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Abstract

This paper presents a real-time face detector, named
Single Shot Scale-invariant Face Detector (S3FD), which
performs superiorly on various scales of faces with a single
deep neural network, especially for small faces. Specif-
ically, we try to solve the common problem that anchor-
based detectors deteriorate dramatically as the objects be-
come smaller. We make contributions in the following
three aspects: 1) proposing a scale-equitable face detection
framework to handle different scales of faces well. We
tile anchors on a wide range of layers to ensure that all
scales of faces have enough features for detection. Besides,
we design anchor scales based on the effective receptive
field and a proposed equal proportion interval principle;
2) improving the recall rate of small faces by a scale com-
pensation anchor matching strategy; 3) reducing the false
positive rate of small faces via a max-out background la-
bel. As a consequence, our method achieves state-of-the-
art detection performance on all the common face detection
benchmarks, including the AFW, PASCAL face, FDDB and
WIDER FACE datasets, and can run at 36 FPS on a Nvidia
Titan X (Pascal) for VGA-resolution images.

1. Introduction
Face detection is the key step of many subsequent face-

related applications, such as face alignment [50, 61], face
recognition [32, 40, 62], face verification [44, 46] and face
tracking [17], etc. It has been well developed over the past
few decades. Following the pioneering work of Viola-Jones
face detector [48], most of early works focus on designing
robust features and training effective classifiers. But these
approaches depend on non-robust hand-crafted features and
optimize each component separately, making the face de-
tection pipeline sub-optimal.

In recent years, convolutional neural network (CNN) has
achieved remarkable successes, ranging from image classi-
fication [10, 42, 45] to object detection [8, 23, 26, 37, 38],
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Figure 1. Reasons behind the problem of anchor-based methods.
(a) Few features: Small faces have few features at detection layer.
(b) Mismatch: Anchor scale mismatches receptive field and both
are too large to fit small face. (c) Anchor matching strategy: The
figure demonstrates the number of matched anchors at different
face scales under current anchor matching method. It reflects that
tiny and outer faces match too little anchors. (d) Background
from small anchors: The two figures have the same resolution.
The left one tiles small anchors to detect the small face and the
right one tiles big anchors to detect the big face. Small anchors
bring about plenty of negative anchors on the background.

which also inspires face detection. On the one hand, many
works [21, 31, 54, 55, 58] have applied CNN as the fea-
ture extractor in the traditional face detection framewrok.
On the other hand, face detection is regarded as a spe-
cial case of generic object detection and lots of meth-
ods [3, 15, 43, 49, 59] have inherited valid techniques from
generic object detection method [38]. Following the latter
route, we improve the anchor-based generic object detection
frameworks and propose a state-of-the-art face detector.

Anchor-based object detection methods [26, 38] detect
objects by classifying and regressing a series of pre-set an-
chors, which are generated by regularly tiling a collection of
boxes with different scales and aspect ratios on the image.
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These anchors are associated with one [38] or several [26]
convolutional layers, whose spatial size and stride size de-
termine the position and interval of the anchors, respec-
tively. The anchor-associated layers are convolved to clas-
sify and align the corresponding anchors. Comparing with
other methods, anchor-based detection methods are more
robust in complicated scenes and their speed is invariant to
object numbers. However, as indicated in [12], the perfor-
mance of anchor-based detectors drop dramatically as
the objects becoming smaller. In order to present a scale-
invariant anchor-based face detector, we comprehensively
analyze the reasons behind the above problem as follows:

Biased framework. The anchor-based detection frame-
works tend to miss small and medium faces. Firstly, the
stride size of the lowest anchor-associated layer is too large
(e.g., 8 pixels in [26] and 16 pixels in [38]), therefore
small and medium faces have been highly squeezed on these
layers and have few features for detection, see Fig. 1(a).
Secondly, small face, anchor scale and receptive field are
mutual mismatch: anchor scale mismatches receptive field
and both are too large to fit small face, see Fig. 1(b). To
address the above problems, we propose a scale-equitable
face detection framework. We tile anchors on a wide range
of layers whose stride size vary from 4 to 128 pixels, which
guarantees that various scales of faces have enough features
for detection. Besides, we design anchors with scales from
16 to 512 pixels over different layers according to the effec-
tive receptive field [29] and a new equal-proportion interval
principle, which ensures that anchors at different layers
match their corresponding effective receptive field and dif-
ferent scales of anchors evenly distribute on the image.

Anchor matching strategy. In the anchor-based
detection frameworks, anchor scales are discrete (i.e.,
16, 32, 64, 128, 256, 512 in our method) but face scale is
continuous. Consequently, those faces whose scale dis-
tribute away from anchor scales can not match enough an-
chors, such as tiny and outer face in Fig. 1(c), leading to
their low recall rate. To improve the recall rate of these
ignored faces, we propose a scale compensation anchor
matching strategy with two stages. The first stage follows
current anchor matching method but adjusts a more reason-
able threshold. The second stage ensures that every scale of
faces match enough anchors through scale compensation.

Background from small anchors. To detect small faces
well, plenty of small anchors have to be densely tiled on the
image. As illustrated in Fig. 1(d), these small anchors lead
to a sharp increase in the number of negative anchors on
the background, bringing about many false positive faces.
For example, in our scale-equitable framework, over 75%
of negative anchors come from the lowest conv3 3 layer,
which is used to detect small faces. In this paper, we pro-
pose a max-out background label for the lowest detection
layer to reduce the false positive rate of small faces.

For clarity, the main contributions of this paper can be
summarized as:

• Proposing a scale-equitable face detection framework
with a wide range of anchor-associated layers and a
series of reasonable anchor scales so as to handle dif-
ferent scales of faces well.

• Presenting a scale compensation anchor matching
strategy to improve the recall rate of small faces.

• Introducing a max-out background label to reduce the
high false positive rate of small faces.

• Achieving state-of-the-art results on AFW, PASCAL
face, FDDB and WIDER FACE with real-time speed.

2. Related work
Face detection has attracted extensive research atten-

tion in past decades. The milestone work of Viola-Jones
[48] uses Haar feature and AdaBoost to train a cascade
of face/non-face classifiers that achieves a good accuracy
with real-time efficiency. After that, lots of works have
focused on improving the performance with more sophis-
ticated hand-crafted features [25, 28, 53, 60] and more
powerful classifiers [2, 33]. Besides the cascade struc-
ture, [30, 51, 63] introduce deformable part models (DPM)
into face detection tasks and achieve remarkable perfor-
mance. However, these methods highly depend on the ro-
bustness of hand-crafted features and optimize each compo-
nent separately, making face detection pipeline sub-optimal.

Recent years have witnessed the advance of CNN-based
face detectors. CascadeCNN [21] develops a cascade ar-
chitecture built on CNNs with powerful discriminative ca-
pability and high performance. Qin et al. [34] proposes
to jointly train CascadeCNN to realize end-to-end opti-
mization. Faceness [55] trains a series of CNNs for fa-
cial attribute recognition to detect partially occluded faces.
MTCNN [58] proposes to jointly solve face detection and
alignment using several multi-task CNNs. UnitBox [57]
introduces a new intersection-over-union loss function.

Additionally, face detection has inherited some achieve-
ments from generic object detection tasks. Jiang et al. [15]
applies Faster R-CNN in face detection and achieves
promising results. CMS-RCNN [59] uses Faster R-CNN
in face detection with body contextual information. Con-
vnet [24] integrates CNN with 3D face model in an end-
to-end multi-task learning framework. Wan et al. [49]
combines Faster R-CNN with hard negative mining and
achieves significant boosts in face detection performance.
STN [3] proposes a new supervised transformer network
and a ROI convolution with RPN for face detection. Sun
et al. [43] presents several effective strategies to improve
Faster RCNN for resolving face detection tasks. In this
paper, inspired by the RPN in Faster RCNN [38] and the
multi-scale mechanism in SSD [26], we develop a state-of-
the-art face detector with real-time speed.



Figure 2. Architecture of Single Shot Scale-invariant Face Detector (S3FD). It consists of Base Convolutional Layers, Extra Convolu-
tional Layers, Detection Convolutional Layers, Normalization Layers, Predicted Convolutional Layers and Multi-task Loss Layer.

3. Single shot scale-invariant face detector
This section introduces our single shot scale-invariant

face detector, including the scale-equitable framework
(Sec. 3.1), the scale compensation anchor matching strategy
(Sec. 3.2), the max-out background label (Sec. 3.3) and the
associated training methodology (Sec. 3.4).

3.1. Scale-equitable framework

Our scale-equitable framework is based on the anchor-
based detection framework, such as RPN [38] and
SSD [26]. Despite its great achievement, the main draw-
back of the framework is that the performance drops dra-
matically as the face becomes smaller [12]. To improve the
robustness to face scales, we develop a network architec-
ture with a wide range of anchor-associated layers, whose
stride size gradually double from 4 to 128 pixels. Hence,
our architecture ensures that different scales of faces have
adequate features for detection at corresponding anchor-
associated layers. After determining the location of an-
chors, we design the scales of anchors from 16 to 512
pixels based on the effective receptive field and our equal-
proportion interval principle. The former guarantees that
each scale of anchors matches the corresponding effective
receptive field well, and the latter makes different scales of
anchors have the same density on the image.

Constructing architecture. Our architecture (see Fig.2)
is based on the VGG16 [42] network (truncated before any

classification layers) with some auxiliary structures:
• Base Convolutional Layers: We keep layers of VGG16

from conv1 1 to pool5, and remove all the other layers.
• Extra Convolutional Layers: We convert fc6 and fc7 of

VGG16 to convolutional layers by subsampling their
parameters [4], then add extra convolutional layers be-
hind them. These layers decrease in size progressively
and form the multi-scale feature maps.

• Detection Convolutional Layers: We select conv3 3,
conv4 3, conv5 3, conv fc7, conv6 2 and conv7 2
as the detection layers, which are associated with dif-
ferent scales of anchor to predict detections.

• Normalization Layers: Comparing to other detection
layers, conv3 3, conv4 3 and conv5 3 have different
feature scales. Hence we use L2 normalization [27]
to rescale their norm to 10, 8 and 5 respectively, then
learn the scale during the back propagation.

• Predicted Convolutional Layers: Each detection layer
is followed by a p×3×3×q convolutional layer, where
p and q are the channel number of input and output,
and 3×3 is the kernel size. For each anchor, we predict
4 offsets relative to its coordinates and Ns scores for
classification, where Ns = Nm + 1 (Nm is the max-
out background label) for conv3 3 detection layer and
Ns = 2 for other detection layers.

• Multi-task Loss Layer: We use softmax loss for classi-
fication and smooth L1 loss for regression.



Detection Layer Stride Anchor RF

conv3 3 4 16 48
conv4 3 8 32 108
conv5 3 16 64 228
conv fc7 32 128 340
conv6 2 64 256 468
conv7 2 128 512 724

Table 1. The stride size, anchor scale and receptive field (RF) of
the six detection layers. The receptive field here is related to 3× 3
units on the detection layer, since it is followed by a 3×3 predicted
convolutional layer to predict detections.

Designing scales for anchors. Each of the six detec-
tion layers is associated with a specific scale anchor (i.e.,
the third column in Tab. 1) to detect corresponding scale
faces. Our anchors are 1:1 aspect ratio (i.e., square anchor),
because the bounding box of face is approximately square.
As listed in the second and fourth column of Tab. 1, the
stride size and the receptive field of each detection layer are
fixed, which are two base points when we design the anchor
scales:

• Effective receptive field: As pointed out in [29], a unit
in the CNN has two types of receptive fields. One
is the theoretical receptive field, which indicates the
input region that can theoretically affect the value of
this unit. However, not every pixel in the theoretical
receptive field contributes equally to the final output.
In general, center pixels have much larger impacts than
outer pixels, as shown in Fig. 3(a). In other words,
only a fraction of the area has effective influence on
the output value, which is another type of receptive
field, named the effective receptive field. According to
this theory, the anchor should be significantly smaller
than theoretical receptive field in order to match the
effective receptive field (see the specific example in
Fig. 3(b)).

• Equal-proportion interval principle: The stride size of
a detection layer determines the interval of its anchor
on the input image. For example, the stride size of
conv3 3 is 4 pixels and its anchor is 16×16, indicating
that there is a 16 × 16 anchor for every 4 pixels on
the input image. As shown in the second and third
column in Tab. 1, the scales of our anchors are 4 times
its interval. We call it equal-proportion interval prin-
ciple (illustrated in Fig. 3(c)), which guarantees that
different scales of anchor have the same density on the
image, so that various scales face can approximately
match the same number of anchors.

Benefits from the scale-equitable framework, our face
detector can handle various scales of faces better, especially
for small faces.

(a) (b) (c)

Figure 3. (a) Effective receptive field: The whole black box is the
theoretical receptive field (TRF) and the white point cloud with
Gaussian distribution is the effective receptive field (ERF). ERF
only occupies a fraction of TRF. The figure is from [29]. (b) A
specific example: In our framework, conv3 3’s TRF is 48 × 48
(the black dotted box) and ERF is the blue dotted circle estimated
by (a). Its anchor is 16 × 16 (the red solid line box), which is
much smaller than TRF but matches ERF. (c) Equal-proportion
interval principle: Assuming n is the anchor scale, so n/4 is the
interval of this scale anchor. n/4 also corresponds to the stride
size of the layer associated with this anchor. Best viewed in color.

3.2. Scale compensation anchor matching strategy

During training, we need to determine which anchors
correspond to a face bounding box. Current anchor match-
ing method firstly matches each face to the anchors with the
best jaccard overlap [5] and then matches anchors to any
face with jaccard overlap higher than a threshold (usually
0.5). However, anchor scales are discrete while face
scales are continuous, these faces whose scales distribute
away from anchor scales can not match enough anchors,
leading to their low recall rate. As shown in Fig. 1(c), we
count the average number of matched anchors for different
scales of faces. There are two observations: 1) the average
number of matched anchors is about 3 which is not enough
to recall faces with high scores; 2) the number of matched
anchors is highly related to the anchor scales. The faces
away from anchor scales tend to be ignored, leading to their
low recall rate. To solve these problems, we propose a scale
compensation anchor matching strategy with two stages:

• Stage one: We follow current anchor matching method
but decrease threshold from 0.5 to 0.35 in order to
increase the average number of matched anchors.

• Stage Two: After stage one, some faces still do not
match enough anchors, such as tiny and outer faces
marked with the gray dotted curve in Fig. 4(a). We
deal with each of these faces as follow: firstly picking
out anchors whose jaccard overlap with this face are
higher than 0.1, then sorting them to select top-N as
matched anchors of this face. We set N as the average
number from stage one.

As shown in Fig. 4(a), our anchor matching strategy
greatly increases the matched anchors of tiny and outer
faces, which notably improve the recall rate of these faces.



(a) (b)

Figure 4. (a) The matched number for different scales of faces are
compared between current anchor matching method and our scale
compensation anchor matching strategy. (b) The illustration of the
max-out background label.

3.3. Max-out background label

Anchor-based face detection methods can be regarded as
a binary classification problem, which determines if an an-
chor is face or background. In our method, it is an extremely
unbalanced binary classification problem: according to our
statistical results, over 99.8% of the pre-set anchors belong
to negative anchors (i.e., background) and only a few of
anchors are positive anchors (i.e., face). This extreme im-
balance is mainly caused by the detection of small faces.
Specifically, we have to densely tile plenty of small anchors
on the image to detect small faces, which causes a sharp
increase in the number of negative anchors. For example,
as listed in Tab. 2, a 640 × 640 image has totally 34, 125
anchors, while about 75% of them come from conv3 3
detection layer which is associated with the smallest anchor
(16 × 16). These smallest anchors contribute most to the
false positive faces. As a result, improving the detection
rate of small faces by tiling small anchors will inevitably
lead to the high false positive rate of small faces.

Position Scale Number Percentage (%)

conv3 3 16 25600 75.02
conv4 3 32 6400 18.76
conv5 3 64 1600 4.69
conv fc7 128 400 1.17
conv6 2 256 100 0.29
conv7 2 512 25 0.07

Table 2. Detailed information about anchors in a 640×640 image.

To address this issue, we propose to apply a more sophis-
ticated classification strategy on the lowest layer to handle
the complicated background from small anchors. We apply
the max-out background label for the conv3 3 detection
layer. For each of the smallest anchors, we predict Nm

scores for background label and then choose the highest as

its final score, as illustrated in Fig. 4(b). Max-out opera-
tion integrates some local optimal solutions into our S3FD
model so as to reduce the false positive rate of small faces.

3.4. Training

In this subsection, we introduce the training dataset, data
augmentation, loss function, hard negative mining and other
implementation details.

Training dataset and data augmentation. Our model
is trained on 12, 880 images of the WIDER FACE training
set with the following data augmentation strategies:

• Color distort: Applying some photo-metric distortions
similar to [11].

• Random crop: We apply a zoom in operation to gen-
erate larger faces since there are too many small faces
in the WIDER FACE training set. Specifically, each
image is randomly selected from five square patches,
which are randomly cropped from the original image:
one is the biggest square patch, and the size of the other
four square patches range between [0.3, 1] of the short
size of the original image. We keep the overlapped part
of the face box if its center is in the sampled patch.

• Horizontal flip: After random cropping, the selected
square patch is resized to 640 × 640 and horizontally
flipped with probability of 0.5.

Loss function. We employ the multi-task loss defined in
RPN [?] to jointly optimize model parameters:

L({pi},{ti})=
λ

Ncls

∑
i

Lcls(pi,p
∗
i )+

1

Nreg

∑
i

p∗iLreg(ti,t
∗
i ),

where i is the index of an anchor and pi is the predicted
probability that anchor i is a face. The ground-truth label p∗i
is 1 if the anchor is positive, 0 otherwise. As defined in [?],
ti is a vector representing the 4 parameterized coordinates
of the predicted bounding box, and t∗i is that of the ground-
truth box associated with a positive anchor. The classi-
fication loss Lcls(pi, p

∗
i ) is softmax loss over two classes

(face vs. background). The regression loss Lreg(ti, t
∗
i )

is the smooth L1 loss defined in [8] and p∗
i Lreg means

the regression loss is activated only for positive anchors
and disabled otherwise. The two terms are normalized by
Ncls and Nreg , and weighted by a balancing parameter λ.
In our implementation, the cls term is normalized by the
number of positive and negative anchors, and the reg term is
normalized by the number of positive anchors. Because of
the imbalance between the number of positive and negative
anchors, λ is used to balance these two loss terms.

Hard negative mining. After anchor matching step,
most of the anchors are negative, which introduces a signif-
icant imbalance between the positive and negative training
examples. For faster optimization and stable training, in-
stead of using all or randomly select some negative samples,
we sort them by the loss values and pick the top ones so that



the ratio between the negatives and positives is at most 3:1.
With hard negative mining, we set above background label
Nm = 3, and λ = 4 to balance the loss of classification and
regression.

Other implementation details. As for the parameter
initialization, the base convolutional layers have the same
architecture as VGG16 and their parameters are initial-
ized from the pre-trained [39] VGG16. The parameters
of conv fc6 and conv fc7 are initialized by subsampling
parameters from fc6 and fc7 of VGG16 and the other ad-
ditonal layers are randomly initialized with the “xavier”
method [9]. We fine-tune the resulting model using SGD
with 0.9 momentum, 0.0005 weight decay and batch size
32. The maximum number of iterations is 120k and we use
10−3 learning rate for the first 80k iterations, then continue
training for 20k iterations with 10−4 and 10−5. Our method
is implemented in Caffe [14] and the code is available at
https://github.com/sfzhang15/SFD.

4. Experiments
In this section, we firstly analyze the effectiveness of

our scale-equitable framework, scale compensation anchor
matching strategy and max-out background label, then eval-
uate the final model on common face detection benchmarks,
finally introduce the inference time.

4.1. Model analysis

We analyze our model on the WIDER FACE validation
set by extensive experiments. The WIDER FACE valida-
tion set has easy, medium and hard subsets, which roughly
correspond to large, medium and small faces, respectively.
Hence it is suitable to evaluate our model.

Baseline. To evaluate our contributions, we carry out
comparative experiments with our baselines. Our S3FD is
inspired by RPN [38] and SSD [26], so we directly use them
to train two face detectors as the baselines, marked as RPN-
face and SSD-face, respectively. Different from [38], the
RPN-face tiles six scales of the square anchor (16, 32, 64,
128, 256, 512) on the conv5 3 layer of VGG16 to make
the comparison more substantial. The SSD-face inherits the
architecture and anchor-setting of SSD. The remainder is
set as the same with our S3FD.

Ablative Setting. To understand S3FD better, we con-
duct ablation experiments to examine how each proposed
component affects the final performance. We evaluate the
performance of our method under three different settings:
(i) S3FD(F): it only uses the scale-equitable framework
(i.e., constructed architecture and designed anchors) and
ablates another two components; (ii) S3FD(F+S): it applies
the scale-equitable framework and the scale compensation
anchor matching strategy; (iii) S3FD(F+S+M): it is our
complete model, consisting of the scale-equitable frame-
work, the scale compensation anchor matching strategy and

the max-out background label.

Methods

mAP(%) Subsets
Easy Medium Hard

RPN-face 91.0 88.2 73.7
SSD-face 92.1 89.5 71.6
S3FD(F) 92.6 91.6 82.3
S3FD(F+S) 93.5 92.0 84.5
S3FD(F+S+M) 93.7 92.4 85.2

Table 3. The comparative and ablative results of our model on
WIDER FACE validation subset. The precision-recall curves of
these methods are in the supplementary materials.

From the results listed in Tab. 3, some promising conclu-
sions can be summed up as follows:

Scale-equitable framework is crucial. Comparing with
S3FD(F), the only difference with RPN-face and SSD-face
are their framework. RPN-face has the same choice of
anchors as ours but only tiles on the last convolutional
layer of VGG16. Not only its stride size (16 pixels) is too
large for small faces, but also different scales of anchors
have the same receptive field. SSD-face tiles anchors over
several convolutional layers, while its smallest stride size
(8 pixels) and smallest anchors are still slightly large for
small faces. Besides, its anchors do not match the effective
receptive field. The result of S3FD(F) in Tab. 3 shows that
our framework greatly outperforms SSD-face and RPN-
face, especially on the hard subsets (rising by 8.6%), which
mainly consists of small faces. Comparing the results be-
tween different subsets, our S3FD(F) handles various scales
of faces well, and deteriorates slightly as the faces become
smaller, which demonstrates the robustness to face scales.

Scale compensation anchor matching strategy is bet-
ter. The comparison between the third and fourth rows in
Tab. 3 indicates that our scale compensation anchor match-
ing strategy effectively improves the performance, espe-
cially for small faces. The mAP is increased by 0.9%, 0.4%,
2.2% on easy, medium and hard subset, respectively. The
increases mainly come from the higher recall rate of various
scales of faces, especially for those faces that are ignored by
the current anchor matching method.

Max-out background label is promising. The last con-
tribution of S3FD is the max-out background label. It deals
with the massive small negative anchors (i.e., background)
from the conv3 3 detection layer which is designed to detect
small faces. As reported in Tab. 3, the improvements on
easy, medium and hard subsets are 0.2%, 0.4%, 0.7%, re-
spectively. It demonstrates that the effectiveness of the max-
out background label is positively related to the difficulty of
the input image. Since the harder images will generate the
more difficult small backgrounds.

https://github.com/sfzhang15/SFD


4.2. Evaluation on benchmark

We evaluate our S3FD method on all the common face
detection benchmarks, including Annotated Faces in the
Wild (AFW)[63], PASCAL Face[52], Face Detection Data
Set and Benchmark (FDDB)[13] and WIDER FACE [56].
Due to the limited space, some qualitative results on these
dataset will be shown in the supplementary materials.

AFW dataset. It contains 205 images with 473 la-
beled faces. We evaluate our model against the well-known
works [3, 25, 30, 41, 52, 55, 63] and commercial face detec-
tors (e.g., Face.com, Face++ and Picasa). As illustrated in
Fig.5, our S3FD outperforms all others by a large margin.

Figure 5. Precision-recall curves on AFW dataset.

PASCAL face dataset. It has 1, 335 labeled faces in
851 images with large face appearance and pose variations.
It is collected from PASCAL person layout test subset.
Fig.6 shows the precision-recall curves on this dataset, our
method significantly outperforms all other methods [3, 16,
30, 52, 55, 63] and commercial face detectors (e.g., Sky-
Biometry, Face++ and Picasa).

Figure 6. Precision-recall curves on PASCAL face dataset.

FDDB dataset. It contains 5, 171 faces in 2, 845 images.
There are two problems for evaluation: 1) FDDB adopts the
bounding ellipse while our S3FD outputs rectangle bound-
ing box. This inconsistency has a great impact on the
continuous score, so we train an elliptical regressor to trans-
form our predicted bounding boxes to bounding ellipses. 2)
FDDB has lots of unlabelled faces, which results in many

false positive faces with high scores. Hence, we manually
review the results and add 238 unlabelled faces (annotations
will be released later and some examples are shown in the
supplementary materials). Finally, we evaluate our face de-
tector on FDDB against the state-of-the-art methods [1, 6, 7,
15, 18, 19, 20, 22, 24, 25, 31, 35, 36, 43, 47, 49, 55, 57, 58].
The results are shown in Fig. 7(a) and Fig.7(b). Our S3FD
achieves the state-of-the-art performance and outperforms
all others by a large margin on discontinuous and continu-
ous ROC curves. These results indicate that our S3FD can
robustly detect unconstrained faces.

(a) Discontinuous ROC curves

(b) Continuous ROC curves

Figure 7. Evaluation on the FDDB dataset.

WIDER FACE dataset. It has 32, 203 images and labels
393, 703 faces with a high degree of variability in scale,
pose and occlusion. The database is split into training
(40%), validation (10%) and testing (50%) set. Besides,
the images are divided into three levels (Easy, Medium and
Hard subset) according to the difficulties of the detection.
The images and annotations of training and validation set
are available online, while the annotations of testing set
are not released and the results are sent to the database
server for receiving the precision-recall curves. Our S3FD
is trained only on the training set and tested on both val-
idation and testing set against recent face detection meth-
ods [31, 53, 55, 56, 58, 59]. The precision-recall curves and



(a) Val: Easy (b) Val: Medium (c) Val: Hard

(d) Test: Easy (e) Test: Medium (f) Test: Hard

Figure 8. Precision-recall curves on WIDER FACE validation and test sets.1

mAP values are shown in Fig. 8. Our model outperforms
others by a large margin across the three subsets, especially
on the hard subset which mainly contains small faces. It
achieves the best average precision in all level faces, i.e.
0.937 (Easy), 0.924 (Medium) and 0.852 (Hard) for val-
idation set, and 0.928 (Easy), 0.913 (Medium) and 0.840
(Hard) for testing set.1 These results not only demonstrate
the effectiveness of the proposed method but also strongly
show the superiority of the proposed model in detecting
small and hard faces.

4.3. Inference time

During inference, our method outputs a large number of
boxes (e.g., 25, 600 boxes for a VGA-resolution image).
To speed up the inference time, we first filter out most
boxes by a confidence threshold of 0.05 and keep the top
400 boxes before applying NMS, then we perform NMS
with jaccard overlap of 0.3 and keep the top 200 boxes.
We measure the speed using Titan X (Pascal) and cuDNN
v5.1 with Intel Xeon E5-2683v3@2.00GHz. For the VGA-
resolution image with batch size 1 using a single GPU, our
face detector can run at 36 FPS and achieve the real-time
speed. Besides, about 80% of the forward time is spent
on the VGG16 network, hence using a faster base network
could further improve the speed.

1Our latest results on WIDER FACE are shown in Fig. 16

5. Conclusion
This paper introduces a novel face detector by solving

the common problem of anchor-based detection methods
whose performance decrease sharply as the objects becom-
ing smaller. We analyze the reasons behind this problem,
and propose a scale-equitable framework with a wide range
of anchor-associated layers and a series of reasonable an-
chor scales in order to well handle different scales of faces.
Besides, we propose the scale compensation anchor match-
ing strategy to improve the recall rate of small faces, and the
max-out background label to reduce the false positive rate
of small faces. The experiments demonstrate that our three
contributions lead S3FD to the state-of-the-art performance
on all the common face detection benchmarks, especially
for small faces. In our future work, we intend to further
improve the classification strategy of background patches.
We believe that explicitly dividing the background class into
some sub-categories is worthy of further study.
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A. Precision-recall curves
In our submitted paper, Tab. 3 in subsection 4.1 only provides the mAP of RPN-face, SSD-face, S3FD(F), S3FD(F+S) and

S3FD(F+S+M). Their precision-recall curves on the WIDER FACE validation set are shown in Fig. 9 for details.

(a) Easy (b) Medium (c) Hard

Figure 9. Precision-recall curves on WIDER FACE validation set.

B. Qualitative results
In this section, we demonstrate some qualitative results on common face detection benchmarks, including AFW (Fig. 10),

PASCAL face (Fig. 11), FDDB (Fig. 12) and WIDER FACE (Fig. 13). Besides, another impressive result is shown in Fig. 14.

Figure 10. Qualitative results on AFW. The faces in these results have a high degree of variability in scale, pose and occlusion. Our S3FD
is able to detect these faces with a high confidence, especially for small faces. Please zoom in to see some small detections.



Figure 11. Qualitative results on PASCAL face. Most faces in these results are small faces, because the image in PASCAL face has a low
resolution. Our S3FD is able to handle small faces well. Please zoom in to see some small detections.

Figure 12. Qualitative results on FDDB. These results indicate that our S3FD is robust to large appearance, heavy occlusion, scale variance
and heavy blur. Please zoom in to see some small detections.



(a) Scale attribute. Our S3FD is able to detect faces at a continuous range of scales.

(b) Our S3FD is robust to pose, occlusion, expression, makeup, illumination and blur.

Figure 13. Qualitative results on WIDER FACE. We visualize some examples for each attribute. Please zoom in to see small detections.

Figure 14. Another qualitative result. Our S3FD can find 853 faces out of the reportedly 1000 present in the above image. Detector
confidence is given by the colorbar on the right. Please zoom in to see some small detections.



C. Examples of manually labelled faces on FDDB
We add 238 unlabelled faces whose height and width are more than 20 pixels. Some examples are shown in Fig. 15.

(a) Profile faces

(b) Occluded faces

(c) Blur faces

(d) Statue faces

(e) Miscellaneous faces

Figure 15. Examples of our manually labelled faces on the FDDB dataset. Red ellipses are the faces that FDDB has already labelled, green
ellipses are the newly added faces.



D. Ablative analysis of each detection layers
To examine the contribution of each detection layers on the mAP performance, we progressively remove the detection

layers to test their contribution on the WIDER FACE Val set. The detailed experiment results are listed in Tab. 4. After
removing Conv3 3 layer, the mAP changes are +0.3%(Easy), +0.5%(Medium) and -24.7%(Hard), showing Conv3 3 is
crucial to detect small faces, but tiling plenty of smallest anchors also slightly hurts medium and large face detection
performance. Besides, the most contribution of Easy and Medium subset are Conv5 3 (25.8%) and Conv4 3 (20.6%),
respectively.

Detection layers Ablative analysis

Conv3 3 ×
Conv4 3 ×
Conv5 3 ×
Conv fc7 ×
Conv6 2 ×
Conv7 2 ×

mAP changes on Easy subset (%) +0.3 -0.6 -25.8 -10.2 -3.2 -1.4
mAP changes on Medium subset (%) +0.5 -20.6 -12.2 -5.0 -1.5 -0.7

mAP changes on Hard subset (%) -24.7 -8.7 -4.1 -1.8 -0.6 -0.2

Table 4. The ablative results of each detection layers on the WIDER FACE Val set.

E. Latest results on the WIDER FACE dataset
Fig. 16 shows the latest precision-recall (PR) curves of our S3FD (i.e., SFD-F and SFD-C) on WIDER FACE validation

and test sets. SFD-F and SFD-C are our upgraded detectors. SFD-F further improves the detection ability of small faces and
SFD-C focuses more on big and medium faces. The RP curves of SFD-F and SFD-C can be downloaded from the official
website of WIDER FACE dataset2, which plots only the RP curves of SFD-F on its figure with the legend “SFD”. Our S3FD
achieves the best average precision on all subsets, i.e. 0.942 (Easy), 0.930 (Medium) and 0.859 (Hard) for validation set, and
0.937 (Easy), 0.925 (Medium) and 0.858 (Hard) for testing set.

(a) Val: Easy (b) Val: Medium (c) Val: Hard

(d) Test: Easy (e) Test: Medium (f) Test: Hard

Figure 16. The latest precision-recall curves on WIDER FACE validation and test sets.3

2http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html
3Note-worthily, the latest evaluation code and annotation are used to generate these PR curves, while the results of WIDER FACE reported in our above

paper are generated from the previous version of evaluation code or annotation.

http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html

