to 21/10 in top-5
objects. In the VG dataset, the ratio value is 33/20, and this
ratio value is up to 19/8 in top-5 objects. The ratio values
of the two datasets in top-5 objects are larger than 2, which
can be regarded that more than 2/3 of the ranks are reason-
able. This validates that the learnt structure of relationship is
reasonable by this deep structured model (Q2).

Our proposed method captures dependencies between ob-
jects and predicates, but has not learnt to evaluate the rea-
sonability of detecting relationships. To evaluate this reason-
ability, we set a mask of relationships for the results of de-
tection. A mask of relationships is a function M(Ri), where

M(Ri) =

{
0, Ri ∈ B
−∞, Ri /∈ B

, B is a set of relationships. Af-

ter using the mask of relationships, the final score of rela-
tionship is S(Ri)+M(Ri). In this work, the set B is all the
types of relationships appeared in the training data. Table 3
and Table 4 are the results of the our proposed method by us-
ing the mask of relationships. In the two datasets, compared
with the methods with label-level prediction, the methods of
only using feature-level prediction have a relatively bigger
improvement by using the mask of relationships, especially
for the method of ’F’ in the VRD dataset. A possible expla-
nation is: the methods with label-level prediction learn more
knowledge of structures of relationships, but achieve less
knowledge of structures of relationships from the mask of



Table 3: Performances of phrase detection and relationship
detection using various methods with the mask of relation-
ships on VRD and VG datasets.

Phrase Det (%) Relationship Det (%)
R@100 R@50 R@100 R@50

VRD

Fm 21.01 19.62 15.72 14.85
Fom 23.57 22.30 17.81 16.94

F+Lm 23.41 22.06 17.43 16.51
Fo+Lm 23.95 22.67 18.33 17.40

VG

Fm 10.46 8.54 5.39 4.42
Fom 11.90 9.87 6.26 5.23

F+Lm 15.59 13.05 7.98 6.58
Fo+Lm 15.61 13.08 8.00 6.82

Table 4: Performances of phrase prediction using various
methods on on VRD and VG datasets. we use Precision (P )
as the evaluation metric.

P (%) Fm Fom F+Lm Fo+Lm

VRD 31.66 36.10 35.72 37.13
VG 17.77 20.74 28.01 28.05

relationships. In the VG dataset, the proposed four methods
with the mask of relationships have a significant improve-
ment. But in the VRD dataset only the method of ’F’ obtains
a comparable improvement, especially for the task of phrase
prediction. The main reason is that the mask of VG have a
reasonable mask of relationships, which contains more rea-
sonable relationships. For example, the mask of VRD only
contains 6,672 types of relationships without 1029 types of
relationships in the testing data, but the mask of VG contains
19,236 types of relationships without 325 types of relation-
ships in the testing data.

We also compare our proposed method with the state-
of-the-art models. Since the task of visual relationship de-
tection is proposed, only VRD dataset is publicly released.
All of proposed works conduct experiments in this dataset,
and select data from the whole VG dataset (Krishna et al.
2017) by themselves. Recently, the work of VtransE (Zhang
et al. 2017) has released their dataset. To evaluate our pro-
posed method, we also conduct experiments, and implemen-
t some methods (Lu et al. 2016; Zhu, Jiang, and Li 2017)
in the recently released dataset VG. The quantitative result-
s in the two datasets are shown in Table 5. In the VRD
dataset, our proposed method outperforms the state-of-the-
art methods (Liang, Lee, and Xing 2017; Dai, Zhang, and
Lin 2017) in phrase detection, and achieves a comparable
performance in relationship detection. In the VG dataset, our
proposed method outperforms the methods (Lu et al. 2016;
Zhu, Jiang, and Li 2017; Zhang et al. 2017) significantly on
both phrase detection and relationship detection.

To sum up, even without using the mask of relationship-
s, our proposed method of ’Fo+L’ has outperformed exist-
ing state-of-the-art methods in some evaluation metrics on
the two datasets. This validates the effectiveness of our pro-
posed method (Q1), and also reflects that the dependencies
between objects and predicates are useful to facilitate visu-

Table 5: Comparison with state-of-the-art models. The sec-
ond row and the third row are the performances on the VRD
dataset and the VG dataset respectively. The following num-
bers of the first left column represent references. ([1]: (Lu et
al. 2016), [2]: (Zhu, Jiang, and Li 2017), [3]: (Zhang et al.
2017), [4]: (Dai, Zhang, and Lin 2017), [5]: (Liang, Lee, and
Xing 2017))

Phrase Det (%) Relationship Det (%)
R@100 R@50 R@100 R@50

VRD [1] 17.03 16.17 14.70 13.86
VRDS [2] 18.89 16.94 15.77 14.31

VtransE [3] 22.42 19.42 15.20 14.07
RDN [4] 23.45 19.93 20.88 17.73

DVSRL [5] 22.60 21.37 20.79 18.19
Fo+L our 23.92 22.61 18.26 17.27

Fo+Lm our 23.95 22.67 18.33 17.40
VRD [1] 11.85 9.85 5.62 4.77

VRDS [2] 12.19 10.54 5.75 5.08
VtransE [3] 10.45 9.46 6.04 5.52
Fo+L our 14.35 12.07 7.50 6.37

Fo+Lm our 15.61 13.07 8.00 6.82

al relationship detection. These dependencies are reasonable
(Q2), which are validated by analyzing the learnt weight of
“subject - predicate” and “predicate - object”.

Conclusion and Future works
In this paper, we propose a deep structured model for vi-
sual relationship detection. Our proposed method not only
predicts relationships on the feature level, but also captures
dependencies between objects and predicates. Additionally,
we use SSVM loss as our optimization goals, and decom-
pose the optimization goal into multiple optimization goals.
To evaluate our proposed method, we conduct experiment
on VRD dataset and VG dataset and achieve state-of-the-art
performance. With using the mask of relationships, the ex-
perimental performances are improved. This illustrates that
evaluating reasonable relationships can facilitate visual rela-
tionship detection and the evaluation of reasonable relation-
ship is to learn second-order relations of labels. Our pro-
posed method learns the relations of labels only capturing
first-order relations. In the future work, we will learn both
first-order relations and second-order relations in label-level
relationship prediction using a deep neural network.
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